
TECHNICAL REPORT
SER. ELECTRICAL ENGINEERING

A Generic Static Analysis Framework for
Model Transformation Programs

Zoltán Ujhelyi, Ákos Horváth, Dániel Varró

Department of Measurement and Information Systems
Budapest University of Technology and Economics

No. TUB-TR-09-EE19
Budapest, June 24, 2009

Budapest University of Technology and Economics

A Generic Static Analysis Framework for
Model Transformation Programs

Zoltán Ujhelyi
uz602@hszk.bme.hu

Ákos Horváth
ahorvath@mit.bme.hu

Dániel Varró
varro@mit.bme.hu

June 26, 2009

Abstract

To ensure the correctness of complex model transformations tools
that can find errors are necessitated. The goal of this paper is to define
a static analysis framework which can detect some common errors in
transformation programs.

The proposed tool is based on a graph model of the transformation
program and defines the analysis criteria as abstract analysis problems.

1 Introduction

In modern software development processes model transformations have
a crucial role. Such transformations can be assembled by a series of graph
transformation [17, 8] steps that can be described by model transformation
programs.

As the programs grow in size ensuring that their correctness becomes more
and more difficult, nonetheless it is required as errors in the transformation
program can propagate into the developed application.

Methods for ensuring correctness of computer programs such as static
analysis are applicable for transformation programs as well. The main
promise of static analysis is to detect a fixed set of errors without executing
the program itself. Although static analysis cannot detect all kind of errors,
in practice it can point out some of the most common ones in an early phase
of development.

3

1.1 Objectives

The aim of this paper is to provide a static analysis framework for analyzing
model transformation programs. To achieve this goal we first propose a graph
model to represent those properties of the transformation program that are
relevant to the analysis.

The most important goal of the research is to ensure that the analysis is
complete: that means the framework should not omit errors (at least not the
types looked for). On the other hand it is not so critical to ensure no error
reporting happens when errors are reported that cannot occur during the
execution of the transformation as this way to correctness of the transformation
program (regarding the criteria to check) is ensured. This may help to achieve
a faster analysis.

Reasonable speed is also a goal as static analysis tools can be integrated
into Integrated Development Environments (IDE) where they could generate
early feedback when repair is inexpensive.

1.2 Structure of the Report

The rest of the paper is structured as follows. Section 2 gives an introduc-
tion to the concepts used throughout the paper such as model transformations,
metamodeling and static analysis. Section 3 gives an overview of the pro-
posed analysis framework. Section 4 describes other approaches related to
our research, and finally, Section 5 concludes our work and outlines possible
directions of future research.

2 Background Concepts

2.1 Models and Transformations

Graph transformation languages such as the Viatra2 [1] transformation
language the ATL [3] describe model transformations as a series of graph
transformation (GT) [8] rules with graph patterns as a condition definition.
To define this series some kind of control structure is used (e.g. the abstract
state machine [5] formalism).

The used control structure varies between the different graph transforma-
tion languages, although its basic goal is the same: the efficient execution of
transformations by reducing the number of applicable GT rules.

4

2.1.1 Metamodeling

Metamodeling provides a structural definition (i.e., abstract syntax) of
modeling languages. Such a definition is needed to define the input and
output of model transformations. Formally, a metamodel can be defined by
a type graph. The nodes of the graph are called classes, while the arcs are
referred as associations. The classes may have attributes describing further
properties, and between classes inheritance relations may be used that means
each property and association defined on the parent class is also available for
the child class while the child may have additional ones. Associations might
have multiplicity constraints attached to them, such as the at-most-one (0..1)
or the arbitrary (∗) multiplicities.

Example 1 Throughout the paper we will use Petri nets as an example
domain to illustrate the foundations of our approach.

The Petri nets are bipartite graphs with two disjoint sets of nodes: Places
and Transitions. Places can contain an arbitrary number of Tokens, and the
distribution of these Tokens represent the state of the net (marking). This
state can be changed by a process called firing.

A typical graphical representation of the metamodel is depicted in Figure 1.

Figure 1: The graphical representation of the Petri net metamodel

Metamodels are used to describe the instance models; an instance model
can be used in modeling environments and is a well-formed instance of the
metamodel.

2.1.2 Graph Transformation Rules

For defining graph transformations Graph Transformation Rules (GT
Rule) are used. These rules rely on the Graph Patterns as defining the

5

application criteria for the steps. A GT Rule application transforms a graph
by replacing a part of it with another graph.

In order to describe GT Rules preconditions (also known as the Left Hand
Side graph, LHS) and postconditions (also known as the Right Hand Side
graph, RHS) are defined, where the precondition acts as application criterion,
which describes the part of the model to be modified at rule application,
while the postcondition describes how the match will look like after the rule
application. Changes in the model are calculated as the difference between
the precondition and postcondition patterns.

Example 2 Figure 2 shows the graphical representation of two transforma-
tion rules related to firing a transition. We describe the meaning of the
addToken rule in details, the removeToken rule can be interpreted similarly.

Figure 2: Graphical Representation of Graph Transformation Rules

The LHS graph pattern of the transformation consists of a Transition
(called T) and a Place (called P) connected by an InArc relation while the
RHS pattern adds an unnamed Token element and a tokens relation which
connects the imaged Place P and the newly created Token. After the execution
of the rule a new Token is created and assigned to a Place as a consequence.

2.1.3 Graph Patterns

Graph patterns are the atomic units of graph transformations. They
represent a condition (or constraints) which has to be fulfilled by a part of the
model space. Graph patterns are used in transformation rules as conditions
and as a description of the result pattern.

A model (a part of the model space) matches a pattern, if the pattern
can be mapped to a subgraph of the model using a graph pattern matching

6

technique. Basically this means that each occurrence of the pattern is a
mapping of the pattern variables to the model elements in a way to satisfy
all conditions of the pattern.

It is possible to write both positive and negative patterns: the positive
pattern holds if the all conditions hold, but if a negative pattern condition
can be satisfied, the pattern will fail. Both positive and negative patterns can
be nested in an arbitrary depth thus reaching the expressive power of first
order logic [16].

Example 3 As an example of graph patterns we describe the pattern of the
fireable transitions over the metamodel defined before. A graphical representa-
tion of the pattern can be seen in Figure 3.

Figure 3: The Transition Fireable Graph Pattern

The pattern represents, that a Transition is fireable if it is not connected
to a Place by an Outarc, where the Place has no tokens.

2.2 Static Analysis

It is a known fact in software engineering that the sooner an error is
detected, the cheaper it is to correct. If the error remains undetected during
a design phase, the repair cost might increase by an order of magnitude.

The main promise of static analysis is to detect a predefined set of errors
without running the application. In practice running the static analysis can
only detect a limited set of errors, but for this limited model a good analyser
may prove that none of these errors are present in the program.

The compilers of the statically bound languages, like Java or C# already
use some kind of static analysis: during compilation they determine the types
of variables, watch for uncaught exceptions, etc. These checks are performed
during compile time thus facilitating the early identification of some common
problems.

7

A very similar approach is possible for other structures. E.g. in case of
Petri netsP- and T-invariants of the net [15] can be checked, which might be
used to detect some serious modeling flaws - without the expensive calculation
of the state space.

In our approach static analysis is carried out by an abstract interpreta-
tion [7] of the program, and the description of the computation is checked
in this abstract universe. The execution of this abstract computation might
offer some information about the actual computation.

Example 4 A typical example for abstract interpretations is the rule of
signs. In this case we are denoting the integers on the abstract universe of
{(+), (−), (±)}. In this example −1517 · 17 is abstracted as (−) · (+) = (−),
and the properties of transformation prove that the actual result will be a
negative number.

On the other hand it is required to understand that this abstract interpre-
tation loses information: the calculation −1517 + 17 becomes (−) · (+) = (±),
which is inaccurate.

Even with this inaccuracy static checking is useful, because operations over
this abstract universe is much cheaper to calculate, and the most common
mistakes of a programmer can still be detected.

Static analysis can be powered by a number of abstract analysis techniques
such as theorem proving [4] or constraint satisfaction programming [2].

3 Static Analysis of Transformation Programs

The proposed static analysis solution is based on the construction and
traversal of a Transformation Program Model (TPM).

3.1 Transformation Program Models

The Transformation Program Model (TPM) is a graph model which is
an abstract interpretation of the transformation program. The TPM omits
information e.g. the current values of variables. The fact that the attached
model space is not tracked allows the analyser to check every possible run
path looking for some errors more efficiently.

The main reason to generate this graph model is that it makes the solution
more flexible by separating the different tasks of the analysis as described
in Figure 4. These tasks include the construction of the TPM model (see
Section 3.2), the traversal of the TPM model (see Section 3.3), generating an

8































Figure 4: The TPM Based Static Analysis Process

Abstract Analysis Problem based on the TPM (see Section 3.4), and gathering
the list of detected problems (see Section 3.5).

For the design of the TPM traversal the visitor design pattern [10] is used
which allows the use of different traversal algorithms for different analysis
criteria.

The variables of the transformation program is transformed into an ab-
stract domain of the selected analysis criteria; these transformed variables
will be referred as TPM variables. The value of TPM variables represent one
or more parameter of the transformation program variable.

A very important difference between the TPM and the transformation
program is that the TPM uses single assignment variables. This means that
the value of the variable is set during initialization and bound to it.

The use of single assignment facilitates the generation of the analysis
problem as many analysis methods are based on such variables.

The transformation program typically has several run paths. These paths
contain different nodes or the same nodes in different order. Their TPM
representation are branches in the graph.

To achieve full coverage in the analysis all these paths should be investi-
gated. This could also be achieved by representing the TPM variables several
times in the analysis problem but to avoid unnecessary memory consumption
each branch is described as a separate problem; the analysis result can be
calculated independently but the results should be aggregated.

Example 5 The Conditional ASM Rule depicted in Figure 5 introduces
different branches. The rule in the figure contains an ASM Term (called
Condition), and two subrules (called True or False rules). The execution of
the Conditional Rule starts with the evaluation of the condition, and then
selecting one of the subrules, and only executing it.

Together with the TPM a Variable Repository is also used, whose main

9

Conditional Rule
[ASM Rule]

Condition
[ASM Term]

Subrule (T)
[ASM Rule]

Subrule(F)
[ASM Rule]

Figure 5: The TPM representation of the Conditional ASM Rule

responsibility is to store the variables referred in the TPM. The use of this
repository allows the traversal to replace the calculated variables with new
variables if needed when starting the analysis of a new branch by replacing
the repository in order to detect errors that appear only on certain run paths.

3.2 Creating the TPM graph

The TPM can represent the elements of the Viatra2 VTCL language,
and after minor adjustments it should be able to represent other graph
transformation languages as well.

The model is constructed during a traversal of the program similar to the
interpreters: it is initiated in the entry ASM Rule, and from this point it
follows the control flow. The following main node types are detected:

ASM Terms are untyped expressions which are built from ASM constants,
variables and functions.

ASM Rules are used as a control structure in the scripts that alter the
control flow.

GT Rules are elementary model transformation steps. They may contain
graph patterns and ASM Rule calls.

Graph Patterns are conditions of the model space. A pattern may contain
a pattern graph, calls to other graph patterns and ASM Terms.

Every TPM Node and variable should be associated to its source element:
the element of the transformation program the Node is generated from. This
association allows to describe errors simultaneously in the TPM graph and
the transformation program. As the semantics of most nodes are exactly the
same as its source element in the transformation program in this section only
the differences are listed.

• For every potential failure (a concept similar to exceptions) a Fail
node is explicitly inserted into the TPM. If the failure is conditional,

10

it should only be inserted into the corresponding branch (or branches).
The TPM construction process should not care about failure handling -
it is the responsibility of the traversal to find the next node in case of a
failure.

• For each Term node a variable reference is created in the TPM, and a
variable is created in the associated variable repository. This approach
allows us to describe conditions on the functions without determining
the type of the operands (an operand of a function can be any Term).

These variables in the repository are not the same variables used in
the transformation program: they represent the original values in an
abstract domain by storing just the properties which are meaningful
to the analysis. Similarly to the TPM nodes these variables are also
associated with their original value.

• There are three call constructs in the language: it is possible to invoke
an ASM Rule, a GT Rule and a Graph Pattern, and every call be
recursive. At runtime the interpreter can terminate the recursion using
the values of variables but in the abstract interpretation this information
is not (always) available, so in general it is possible that a recursive call
represents an infinite length of calls.

Currently this problem is handled by defining a universal depth limit
k to describe a program by a finite TPM graph. During the building
of the TPM the call hierarchy is stored in a stack. When a new call
is inserted, the number of its previous occurrences is checked, and in
case of at least k occurrences, the called element is not extracted to the
model, instead an sentinel node representing no information is inserted.

It is important to note that this depth limit is only applied to recursive
calls, non-recursive calls are followed into an arbitrary depth (because
the source program is finite, these call hierarchies are also finite). On
the other hand it can detect and handle indirect (the container element
is not directly called but is reached by a series of calls) and circular
recursion (two elements call each other) as well.

Although this limit reduces the amount of available information before
any analysis could happen (and thus it is possible that some errors
might be unnoticeable) it is conservative: after a limit no information
is collected and no false negative error detection can happen related to
this limit.

11

3.3 The Traversal Algorithm

The TPM is created in order to allow the analysis of the transformation
program on a per-node basis: the analysis works by traversing the TPM and
building the analysis problem with the information of the every node. The
TPM node objects support the traversal by supplying the list of nodes to
visit before and after the analysis of the node and the number of branches
initialized in the current node.

According to the visitor pattern [10] the control of the traversal is handled
by an external traversal control class, the visitor. In order to have the best
error detection capabilities the visitor should be able to traverse every node in
the TPM, identify and handle branches, build the analysis problem, update
the variables in the connected Variable Repository, identify errors and handle
fail nodes.

The traversal of all nodes is required in order to achieve full coverage
of the transformation program. As the analysis tool should be capable of
weaving the local information coming from the TPM nodes into a global
analysis problem, the type of traversal does not matter (at least in theory).
However in practice changing the traversal can help to find problem more
efficiently.

Listing 1 introduces the used algorithm.

Listing 1 The Traversal Algorithm

traversal(){
while (!allBranchTraversed){
selectNextBranch();
traverseNode(rootNode);
evaluateResults();

}
}

traverseNode(TPMNode node){
int branchNumber = calculateActualBranch(node);
for (TPMNode before : node.getBefore(branchNumber))
traverseNode(before);

node.addNodeInformation(branchNumber);
node.updateVariables(branchNumber);
for (TPMNode after : node.getAfter(branchNumber))
traverseNode(after);

if (FailNodeHit)
jumpToFailHandler();

if (CSPFailure)
stopTraversal();//stops the traversal of the branch

}
}

The traversal method is used to manage the different branches, and
for each branch a traversal is initiated by calling the traverseNode method.

12

After each traversal the results are evaluated and the found problems are
logged.

The traverseNode method first calculates which branch to choose at the
selected node. The path depends on the previously selected branch, and is
required for both calculating the subnodes and generating the constraints.

After the branch is selected, the concrete traversal begins. The subnodes
are grouped to (i) nodes to visit before generating the constraints and (ii)
nodes to visit after extracting the information from the node. The algorithm
traverses first the before nodes recursively, the information is passed into
the abstract analysis tool, then updates the Variable Repository, and finally
traverses the after nodes.

There are two cases which break that flow:

• If the analysis tool reports problems, the traversal of the current branch
is stopped, and the results are evaluated.

• When a Fail node is hit, the control is given to the last fail handling
node, and the other partially traversed nodes are ignored.

3.3.1 Branch Handling

A very important part of the traversal control is the branch handling. The
traversal control is responsible for running every possible branch one by one,
and starting a clear analysis problem for each branch. Branch handling is
based on a simple backtracking algorithm: when it reaches a branching point,
it saves the current position as a decision point, selects the first untested
branch, and the process continues until either an end point is reached (there
are no more nodes to traverse) or the analysis tool reports a problem. After
evaluating the results, the traversal of the next branch is started. In the new
iteration it will traverse upward back until the last branching point (with an
untested branch) of the last run, and changes it to the next available branch.

This algorithm is similar to depth-first traversal, where the branching
points are represented by the nodes of the graph, and their sequence are
represented by the arcs.

3.3.2 Fail Node Handling

The transformation language includes the fail construct for error detection.
Failures are similar to the exceptions of object-oriented languages: they
represent the fact of failure. If it happens during the execution, the interpreter
jumps to the error handling routines (or if there is no handler, the execution
stops).

13

This jump is an alternate continuation of the program, so it has to be
represented by a new branch. There are two rules which can fail: (1) the
fail rule represents an automatic failure (because the failure is automatic,
only a single branch is used, which jumps to the failure handler), and (2) the
choose rule fails if no match is found in the model space, so a fail node is
inserted to the corresponding run path.

There are two rules, which allow the handling of failures: (1) the try rule
looks for failures in its main rule, and executes its else rule if any failure is
found, while (2) the rule iterate finishes iteration if a failure happens.

Example 6 Listing 2 describes a single try rule. Figure 6 displays the
potential execution paths of the structure

Listing 2 A VTCL Rule Demonstrating the Failure Handling

try
choose Token with find placeWithToken(Place, Token)
do print("token found");

else
print("Else Rule started");









 









(a) No Failure









 









(b) With Failure

Figure 6: The Execution of the Try Rule

The main rule to test contains a single choose rule, while the failure
handling rule (named Else in the Figure) is not shown in details. Solid arrows
represent the control flow, while dashed arrows connects the nodes not present
in the run path to their container.

The first path in Figure 6a displays the following scenario: inside the try
rule the choose rule is executed. This evaluates the condition, a match is
found, so the corresponding print block is called. Then the calls terminates,
and the control is returned to the caller, so the try block also terminates.

On the other hand the second path in Figure 6b activates the error handler:
the choose rule is executed, but the condition does not hold. The rule fails

14

(Fail node), so the control gets to the failure handling rule. If the execution
of this rule is finished, the control is returned to the caller, and the try block
also finishes.

This error handling mechanism can break the normal flow of the traversal.
If no error handling node is found the traversal terminates.

3.3.3 Updating the Variable Repository

If a TPM node represents a change of a variable, when the traversal reaches
the node the corresponding variables should be updated in the Variable
Repository.

As variables of the TPM model are single assignment variables the updated
value must be represented by a new TPM variable, so a program variable is
represented by a series of TPM variables.

The first TPM variable is created when finding the program variable first
(e.g., as a symbolic parameter of a call), then a new one is created when
reaching a node that updates it.

The Variable Repository component besides storing the TPM variables
supports create, update and query operations.

After a variable change is executed there are some properties that have
not changed. As in the Variable Repository a new TPM variable is created,
the unchanged properties has to be copied from the existing one. This copy
has to be stated explicitly.

3.3.4 Enhancing the Performance of the Traversal

As described before for every branch a new analysis problem is initialized,
and as described in Section 3.3.1 the TPM is traversed again to generate all
the constraints. The speed of the analysis could be improved by avoiding the
regeneration (and solution) of the same subproblems when the same nodes
are repeatedly traversed in a different branch.

To achieve this at each branching point the state of the analysis should be
saved, and at a later point restored. This state consists of the TPM variables
in the Variable Repository and the state of the analysis tool. This means if
the analysis tool does not support saving and restoring previously calculated
elements this performance enhancement cannot be applied.

To support this the traversal algorithm has to be modified:

1. When a new branch is started, the traversal should only run through
the nodes already used for the stored state, and the analysis tool and
variable repository should be initialized from the saved state.

15

2. When a new branching point is detected, the current state should be
saved and attached to the branching point. This state can be discarded
when all possible branches of the branching point are explored.

3.4 Analysis Problems

In order to get a static checker that is independent of any concrete analysis
tool, an abstraction layer is implemented using the Bridge design pattern[10].

Based on the Bridge pattern a general interface is defined for handling the
analysis tools: the interface allows for filling some predefined set of elements
that will be used to build an analysis problem and the status of the analysis
also needs to be queried.

The required set of elements depends on both the property to check and
the analysis tool – the interface should be revisited each time a new criteria
is added to the analysis or the analysis tool is changed for any reason.

The queries allow the traversal to check both the overall state – whether
the current problem can represent a bug-free transformation program or not
– and the detailed results. The specific queries are used to provide detailed
analysis results after finishing the traversal, and can also be used to fine-tune
the traversal in order to be more effective.

The filled elements are parameterized with TPM variables, the implemen-
tor has to read the analyzed properties and match them to variables of the
analysis tool. This matching is bidirectional thus enables the Handler to
return the TPM variable as a cause of failure.

As some analysis methods did not give details about the cause of problems,
the analysis problem is built and checked incrementally: when a TPM node
is reached during the traversal, the node generates the elements using TPM
variables queried from the Variable Repository and asks the analyser whether
the problem is correct.

When the problem cannot represent any bug-free transformation program,
it is reported, and the traversal of the current branch is stopped. This method
gives a hint where the problem has occurred. On the other hand this approach
limits the number of errors that can be detected in a single iteration, but
does not limit completeness as every error can be found one by one.

As of now we experimented with various constraint satisfaction problem [2]
solvers, more specifically the Gecode/J [11] and the clpfd module of SICStus
Prolog [6]. These experiments are detailed in [19].

3.5 Problem Identification

The static analyser system use three mechanisms to detect failures:

16

Analysis Problem It is recommended to try to identify errors during the
traversal as during the traversal extra context information is available
which can be used for more efficient detection of its cause. This context
information is available naturally if the analysis tool reports an error,
that happens only if that is related to a single TPM variable.

Inconsistencies It is possible that the error manifests as inconsistent results
on multiple variables (e.g., the TPM representation variables of a
program variable do not share a common property), or different branches
return different properties of the same variable, that cannot be detected
easily. The current approach checks such properties after a branch is
traversed, and the results are saved for future branches.

Traversal Problem A third kind of errors to be identified is directly related
to the traversal: if a traversal cannot successfully terminate, it also
indicates an error. Such an error occurs when a failure node is found
without a fail handling node. This kind of error terminates the analysis
(similar to the execution of the transformation program).

To detect the different kinds of problems the system uses bug pattern
detectors. Each of these detectors is a specialized pattern description, when
the pattern is matched to the data calculated during the traversal, a problem
is found.

It is also important to differentiate between problems by severity. Our
model uses two severity categories: error and warning. Error means a serious
bug, e.g., contradictory values conditions are detected on a TPM variable.
This severity is used to describe bugs which cause problems during execution.
Most analysis problems can be considered as errors. On the other hand,
warnings are used to indicate potential problems that may or may not appear
during runtime, e.g. a termination caused by an unhandled fail node may be
the expected outcome, but this is not the recommended use of the structure.

4 Related Work

There are several static analysers used for different languages with a
different set of capabilities based on different approaches. We now introduce
two conceptually different approaches.

By annotating the program with a machine-readable specification, it is
possible to check whether the code fulfills it. This concept is the basis of
the EFC/Java (Extended Static Checker for Java) [9] tool, that uses the
Java Modeling Language (JML) [13]. The JML is based on the “design

17

by contract” [14] notation. The EFC tool can check the preconditions,
postconditions and invariants described by these contracts without executing
the program itself. When the contracts are detailed enough the analysis can
find violations but the analyser does not work with an unmodified program.

The FindBugs [12] tool handles the problem differently. It introduces
the concept of bug patterns: possibly incorrect usage of the language can be
described by a small pattern that should be searched for. By detecting such
patterns it is possible to catch a few common errors while keeping the number
of warnings relatively low[18]. To increase the error detecting capabilities of
the system new patterns have to be defined. This bug pattern concept can
be used for describing the various inconsistencies between the parameters of
multiple TPM variables.

5 Conclusion and Future Plans

In this paper we introduced a general static analysis solution for model
transformation programs. The solution is based on a generic graph model of
transformation programs, the TPM.

It is possible to achieve full coverage (and thus a sound static analysis
method) by traversing all branches of the TPM. The main limitation of this
approach is that even a simple program can contain a lot of branches, and
traversing all takes a lot of time.

The handling of cycles in the TPM graph could prevent covering every
possible error: by limiting the depth it is possible that some errors remain
undetected.

Another way to handle recursion is to follow the recursion until the result
of the current iteration is exactly the same as was at the previous level. This
state is called a fixpoint. The fact that the TPM is a truncated model of the
run paths it is possible that the fixpoint is also truncated. As the fixpoint
calculation can be at the same time more efficient (as sometimes it is not
required to traverse as deep as the depth limit) and more precise (as the
fixpoint can always be reached), in the future the depth limiting will be
removed from the TPM building process, and depending on the analysis it
will be moved to the traversal or replaced with fixpoint calculation.

As the branches following each other are similar (until the last branching
point they are the same) it makes sense to save the state of the analyser at
branching point and reuse them as needed, but in practice the execution time
of the analysis increased using this optimalization.

In the future we plan to modularize the traversal : every pattern and rule
can be evaluated one by one, and the result can be used to generate a contract

18

(or some kind of specification) for the element. After the contract has been
generated, each call to the pattern or rule can be replaced by this contract.

As of today we implemented a static type checker [19] tool, but in the
future other analysis methods could be added such as:

Reachability Analysis By altering the TPM traversal to travel backwards
from a selected node the result can be interpreted as the condition to
reach the starting point. If the conditions are contradictory the node
cannot be reached.

Property Checking There are some constructs in the transformation pro-
gram that provide some additional information not present in the
program. E.g. after the execution of an iterate rule containing a sin-
gle choose rule the condition of the choose rule must not hold. These
properties could be used as additional information for other analysis
methods.

References

[1] VIATRA2 Framework. An Eclipse GMT Subproject (http://www.
eclipse.org/gmt/).

[2] Apt, K. Principles of Constraint Programming. Cambridge University
Press, 2003.

[3] ATLAS Group. The ATLAS Transformation Language. Available from
http://www.eclipse.org/gmt.

[4] Bibel, W., Korn, D. S., Kreitz, C., and Schmitt, S. Problem-
oriented applications of automated theorem proving. In DISCO (1996),
pp. 1–21.

[5] Börger, E., and Stärk, R. Abstract State Machines: A Method for
High-Level System Design and Analysis. Springer-Verlag, 2003.

[6] Carlsson, M., Widén, J., Andersson, J., Andersson, S.,
Boortz, K., Nilsson, H., and Sjöland, T. SICStus Prolog User’s
Manual, release 4.0.4 ed. Swedish Institute of Computer Science, 2008.

[7] Cousot, P., and Cousot, R. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation of
fixpoints. In Conference Record of the Fourth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (Los
Angeles, California, 1977), ACM Press, New York, NY, pp. 238–252.

19

[8] Ehrig, H., Engels, G., Kreowski, H.-J., and Rozenberg, G.,
Eds. Handbook on Graph Grammars and Computing by Graph Trans-
formation, vol. 2: Applications, Languages and Tools. World Scientific,
1999.

[9] Flanagan, C., Leino, K. R. M., Lillibridge, M., Nelson, G.,
Saxe, J. B., and Stata, R. Extended static checking for Java.
SIGPLAN Not. 37, 5 (2002), 234–245.

[10] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional Computing Series. Addison-Wesley Publishing Company,
New York, NY, 1995.

[11] Gecode Team. Gecode: Generic constraint development environment,
2006. Available from http://www.gecode.org.

[12] Hovemeyer, D., and Pugh, W. Finding bugs is easy. SIGPLAN
Not. 39, 12 (2004), 92–106.

[13] Leavens, G. T., Baker, A. L., and Ruby, C. JML: a java modeling
language. In Formal Underpinnings of Java Workshop (AT OOPSLA’98
(1998).

[14] Meyer, B. Object-oriented software construction (2nd ed.). Prentice-
Hall, Inc., 1997.

[15] Murata, T. Petri nets: Properties, analysis and applications. Proceed-
ings of the IEEE 77, 4 (Apr. 1989), 541–580.

[16] Rensink, A. Representing first-order logic using graphs. In Proc. 2nd
International Conference on Graph Transformation (ICGT 2004), Rome,
Italy (2004), H. Ehrig, G. Engels, F. Parisi-Presicce, and G. Rozenberg,
Eds., vol. 3256 of LNCS, Springer, pp. 319–335.

[17] Rozenberg, G., Ed. Handbook of Graph Grammars and Computing by
Graph Transformations: Foundations. World Scientific, 1997.

[18] Rutar, N., Almazan, C. B., and Foster, J. S. A comparison
of bug finding tools for java. In Proceedings of the 15th International
Symposium on Software Reliability Engineering (2004), IEEE Computer
Society, pp. 245–256.

20

[19] Ujhelyi, Z., Horváth, A., and Varró, D. Static type checking of
model transformations by constraint satisfaction programmings. Tech-
nical report, Budapest University of Technology and Economics, June
2009.

21

