
TECHNICAL REPORT
SER. ELECTRICAL ENGINEERING

Static Type Checking of Model
Transformations by Constraint Satisfaction

Programming

Zoltán Ujhelyi, Ákos Horváth, Dániel Varró

Department of Measurement and Information Systems

Budapest University of Technology and Economics

No. TUB-TR-09-EE20

Budapest, June 24, 2009

Budapest University of Technology and Economics





Static Type Checking of Model
Transformations by Constraint Satisfaction

Programming

Zoltán Ujhelyi
uz602@hszk.bme.hu

Ákos Horváth
ahorvath@mit.bme.hu

Dániel Varró
varro@mit.bme.hu

June 26, 2009

Abstract

The control structure of the Viatra2 transformation programs is
untyped making it easier to misuse the type system. The aim of this
paper is to provide a static type checker tool to these transformation
programs that can detect those errors.

We use a generic static analysis framework for analysis, and as
an underlying engine constraint satisfaction problem solver is used.
For this reason it is required to translate the metamodel (that acts as
the type system) and the type safety properties of the transformation
program to constraints.

1 Introduction

As more and more complex model transformations are used during de-
velopment early error detection is becoming a key question as errors of the
transformations can even propagate into the developed application. The fact
that the specification of transformations is similar to a high level computer
programs means verification methods researched for computer programs are
also applicable for model transformation programs.

It is a relatively common error (especially in dynamically typed languages)
that the developer uses the type system incorrectly. They most often lead
to a misleading output rather than a runtime exception making them hard

3



to trace. On the other hand using static type analyser tools could help the
developer to detect such problems.

In [25] a generic static analysis framework for model transformation
programs was introduced. In this paper we describe a static type checker
system for the Viatra2 framework based on that generic method.

The framework needs a graph model of the transformation program, and
creates constraints from it. To describe type checking we need to populate
the graph model and define the constraint mapping process.

1.1 Main Goals

The Viatra2 framework uses the VTCL language for defining model
transformations. Some elements of the language, such as the graph patterns
contain type information implicitly, while the main, ASM-rule based control
structures use untyped variables.

The main goal of the framework are the following:

Type Inference The types of variables have to be determined regardless if
they are available in the transformation program or has to be inferred;

Type Safety Checking The incorrect use of the type system should be
detected, e.g. the use of a model element instead of a boolean variable.

Resource Usage execution time and memory consumption of the analysis
is an important concern during the implementation, as it shall complete
within a reasonable amount of time on an average developer computer.
This helps to identify the potential problems as early as possible.

1.2 The Structure of the Report

The report is structured as the following: Section 2 details the important
concepts used, Section 3 describes the ideas of the generic static analyser
solution. Then Section 4 details the main type checking ideas while Section 5
shows how to handle the language elements. The error detection is detailed in
Section 6. Finally some related work is introduced in Section 7, and Section 8
concludes our work and details future enhancements.

4



2 Background Concepts

2.1 Models and Transformations in Viatra2

A possible way to describe complex transformations is the use of graph
transformation (GT) [12] rules for local model manipulations and abstract
state machine (ASM) [5] rules to define control structure. A promising way
to define conditions in GT Rules is the use of graph patterns (GP). This
approach is used in Viatra2.

Viatra2 (VIsual and Automated TRAnsformations) [3] is a model trans-
formation framework developed at the Department of Measurement and
Information Systems. It stores models and transformations in a graph based
style, but it is also capable of parsing the models and transformations from
textual files.

The framework uses the Viatra Textual Command Language (VTCL) for
defining transformations. In this section we give a brief introduction of the
VTCL language along with the related concepts while a complete specification
of both languages can be found in [2].

2.1.1 Metamodeling

Metamodeling provides a structural definition (ie. abstract syntax) of
modeling languages. Such a definition is needed to define the input and
output of model transformations.

The Viatra2 framework uses the VPM (Visual and Precise Metamodel-
ing) [26] concept to describe metamodels. The basic elements of the metamod-
els are Entities that represent the basic concept of the (modeling) domain,
and Relations that represent general relationships between the Entities. Both
the Entities and the Relations are arranged into a strict containment hierarchy
described by the containment relation.

There are other built-in relations: the instanceOf and the supertypeOf
(and their inverses, accordingly typeOf and subtypeOf). The instanceOf
relation is used to explicitly describe the connection between the model and
the metamodel (thus allowing multilevel metamodeling in the same model
space), while the supertypeOf relation represents a binary superclass-subclass
relation (similar to the concept of generalization in UML).

The concept of instanceOf relation is different from the concept of
instance model. An instance model is a well-formed instance of the metamodel,
while the relation describes the connection between a model element and its
corresponding metamodel element.

The relations’ multiplicity property imposes restrictions on the model space.

5



These constraints are used by the pattern matcher. The allowed multiplicity
values are one-to-one, one-to-many, many-to-one and many-to-many.

Example 1: Throughout the paper we will use Petri nets as an example
domain to illustrate the technicalities and foundations of our approach.

Petri nets are a formal description for modeling concurrent systems. It
is widely used because of the easy-to-understand visual notation and large
number of available editor and analysis tools.

The Petri nets are bipartite graphs with two disjoint set of nodes: Places
and Transitions. Places can contain an arbitrary number of Tokens, and the
distribution of these Tokens represent the state of the net (marking). This
state can be changed by a process called firing.

The Petri net metamodel is depicted in Figure 1.

Figure 1: The Graphical Representation of the Petri net Metamodel

2.1.2 Graph Patterns

Graph patterns can be considered as the atomic units of graph transfor-
mations. They represent a condition (or constraint) on (a part of) the model
space. Graph patterns are used in transformation rules as conditions and as
a description of the result pattern.

A model (a part of the model space) matches a pattern, if the pattern
can be matched to a subgraph of the model using a graph pattern matching
technique. Basically this means each occurrence of the pattern is a mapping of
the pattern variables to the model elements in a way to satisfy all conditions
of the pattern - this is a subgraph isomorphism problem.

It is possible to write both positive and negative patterns: the positive
pattern holds if the all conditions hold, while if a negative pattern condition
can be satisfied, the pattern will fail. Both positive and negative patterns
can be nested in an arbitrary depth reaching the expressive power of First
Order Logic [22].

Example 2: As an example of graph patterns we describe the pattern of the
fireable transitions over the metamodel defined before. A graphical and the

6



VTCL representation of the pattern can be seen in Figure 2.

(a) Graphic Description

pattern TransitionFireable(Transition) = {
’PetriNet’.’Transition’(Transition);
neg pattern notFireable(Transition) = {
’PetriNet’.’Place’(Place);
’PetriNet’.’Transition’(Transition);
’PetriNet’.’Place’.’OutArc’

(OutArc, Place, Transition);
neg pattern placeToken(Place) = {
’PetriNet’.’Place’(Place);
’PetriNet’.’Place’.’Token’(Token);
’PetriNet’.’Place’.’tokens’(X, Place, Token);

}
}

}

(b) VTCL Description

Figure 2: The Transition Fireable Graph Pattern

The pattern represents, that a Transition is fireable if it is not connected
to a Place by an Outarc, where the Place contains no tokens.

Patterns are described using a typed graph, where the nodes are elements
of the metamodel, while the relations are depicted as arcs. E.g., the node
T:Transition (or the line ’PetriNet’.’Transition’(T);) means that
there is a model element (called T) with the type of Transition. Similarly
the types of every element in the pattern graph can be determined.

The pattern keyword is used to define a pattern (or neg pattern in case
of a negative pattern), and in parentheses are the parameters defined. To
express a type constraint on a variable, the name of the metamodel type is
used with the name of the variable in parentheses (e.g. line 3 of Listing 2).

To increase the expressiveness of the language two constructs are used
together with patterns. (i) It is possible to call other patterns (with the find
keyword). The match condition of the caller pattern is fulfilled if all the called
subpatterns are fulfilled. (ii) The other construct is the alternate patterns:
a pattern can have multiple bodies. When several alternative patterns are
defined, the pattern is fulfilled if any of the bodies can be fulfilled.

Pattern calls and alternate patterns together can be used to define recursive
patterns. Recursion is typically used with two pattern bodies: one which have
a call to itself, while the other defines the condition to stop the recursion.

2.1.3 Graph Transformation Rules

For defining graph transformations Graph Transformation Rules (GT
Rule) are used. These rules rely on the Graph Patterns as defining the

7



application criteria for the steps. A GT Rule application transforms a graph
by replacing a part of it with another graph.

In order to describe GT Rules preconditions (also known as the Left Hand
Side graph, LHS) and postconditions (also known as the Right Hand Side
graph, RHS) are defined, where the precondition acts both as application
criteria and the part of the model to change, while the postcondition describes
how the match will look like after the rule application. The required changes
can be computed by calculating the difference between the precondition
and postcondition patterns that can be interpreted as a series of model
manipulation steps.

Example 3: Figure 3 shows the graphical representation a transformation
rule named addToken related to firing the transition.

Figure 3: Graphical Representation of Graph Transformation Rules

The LHS graph pattern of the transformation consists of a Transition
(called T) and a Place (called P) connected with an InArc relation while the
RHS pattern adds an unnamed Token element and a tokens relation between
the Place and the new Token. That means, after the execution of the rule a
new Token is created an assigned to a Place.

As in common transformation rules the LHS and RHS graphs are nearly
identical they can be described as a single graph with new and delete
annotations (as in FUJABA [19] notation). The LHS and RHS graphs can
be created from this notation: elements tagged with the new keyword, are
only elements of the RHS graph, elements tagged with the delete keyword,
are only part of the LHS side and the other elements appear in both graphs.

The VTCL language uses three elements to describe GT Rules: a precon-
dition and at least one of a postcondition pattern or action ASM Rule.
When using only the postcondition pattern, the two graphs are used to
describe the rule; the action can be used to express the annotations, while
the typical usage of both elements are debugging or code generation.

Example 4: To illustrate the the GT Rules description, Listing 1 describes
the addToken rule in both notations. The called place and placeWithToken
patterns are not detailed here.

8



Listing 1 The addToken GT Rule in the VTCL language

// Adds a token to the place ’Place’.
gtrule addToken(in Place) = {

precondition find place(Place)
postcondition find placeWithToken(Place, Token)

}

// Adds a token to the place ’Place’ - FUJABA notation.
gtrule addTokenFUJABA(in Place) = {

precondition find place(Place)
action {

new(’PetriNet’.’Place’.’Token’(NewToken) in Place);
new(’PetriNet’.’Place’.’tokens’(Temp,Place,NewToken));

}
}

In the addToken GT Rule the precondition and postcondition graph
patterns are described by a call of the place and placeWithToken patterns
respectively.

The addTokenFUJABA rule also has a precondition pattern, but instead of
a postcondition graph pattern it uses an action ASM rule, that creates a new
Token entity and a tokens relation.

2.1.4 ASM Rules

To allow the construction of complex model transformations, the assembly
of the elementary GT rules into transformation programs is required. The
VTCL language uses abstract state machine (ASM) [5] rules to describe the
control structure.

The basic elements of the ASM programs are: ASM Rules represent
a set of operations (like methods in OO languages); ASM Variables hold
values (model element references, constants, etc.); while ASM Functions store
variables in arrays (similar to associative arrays in other languages).

In order to semantically integrate the GT and ASM concepts, GT rules are
treated the same as ASM rules (the apply construct can be used for calling
both rule types) and graph patterns can be used as existentially qualified
Boolean formulae in ASM conditions (by the find construct).

Three ASM Rules can be used to call GT Rules: the apply rule can be
used with bound parameters, while the choose and forall rules with free
parameters (thus allowing searching for patterns). The choose quantifies the
unbound parameters existentially while the forall universally.

There are also constructs for affecting the control flow: the iterate rule
executes a single rule repeatedly, the conditional rule defines a binary branch
in the control flow (similar to the if-then-else constructs in OOP languages).

9



The random and the sequential rules are used to creating compound rules.
The random rule executes one of its nested rules, while the sequential one by
one.

By using a try rule, it is possible to detect failures and take the control.
A failure can be caused by the fail rule or a choose rule which cannot find a
match in the model space.

Example 5: Listing 2 contains the fireTransition rule that matches all
source places of the input Transition parameter with the first forall rule
and deletes a Token from each place (calling the GT Rule removeToken, while
the second forall rule generates a Token for all target places by calling the
GT Rule addToken.

Listing 2 A Simple ASM Rule Describing the Firing of Transitions

rule fireTransition(in Transition) = seq {
//deletes the tokens from the input places
forall Place with find sourcePlace(Transition, Place) do
choose Token with find placeWithToken(Place,Token) do
call removeToken(Place,Token);

//adds the new tokens to the output places
forall Place with find targetPlace(Transition, Place) do
call addToken(Place);

}

It is important to note that the ASM Rules are untyped: there is no type
information is explicitly described, only some basic type checking happens in
the interpreter during execution.

2.2 Static Analysis and Type Inference

It is a known fact in computer programming that the repair cost of an error
increase by an order of magnitude if it remains undetected during a design
phase. Static analysis tools help to discover errors early - before running the
application - but only for a predefined set of errors. For this fixed set static
analysis can prove that none of them are present in the program.

Compilers of statically bound languages, like Java or C# include some kind
of static analysis: during compilation they determine the types of variables,
watch for uncaught exceptions, etc.

A static analysis may be carried out by an abstract interpretation [10] of
the program, and the description of the computation in this abstract universe.
The execution of this abstract computation might offer some information
about the actual computation.

10



A typical abstract interpretation in computer programming is the domain
of the type system. In this case every language element is replaced with its
type, and every operation is translated to represent the type information.

In most languages - including the Viatra2 VTCL language - the type
system can be extended by the user (e.g. in case of Java new classes can be
added, while in Viatra2 a new metamodel element can be added). On the
other hand the type analysis needs a fixed set of possible types, so before the
type analysis is executed the current type hierarchy has to be identified.

In statically bound languages where the type information is present at
compile time it is only needed to compare the types at every function/method
call. On the other hand in dynamically bound languages this type information
is only available during runtime, but some of these information could be
inferred - which the static type checker should be capable of.

Most static type checker algorithms try to read the program once, and try
to detect the type information on-the-fly (only using information available
before the current assignment). In general any abstract analysis tool can
become the basis of the static analysis, in our project we apply a CSP
solver, because it is capable of propagating the information both forwards
and backwards (thus making possible to determine the type later, and using
that piece of information to infer a type of a variable used before).

2.3 Constraint Satisfaction Problems

Constraint Satisfaction Problems(CSP) [4] are mathematical problems
defined as a set of objects (variables with a fixed domain) whose state (value)
must fulfill a set of constraints. The CSPs are categorized by the domain of
their variables: e.g. finite domain variables or real numbers can also be used.
In this report we are only using finite domain CSPs.

The CSP can be represented as a (hyper)graph [11], where the nodes are
the variables, and the arcs (and hyperarcs) represent the constraints.

Example 6: A hypergraph visualization of a CSP problem can be seen in
Figure 4.

The problem stated in the graph uses three variables, X, Y , Z, with the
domains [1; 5], [1; 5] and [1; 4] respectively, and three constraints, which tell
us, that X != Z + 1, X + Y ≤ 4 and all three variables are different.

When trying to find a solution of the CSP, there are several possibilities.
Some ways to find solutions:

Propagation is used to modify the problem to make it easier to solver.
By some reasoning about the constraints it is often possible to reduce
the domain of one of more constraint variables without excluding any

11











Figure 4: A Simple Graph Visualization of a Constraint Satisfaction Problem

possible solution. The biggest drawback is that there are cases when
the satisfiability cannot be decided by propagation.

Search algorithms (typically backtracking or backjumping) can be used to
find a solution: as the domains of the constraint variables are finite, in
theory it is possible to systematically try out all possible combinations.
However in practice the number of combinations is exponential in the
size of variables, so this is not a feasible solution.

Combined Propagation and Search algorithms appear to be effective in
practice: propagation is used to reduce the domains as it is possible,
otherwise search is used to find a solution.

When defining a CSP, it is not required to assert only the minimal
amount of constraints. Having more constraints can improve the runtime
characteristics of the solution, because they may remove symmetries, or help
the solver to choose a constraint which reduces the domains of the variables
more effectively.

Example 7: To illustrate constraint propagation lets consider the problem
defined in Figure 4. It is possible to reduce the domains of the variable X and
Y to [1; 2], as otherwise the X + Y ≤ 4 constraint could not be fulfilled.

A logical extension of the finite domain constraint solver is the ability to
check reified constraints. Reified constraints are used to describe more complex
constraints by allowing the use of boolean functions (such as conjunction,
disjunction, inversion or consequence) on constraints. The semantics of these
constructs are the following: for every constraint we assign a boolean variable
which represents whether the constraint holds or not; the compound constraint
holds, if the result of the boolean function with the assigned boolean operands
is true.

12

































Figure 5: The TPM Based Static Analysis Process

There are numerous CSP solver implementations available, most of them
are written in C++, Java or Prolog languages. The implementations have
different capabilities, performance and licensing. Some implementations are
the ILOG CP (for C++) [15], the clp modules of SICStus Prolog [7] or the
Gecode library (for C++ and Java) [14], etc.

3 Static Analysis of Transformation Programs

The static analysis solution described in [25] is based on the construction
and traversal of a Transformation Program Model (TPM). The TPM is
a graph model which is an abstract interpretation of the transformation
programs different run paths: it omits information e.g. the current values
of the variables. The fact that the model space that the transformation is
executed on is not tracked allows the analyser to look for problems more
efficiently.

The main reason to generate this graph model is that it makes to solution
more flexible by separating the different tasks of the analysis as described in
Figure 5. These tasks are the following:

Constructing the TPM The TPM graph represents the entire transforma-
tion program. The program variables are converted to single assignment
variables in the corresponding abstract domain (the domain depends on
the analysis criteria) and are stored in a variable repository component
(although the values are only put there during traversal).

As the TPM graph represents all the potentially infinite run paths, a
k depth limit is introduced for recursive calls: if there are at least k
occurrences of the same called element, the called node is replaced by a
sentinel node representing no available information (and no children).

13



Traversing the TPM The traversal of the TPM graph is following the
visitor design pattern [13], thus the traversal algorithm is independent
of the constraint generation process. The different run paths of the
transformation program are represented by branches in the TPM graph;
the traversal algorithm solves this by traversing every branch separately,
and initializes a new CSP for every branch.

Generating and solving a CSP For every node of the TPM model a set
of constraints could be generated, these constraints are used to build a
constraint satisfaction problem. The satisfiability of this CSP is checked
after every constraint is generated thus allowing early error detection.

To be able to integrate different CSP solvers into the analyser framework,
according to the bridge design pattern [13] an interface is created that
handles a predefined set of constraints. The list of constraints have
to be evaluated for every analysis criteria. Using this interface allows
the inspection of various solver engines to select the one with the best
runtime characteristics.

To measure the performance of the different solver engines the average
time needed to solve the problem of a branch and the overall memory
consumption is measured. Because the analysis complexity depends
on both the transformation program and the metamodel, several test
programs on different metamodels should be evaluated.

Listing the detected problems After the traversal finishes (either success-
fully or unsuccessfully) the result should be processed to help the user
to interpret the errors. For this reason bug pattern detectors are used:
when a pattern is matched in the results, then a bug is caught. There
are three categories of patterns used (based on the source of the bug):

Analysis Problems represent that the CSP is unsatisfiable.

Inconsistencies represent that the CSP is solvable but the values of
the different TPM variables describe a bug pattern.

Traversal Problems describe unexpected events during the traversal
(not related to the CSP).

4 Type Checking of the VTCL Language

The general static analysis framework can be based on any kind of abstract
analysis. For static type checking we have chosen a CSP solver engine as the

14



type safety of a program can be easily described as a constraint satisfaction
problem.

4.1 Integrating the Analyser

The Viatra2 framework is a set of Eclipse [1] plugins. This plugin-based
architecture enables extending the framework in a well defined way.

Figure 6 shows the main components that the static type checker is
connected.

Core interfaces

Viatra2 Fram
ew

ork

Static
Type

Checker

CSP 
Solver

Transformation
Model

XForm
Code
Parser

Model
Parser

VIATRA2 
ModelSpace

Model Importer and 
Program Loader Interface 

Figure 6: The Static Type Checker in the Viatra2 Framework

It is important to note that the new static checker component is not
parsing the various textual and graphical languages defining the model space
and the transformation program, instead it relies on the framework parsers.
The analyser only communicates through the core interfaces with the model
space and the program model store.

4.2 Representing the Metamodel as Constraints

The finite domain CSP solvers are not capable of handling neither the
TPM variables nor the metamodel. In order to use a CSP solver for type
checking the metamodel has to be mapped as finite domain variables and
related constraints.

In this section we are presenting a solution for two problems: first we create
a representation of type hierarchies with the inheritance as the connecting
relationship, and then we discuss how to use this representation in constraints
to be evaluated by the CSP solver.

15





 

    

(a) The Hierarchy



 

    





 



   

(b) The Gene Assignment

Figure 7: The Gene Assignment for the University Member Hierarchy

4.2.1 Representing Type Hierarchies with Integer Variables

There are some well-known ways to represent hierarchies with integer
variables for hierarchies only allowing single inheritance, like the concept of
nested sets [17], that is used to represent the tree hierarchy in a relational
database.

The basic idea is to associate two numbers to each node in the hierarchy:
an entry number, which is smaller, than all the entry numbers of its descen-
dants, and an exit number, which is larger, than all the exit numbers of its
descendants. A node’s exit number has to be larger than its entry number. It
is easy to generate these numbers during a preorder tree traversal.

Provided that these numbers are set, deciding, whether an object is a
descendant of the other only requires evaluating two simple relations: the
potential descendant has (1) a larger entry number and (2) a smaller exit
number than the potential ancestor. The subtypeOf relationship holds if and
only if both relations hold.

But for multiple inheritance hierarchies this representation does not work.
We have chosen another algorithm described by Yves Caseau in [8], that
represents the position of a node in the hierarchy with a set of integers.

The algorithm refers to the set of numbers assigned to the nodes as genes,
because they operate similar to the genes in biology: in the algorithm the
descendant node inherits all genes of all of its ancestors. This construction
guarantees that a node is descendant of another node if and only if the set of
the “descendant” node is a superset of the set of the “ancestor” node.

Example 8: As the Petri net metamodel does not contain inheritence first
another gene assignment is used to describe these capabilities. In Figure 7
(the example is taken from [8]).

The hierarchy describes members of a university. Every member is a

16



person, and they can be students or employees. UnderGraduates and
Graduate Students are students, Assistant Professors and Temporary Professors
are employees, while Teaching Assistants and Foreign Visitor Students are
both employees and students.

To illustrate the usage of the gene sets, we interpret the results on two
element pairs:

• The gene set associated to the element student is 1, to FVS is 1, 2, 6.
1, 2, 6 is a superset of 1, so FVS is a descendant of student.

• The gene set associated to the element GS is 1, 4, to AP is 2, 3. None
of the sets are superset of the other, so the elements are not in an
inheritance relation.

The fact that the algorithm tries to use as few genes as possible helps us
to use describe the metamodel in a compact way thus reducing the memory
usage of our algorithm.

To represent the metamodels with these sets first three special nodes are
created: the TopLevelNode, the TopLevelEntity and the TopLevelRelation
nodes. They specify respectively an abstract model element and relation
node acting as an ancestor of all model elements and all relations. They can
be used in some constraints to express the fact that the result is a model
element, or more specifically a relation, but without restricting the type of
the model element (e.g. related to the ASM Term function target uses the
TopLevelRelation node, see Section 5.1).

Example 9: To represent the metamodel hierarchy of the Petri nets defined
in Section 2.1.1 with this algorithm (together with the special nodes), the
algorithm assigned genes between the numbers of 1 and 14. The resulting gene
sets are present in Figure 8.

Although the metamodel of the Petri nets does not contain any inheritance
relations at all, some are present in this representation: everything is the de-
scendant of the TopLevelNode, every entity is descendant of TopLevelEntity
and every relation is descendant of TopLevelRelation.

4.2.2 Creating Constraints based on the Metamodel

By the description of the metamodel the main goal is to represent the
type hierarchy, and the to, from and inverse parameters of the relations of
the metamodel. To achieve this every TPM variable has to be mapped to
CSP variable (or variables) describing its type.

The fact that the TPM variables are single assignment variables allows
each CSP variable to represent a property of a single TPM variable, thus a
static mapping between CSP and TPM variables is enough.

17



TopLevelNode

TopLevelRelation

Transition Token

Place

Arc_Weight

InArc.Weight

InArc

OutArc.Weight

tokens

OutArc

{2,10}

{1,11}

{2,7}

{2,9}

{2,8}

{2}

{1,3}

{1,5}
{1,4}

{1,6}

{}

TopLevelEntity
{1}

Figure 8: The Gene Assignment for the Petri net Metamodel

The type of a VTCL variable (and thus a TPM variable) can be one of
the built-in types (Integer, Double, Boolean, String, Multiplicity), or
a model element (in this case the type is a metamodel element). The type
information is not present compile-time, only during runtime, and the type
of a variable can change runtime (dynamic binding).

To represent the type hierarchy, two relations were defined, the type
equality and the substitutability relations.

The type equality relation is defined on two model elements (or metamodel
elements). It is a symmetric relation, and it describes that the type of the
two model elements is exactly the same. The relation can be used to precisely
describe the type of a TPM variable. The type equality relation holds between
two elements if and only if the gene sets representing the two model elements
are equal.

The substitutability relation is a directed relation between two model ele-
ments (or metamodel elements): it states that the type of an element is either
the same or the descendant of the other elements type. The relation is used
to represent the type constraint of a variable assignment. The substitutability
relation holds between two elements if and only if the assignees gene set is
the subset of the assigned ones.

The substitutability relation is more general than the type equality, but for
those types, which do not have any descendants (such as the built-in types),
the two relations are the same. This can be used as a kind of optimization,
when choosing the constraints.

The type of a TPM variable is represented by two different CSP variables:
one integer variable describing which built-in type is the type, and one integer
set representing the gene set of metamodel element. This integer set is only

18



created when the TPM variable is a model element - this decreases the
memory consumption of the type checking process (both by reducing the
number of sets created and by the fact that the smaller set could be stored
more efficiently).

As the relation properties are independent from the hierarchy they have
to be described another way. As the relation type determines the type of
its parameters these properties can be described by a set of conditional
constraints. The constraints are all of the following scheme:

(Relation is “relationtype′′)⇒ (Parameter is “parametertype′′)

In these constraints Relation is the variable representing the relation,
“relationtype” is a constant relation type, while Parameter is the variable
representing the searched parameter, and “parametertype” is a constant
model element type. When filling such a constraint for every “relationtype”
(the “parametertype” is then fixed), it will allow the constraint engine a
two-way propagation process (either determining the type of the parameter
or in some cases the relation variable’s type).

Example 10: Over the domain of Petri nets (the metamodel is depicted in
Figure 1) to express that the variable R is a relation, and the variable F is
the “from” parameter of R, the following constraints are needed:

• (R is InArc)⇒ (F is Entity)

• (R is InArc.Weight)⇒ (F is InArc)

• (R is OutArc)⇒ (F is P lace)

• (R is OutArc.Weight)⇒ (F is OutArc)

• (R is tokens)⇒ (F is P lace)

4.2.3 The Constraint Handler API for the Traversal

In order to describe the type safety as a constraint satisfaction problem,
the following kind of constraints are used (the interface of the constraint
solver should be able to handle these constraints):

Type Equals Constraint represents the type equality of two elements.
This constraint represents a substitutable relation (as defined in Sec-
tion 4.2.2). The inverse of the constraint states that two types are
different.

19



Type List Constraint states that the type of an element is one of a set of
types. This constraint is similar to a disjunction of several type equals
constraints, but there is a huge difference: the type list defined in this
constraint should consist of a set of predefined type while the type
equals constraint can handle two variables as parameters. The inverse
of the constraint states that the type of an element is not in a set of
types.

Conditional Constraint is a compound constraint of two subconstraints:
it represents a logical consequence relation between a condition and a
consequence constraint. This constraint does not require the condition
to hold.

Conjunctive Constraint is a compound constraint with an arbitrary num-
ber of subconstraints: it represents a logical conjunction between the
subconstraints. Basically this means, the constraint holds only if every
subconstraint hold.

Disjunctive Constraint is a compound constraint with an arbitrary num-
ber of subconstraints: it represents a logical disjunction between the
subconstraints. Basically this means, the constraint holds if at least
one subconstraint holds.

Inverse Constraint is a compound constraint with a single subconstraint:
it represent a logical inverse of the subconstraint. Basically this means,
the constraint holds if and only if the subconstraints does not.

It is deliberate to have both the Inverse Constraint and the possibility
to define the inverse of the simple constraints (not compound, more specifi-
cally the type equals and the type list constraints). The Inverse Constraint
can be implemented using constraint reification (which introduces a new
boolean constraint variable) while the simple constraint may be inverted more
efficiently.

These constraints are defined over the variables of the TPM, and they have
to be translated (often several) to constraints over CSP variables. As CSP
variables represent the type of the TPM variables it is quite straightforward
to create this translation for any concrete CSP solver engine.

4.2.4 Selecting a CSP Solver Engine

The analysis uses integer and integer set variables and some very sim-
ple constraints. That allows us to investigate several available CSP solver
implementations and choose the one which suites our needs better.

20



During the development the Gecode/J library [14] and the clpfd module
of SICStus Prolog was evaluated, but these implementations did not meet
our needs exactly.

Generally supporting sets in constraint solvers needs compromises, because
the domain of possible sets is the powerset of the set elements which contains
exponentially many elements. The solvers that support sets use some kind of
optimalization to overcome this aspect.

The Gecode library had a set representation, but it did not work well with
our specialized sets; on the other hand the SICStus module did not support
neither sets nor incremental problem building. These problems caused that
neither solver were capable of handling any but the smallest transformation
programs.

These problems led to create our own solver implementation. The algo-
rithm creates a graph model from the constraint satisfaction problem and uses
this model for propagation: if the domain of a variable changes the related
constraints are notified. The notified constraint checks whether these changes
can be used to reduce the domains of the other variables described by the
same constraint.

To have a both effective and memory-efficient solution sets are described
as integers, and bitwise operations are used to express set operations. These
sets are used to describe the domain of integer variables; to optimize memory
consumption instead of supersets an approximate storage solution is used.
The effects of these bitwise operations is that our implementation is working
more efficiently in smaller problems (up to about several thousand variables)
while the SICStus implementation is optimized for much larger problems,
where our implementation will not scale well.

By measuring the execution time and memory consumption we examined
medium-sized transformation programs, and found that the simple solver
implementation could handle the analysis well, as the average execution time
of a branch were less than 60 ms, and the memory usage was about 15 MB
RAM. These results are acceptable for the analysis when the number of
branches is not too high (up to about 1000 branches).

5 Type Checking of the TPM Nodes

Using the TPM traversal based static analysis framework allows that the
relevant parameters of the language elements can be described separately to
the traversal. For every language element (represented by a TPM Node) a
list of constraints have to be produced together with a list of child nodes and
branching information.

21



This data is enough to run the static analysis.

5.1 Traversing ASM Term Nodes

ASM Term nodes are closely related to variables so for every ASM Term
Node there is an assigned TPM variable, which represents the result of the
the value of the current term.

To traverse an ASM Term node, all the operand nodes have to be traversed
as well, if there are any (variable and constant term does not have any
operands).

5.1.1 Variable and Constant Terms

At the end of a Term branch we will always find a Term without operands.
These Terms represent variables and constants. These terms can be handled
the same way with two differences: in case of a constant element (1) the type
of the element is always available, and (2) this type cannot change.

The handling of these nodes is simple: the variable shall be put on the
constraint space as described in Section 4.2, and the type information has to
be filled (if available) using the type equality relation.

5.1.2 Arithmetic Terms

The VTCL language includes the basic arithmetic functions: addition,
subtraction, multiplication, division, remainder and arithmetic inverse cal-
culation are available. All these terms can be handled similarly, so we will
cover only the addition in details (which is usually the most complex of these
operations).

The addition function has two operands (similarly to the mathematical
operator), both operands and the result are either String, Double or Integer.
There are further constraints on the possible types are listed in Table 1.

Operand1 Operand2 Return Value
{String} {Integer, Double, String} {String}

{Integer, Double, String} {String} {String}
{Double} {Integer, Double} {Double}

{Integer, Double} {Double} {Double}
{Integer} {Integer} {Integer}

Table 1: The Type Constraints of the Arithmetic Addition Operator

22



To understand the used notation, we describe the first line in plain English:
it means, that if the first operand is a String, the second is one of the types
Integer, Double or String, than the return value is a String. It is important
to notice, that at least one of these constraints will always hold, if all the
variables are of the allowed types, and all the constraints in the list have a
single type on the right side. These facts mean, that there is a deterministic
connection between the types of the operands and the type of the return
value, so there is no need to create branches for the different output types.

The other arithmetic operators can be treated similarly, with the following
differences: (1) neither of them allow the String type as operand or return
value, (2) the remainder operation also disallows Double variables, (3) and
the arithmetic inverse function has only a single operand.

5.1.3 Conversion Operators

Conversion operators are used to transform its operand to another type.
The conversion operators are available only for the built-in types, not the ModelElement
types.

The conversion operators do not work on every possible operand type (e.g.
an Integer cannot be converted from a Modelelement).

The detailed type constraint are listed in Table 2.

Operation Operand Return value
toString {any possible type} {String}

toInteger
{String, Integer, Boolean,
Double} {Integer}

toDouble
{String, Integer, Boolean,
Double} {Double}

toBoolean {any possible type} {Boolean}
toMultiplicity {any possible type} {Multiplicity}

Table 2: The Type Constraints of the Conversion Operators

The conversion operations are also deterministic, they return only a single
value type.

5.1.4 Relational and Logical Operators

The VTCL language supports the usual arithmetic comparisons: less than,
less than or equals, equals, more than or equals, more than and not equals.
They perform a comparison on their operands. Their type constraints are
listed in Table 3. These operations do not need branches.

23



Operation Operand Return value
Less {String, Integer, Double} {Boolean}
Less or Equals {String, Integer, Double} {Boolean}
Equals {any possible type} {Boolean}
Not Equals {any possible type} {Boolean}
More or Equals {String, Integer, Double} {Boolean}
More {String, Integer, Double} {Boolean}
Logical Operations {Boolean} {Boolean}

Table 3: The Type Constraints of the Arithmetic Comparisons

The commonly used logical operators are also supported: not, or, and,
and xor. The not operator has a single operand which shall be of Boolean
type, and its result is a Boolean.

The other logical operators have two Boolean parameters, and their return
values are Boolean values. None of the logical operators needs branching.

5.1.5 Model Element Query Operations

The Model Element Queries are built-in functions that let ASM Terms
utilize some element properties in the VPM model space (and with the help
of these terms also in ASM Rules). The names of the query functions are
representing the names from the VPM metamodel.

Table 4 displays all functions with their type constraints. There are
two types which have not been used before: Model Element represents any
possible model element (descendant of the root of the model element type hier-
archy), while Relation similarly represents any possible relation (descendant
of the root relation in the model element type hierarchy).

Relation parameter constraint sets (as described in Section 4.2.2) are used
at the inverse, source and target queries to increase precision.

5.1.6 ASM Functions

ASM Functions are similar constructs as HashMaps in Java, or associative
arrays in some dynamic languages; it is possible to put items into and retrieve
items from them by assigning a Term as a key.

To handle these functions the following algorithm is used: at the initializa-
tion of the type checking process the types of the stored values are gathered
(during startup the functions stores values set in the transformation program
directly), and the possible outputs of an ASM Function call are these values.
If there are multiple types, branching is needed.

24



Operation Operand Return value
isAggregate {Relation} {Boolean}
value {Model Element} {String}
ref {String} {Model Element}
fqn {Model Element} {String}
name {Model Element} {String}
inverse {Relation} {Relation}
multiplicity {Model Element} {Multiplicity}
source {Relation} {Model Element}
target {Relation} {Model Element}

Table 4: The Type Constraints of the Model Element Query Operators

The updating of ASM Functions has to be treated similarly to the update
of variables: using the Variable Repository a copy of the function has to be
created, and this copy can be modified, and later this modified copy can be
constrained.

5.2 Traversing ASM Rule Nodes

Most ASM Rules does not generate constraints directly (a notable excep-
tion is the Conditional rule, detailed later), they are used to describe the
possible paths in the TPM.

The ASM Rules are discussed in the following groups: Simple ASM
Rules, Variable Definition Rules, Nested Rules, Conditional Rule, Model
Manipulation Rules and GT Rule Invocations after the discussion of the ASM
Rule Calls.

5.2.1 Calling ASM Rules

In the VTCL language the call rule is used for the invocation of other
ASM rules. As of these call can also be recursive, a depth limit is applied for
the called rules, and in case of the depth limit is reached, an empty ASM
Rule is present in the TPM.

The call rule’s responsibility is to match the called rules symbolic pa-
rameters with the actual parameters given in the call node. This parameter
matching must happen both before and after the call takes place, because
only this way is it possible to handle the changes of the variables inside the
called rules.

25



5.2.2 Simple ASM Rules

The Simple ASM rules are such rules that do not contain other ASM rules.
These rules are the following:

• The skip rule is an empty instruction - it needs no special handling.

• The fail rule is used to cause failures - when it is hit, a failure handling
should start.

• The update rule is used for modification of existing variables. As the
execution changes the VTCL variable, a new TPM variable should be
created during the traversal of this node in the Variable Repository, and
it shall contain the new value (defined by an ASM Term parameter).
From this point everybody referencing the variable shall use the new
value.

5.2.3 Variable Definition Rules

The Variable Definition rule (for short the Let rule) defines variables. The
rule consists of an arbitrary number of variable definitions and a body ASM
rule. A variable definition consist of a variable and an ASM Term, while the
body ASM rule defines the context in that the defined variables are available.

It is possible to extract a constraint for the variable assignments: every
variable has to have the same type as the corresponding ASM Term. The
execution continues with the body ASM rule.

5.2.4 Nested Rules

The Nested Rules (sequential and random) are used to handle an arbi-
trary number of subrules in a single construct.

The sequential rule runs every subrule one by one, which can be mapped
to type constraints as every type constraint of every subrule must hold.

The random rule runs only a single subrule that is selected randomly.
The mapping creates branches for every subrule, and checks there the
constraints to hold.

Table 5 contains a short summary of the handling of the nested rules.

26



Rule Subnodes Constraints Branches

Sequential
Arbitrary number of
subrules

No additional con-
straints One

Random
Arbitrary number of
subrules

No additional con-
straints

One for every sub-
rule

Table 5: The Analysis of Nested Rules

5.2.5 Conditional Rule

A Conditional rule consists of condition term and two subrules that
represent the true and false cases.

The condition term of the node has to be of Boolean type: this constraint
has to be filled directly from the rule, because on the level of the Term this
information is unavailable.

Because only one of the two subrules will run, this rule is the start of two
different branches: one in that the subrule representing the true case will run,
and one in the other.

5.2.6 Model Manipulation Rules

The transformation control language has constructs for manipulating the
model space. There are constructs for creation, change and deletion of model
elements. These constructs have parameters: we know some basic things
about these parameters (mostly they have to be a model element reference),
this knowledge can be filled into the CSP solver.

The Create rule creates a new model element in the model space. The
parameters of this construct are a variable and one or more ASM Terms.
The variable will store the created value, while the Terms describe
the type of the model element, and some additional parameters. The
constraints: (1) the created model element (and thus the variable) will
have the type given as parameter, (2) the type parameter have to be a
model element type (either entity or relation); (3) a variable with the
type of the type parameter is used to store the new element; (4) if filling
in a relation, relation parameter constraint sets can also be generated.

The Delete rule has an ASM Term parameter: the element to delete from
the model space. In this case the element reference has to be invalidated
for future use - it does not refer to any elements from the model space
any more. The parameter has to be a model element type.

27



The Copy rule is similar to the create: it creates a new item by creating a
copy from an existing one. The constructs parameters are: the source
element, the target, and a variable. The source element and the target
are model elements, while the variable is a term variable (similar to the
create rules variable parameter).

The Move and the Update rules change existing model elements. Their
parameters select an existing model element, and define what to change.
To handle this, new TPM variables have to be created (and thus
CSP variables) that are connected via constraints. There all several
update rules, all with two ASM Terms as parameters. Without further
explanation the type parameters are the following:

• rename(Model Element, String)

• setValue(Entity, String)

• setFrom(Relation, Model Element)

• setTo(Relation, Model Element)

• setMultiplicity(Relation, Multiplicity)

• setAggregation(Relation, Boolean)

• setInverse(Relation, Relation)

In case of the setFrom, setTo, setInverse rules, relation parameter
constraint sets are also inserted.

Table 6 contains a short summary of the handling of model manipulation
rules.

5.2.7 Collection Iterator Rules

The forall and the choose rules execute rules for all elements (or a
single element), that have (or has) a specific property. For both rules the
parameters are the same: a list of variables, the property description, which
can be either an ASM Term or a GT Rule call, and an optional ASM rule to
execute.

If the properties are described by a Term, than the Term has to be
traversed as described in Section 5.1, while in case of GT Rules Section 5.3.2
has to be followed. If an ASM Rule is present, it has to be traversed as well.

The difference between the two rules are represented by the possible
runtime paths: if the forall rule finds no element fulfilling the parameter
property, it does not run the ASM Rule at all, but continues execution, while

28



Rule Subnodes Constraints Branches
Create
(Entity)

variable, type variable is a type entity One

Create
(Relation)

variable, type, two
model elements

variable is a type rela-
tion, the last parameters
are model elements, relation
parameter constraints

One

Delete Model element Parameter is a model ele-
ment One

Copy
Source element,
variable

The type of variable and
source equals to the type of
the source element, both are
model elements

One

Move
Source element, tar-
get container

Both elements are model el-
ements One

Update Two ASM Terms Varies One

Table 6: The Constraint Mapping of Model Manipulation Rules

the choose rule fails when no elements are present, failure handling will follow
the unsuccessful matching. A further difference is, that the ASM Rule of
the choose rule at most once, while in case of the forall rule it can rule
(depending on the model space) an arbitrary number of times - but it is not
needed to check the run of the ASM Rule several times for type checking,
because running a single ASM Rule several times does not change the types
(if the rule is non-deterministic than inside the rule are branches created).

Taking these properties in consideration, the choose rule needs two bran-
ches: one, where a match is found, and the ASM Rule is executed, and
another where no match is found, and a failure handling process is initialized.
In this case the ASM Rule is not executed.

Example 11: To illustrate the handling of the choose rule, let’s consider
the rule presented in Listing 3:

Listing 3 A Simple choose Rule

choose Token with find placeWithToken(Place, Token) do print("token found");

First of all the static checker has to evaluate the pattern call (the place-
WithToken call), the examination is detailed in Section 5.3.2. A successful
matching (first branch) binds the Place and Token parameters to be able to use
it later. In case of unsuccessful matching (second branch) a fail is emitted.

29



Rule Subnodes Constraints Branches

Choose
Arbitrary number of
variables, a condition,
a rule and a fail node

The variables are
model elements, the
condition is boolean
term

(1) condition and
fail nodes are tra-
versed; (2) condition
and rule is traversed

Forall
Arbitrary number of
variables, a condition
and a rule node

The variables are
model elements, the
condition is boolean
term

(1) only the condi-
tion is traversed (2)
the condition and
the rule is traversed.

Table 7: The Analysis of Iteration Rules

For type checking the forall rule also two branches are needed: in the
first one the ASM Rule is not executed, in the second one it is executed once.

It is an interesting point that after the run of a forall rule there should
be no model element fulfilling the condition of the rule (except when the step
creates such nodes, or there are conflicting applications). It needs further
research whether these observations could be mapped into constraint in order
to extend the number of detected problem types.

Table 7 contains the handling of the collection iterator nodes.

5.3 Traversing GT Rule and Pattern Nodes

5.3.1 Calling Graph Patterns

The VTCL language contains Graph Pattern Calls as boolean ASM Terms.
This allows its use both inside Graph Patterns and in ASM Rules as conditions.
The returned value of the call is true, if the pattern matching is successful.

To handle recursive calls, a depth limit is applied to the bodies of the
called graph patterns. This way it is possible to analyse possible sequences of
the alternate bodies of graph patterns.

The pattern call term’s responsibility is to match the called pattern’s
symbolic parameters with the actual parameters given in the call node.
Because the pattern contain a static condition, it is not required to do this
pattern matching twice (as in case of ASM 5.2.1 or GT 5.3.3 Rule calls).

5.3.2 Graph Patterns

A graph pattern is the conjunction of conditions (the negative pattern acts
a logical inverse operator over this conjunction). This basically means it is
enough to translate the single conditions to constraints, and the conjunction
of these constraints will be the constraint of the graph pattern.

30



A graph pattern has parameter and local variables: the parameter variables
represent a selection of variables which have to be matched, while the local
variables are used as internal variables, they are helpful for describing more
complex patterns. During the processing of graph patterns it is not needed to
differentiate between the two variable types, they can be handled the same
way.

It is possible to define alternate bodies for a graph pattern: these bodies
define disjunctive conditions: the pattern matches if at least one of its bodies
matches. To handle these bodies, a new branch should be created for every
body.

Type definition states that a variable is an instance of a metamodel element.
It can be translated into substitutable relation.

Checking of a boolean formula states, the a boolean formula holds. The
formula is an ASM Term, it has to be evaluated, and its type should be
Boolean.

Pattern Calls are used to define subpatterns. These subpatterns can be
handled as additional conditions and constraints. Together with the al-
ternate body construct pattern calls are used to write recursive patterns
(similar to the recursive clauses in Prolog).

A pattern call (both inside or outside the pattern) is responsible for
parameter matching: from the call node we are able to extract the variables
known to the caller, and it has to generate constraints stating the type equality
of every parameter of the callee and the variable from the caller.

Example 12: The called pattern of Listing 3 is described in Listing 4.

Listing 4 A Simple Graph Pattern

pattern placeWithToken(PlaceVar, TokenVar) =
{

’PetriNet’.’Place’(PlaceVar);
’PetriNet’.’Place’.’Token’(TokenVar);
’PetriNet’.’Place’.’tokens’(X, PlaceVar, TokenVar);

}

The pattern describes a relation between two elements, called PlaceVar
and TokenVar. The lines of the pattern describe in order, that (1) PlaceVar
is an element of Place (from the metamodel), (2) TokenVar is an element
of Token, and (3) there is a variable called X, which represents a tokens
relation between PlaceVar and TokenVar.

31



Element Subnodes Constraints Branches

GT Pattern
Arbitrary number of
bodies

No additional con-
straints

One for every
body

Pattern
Body

Arbitrary number of
called patterns, Arbi-
trary number of Pat-
tern Elements

Type Equals Con-
straint for every pat-
tern element

One

Table 8: The Elements of GT Patterns

Although the type of the variable X is not used outside the pattern the
static checker calculates it, the node-based constraint extraction process is not
capable of detecting these redundancies.

Table 8 summarizes the handling of the elements of the GT Patterns.

5.3.3 Calling Graph Transformation Rules

The GT Rule Invocation rule is used to call Graph Transformation
Rules in the VTCL language. These calls can be recursive, because Graph
Transformation rules may contain ASM rules, so a depth limit is applied to
the called rules.

The GT Rule Invocation rule’s responsibility is to match the called rules
symbolic parameters with the actual parameters given in the call node. This
parameter matching must happen both before and after the call takes place,
because only this way is it possible to handle the changes of the variables inside
the called rules. These parameter matching should consider the parameters
direction (in, out, inout) to update only those variables that can be changed.

5.3.4 Graph Transformation Rules

A GT Rule describes a single graph transformation step. The description
include the graph patterns: a pattern describing the LHS graph (precondi-
tion) and another for the RHS graph (postcondition). The rule may also
have directed (in, out, inout) parameters.

It is also possible that the GT Rule contains an optional ASM Rule action
which is applied to the matched precondition pattern.

Both the graph patterns and the action have to be traversed, because the
parameters (and thus the type of the parameters) of the graph transformation
are constrained by the patterns. The analyser first traverses the patterns and
only then the action as the graph patterns provide full type information that
is useful during the analysis of the action.

32



Listing 5 The addToken GT Rule

gtrule addToken(in Place) =
{
precondition find place(Place)
postcondition find placeWithToken(Place, Token)
action{
print(Place);
print(Token);

}
}

Rule Subnodes Constraints Branches

GT Rule
(RHS)

Precondition pat-
tern, Postcondition
pattern

No additional constraints One

GT Rule
(Action)

Precondition pattern,
Action No additional constraints One

GT Rule
(Both)

Precondition pat-
tern, Postcondition
pattern, Action

No additional constraints One

Table 9: The Analysis of GT Rules

Example 13: Listing 5 displays the addToken GT Rule introduced in Sec-
tion 5.3.4 with a slight alteration: both the postcondition and action part has
been defined in order to demonstrate the traversal.

When investigating this GT Rule node, first the precondition, then the
postcondition pattern is traversed as described in Section 5.3.2, then the rule
is also executed as described in Section 5.2.

Table 9 displays the parameters of the GT Rule nodes.

6 The Detected Type Handling Problems

After the TPM traversal finishes the results have to be searched for bug
patterns. The analysis framework defines three category of bugs to check for
(see Section 3). Currently the type checker looks for three patterns (one of
each category):

1. The analysis problems detected by the CSP solver are reporting at
least one of the CSP variables with an empty domain, that means the
type constraints connected to that variable are inconsistent. This can
translated to inconsistent type handling in the VTCL code. The severity

33



of this problem is error.

2. If there are no constraint failures, the analyser looks for inconsistencies :
for every VTCL variable to representing TPM variables are assembled,
and their calculated types are compared. If there is a change of types
between the types, a warning is issued, because in most cases it is not
recommended to use a variable with multiple types during its lifecycle.

3. A common traversal problem is an unhandled failure node. When finding
one, a warning is issued, as it is considered as a bad practice to leave
unhandled possible failures in the code.

By using this analyser it is easier to spot type safety errors as if some
happens (e.g. accidentally calling another graph pattern than intended)
errors (or warnings) are issued. Sometimes a problem is not detected where it
happened, but if the transformation developer knows some context information
it is easier to track down the cause.

7 Related Work

While there is already a large set of static type checking concepts in the
literature, below we focus on providing a brief overview with two different
application areas that show conceptual similarities with our approach.

The transformation of XML [6] documents (via the XSLT [9] transforma-
tion language) involves similar concepts to type checking. XML documents
can be interpreted as a hierarchical data structure, their type specification
is written in a DTD (Document Type Definition) (or XSD (XML Schema)).
By calculating the DTD of the input document from the transformation
and the output DTD it is possible to decide whether the input document
(written by the user) would be transformated to the output DTD without
running the transformation. This problem can be treated as backward type
inference [24]. A type is synthesized as a finite tree automaton, and is deduced
compositionally. We adopted the tree based structural traversal from the
approach that works on our models.

The well known Hindley-Milner [23] algorithm for lambda calculus reduces
the typing problem to a unification problem of equations. The algorithm is
used in the functional languages Haskell [20] and Erlang [18]. Our approach
was influenced by the work started in [21], which translates the typing problem
to a set of constraints. As lambda calculus does not conform to the Viatra2
transformation language, we designed a different mapping and evaluation
approach that fitted better with the graph based data structures and multilevel
metamodeling.

34



8 Conclusion and Future Work

In this paper we introduced a static type checker tool for the Viatra2
VTCL language. The created tool is capable of detecting some cases of
incorrect use of the type system (including pattern or rule calls with invalid
parameters).

The tool is capable of inferring the type of most variables in transformation
programs, but there are some cases where it is not possible to calculate it.
Such are variables defined with an undefined value (undef), as it can become
any type (although if the variable changes the type might become detectable).
It is also possible that variables are only used in constructs that does work
on multiple types - in such cases the precise type cannot be calculated only
approximated.

Such result happens when a parameters only use is a comparison with
an integer variable: in this case the type of the parameter is one of string,
integer or double.

The main limitation of the analysis is the granularity of the error reports:
if the error is a constraint failure the CSP solver returns only the fact that
no solution is available but no information about the cause of the constraint
violation. This could cause that only the fact of an error can be reported but
not its location.

In the future the analyser tool could be extended by

• the addition of further bug patterns. Such possible pattern would be to
compare the name of the variable with the metamodel, and if the name
is the name of a metamodel element, the type of the variable should
be the same element (e.g. the variable place should have a type of
Place).

• the CSP solver could be extended to provide explanations [16]. Ex-
planations are a set of contradictory constraints, that could help to
identify the cause of the constraint violation and thus more specific
error reporting.

References

[1] The Eclipse project. http://www.eclipse.org.

[2] Viatra transformation language specification. http://www.eclipse.
org/gmt/VIATRA2/doc/ViatraSpecification.pdf.

35

http://www.eclipse.org/gmt/VIATRA2/doc/ViatraSpecification.pdf
http://www.eclipse.org
http://www.eclipse.org/gmt/VIATRA2/doc/ViatraSpecification.pdf


[3] VIATRA2 Framework. An Eclipse GMT Subproject (http://www.
eclipse.org/gmt/).

[4] Apt, K. Principles of Constraint Programming. Cambridge University
Press, 2003.

[5] Börger, E., and Stärk, R. Abstract State Machines: A Method for
High-Level System Design and Analysis. Springer-Verlag, 2003.

[6] Bray, T. Extensible Markup Language (XML) 1.0 (fourth edition),
2006. Available from http://www.w3.org/TR/xml/.

[7] Carlsson, M., Widén, J., Andersson, J., Andersson, S.,
Boortz, K., Nilsson, H., and Sjöland, T. SICStus Prolog User’s
Manual, release 4.0.4 ed. Swedish Institute of Computer Science, 2008.

[8] Caseau, Y. Efficient handling of multiple inheritance hierarchies. In
OOPSLA ’93: Proceedings of the eighth annual conference on Object-
oriented programming systems, languages, and applications (New York,
NY, USA, 1993), ACM, pp. 271–287.

[9] Clark, J. Xsl Transformations (XSLT), 1999. Available from http:
//www.w3.org/TR/xslt.

[10] Cousot, P., and Cousot, R. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation of
fixpoints. In Conference Record of the Fourth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (Los
Angeles, California, 1977), ACM Press, New York, NY, pp. 238–252.

[11] Dechter, R., and Pearl, J. Network-based heuristics for constraint-
satisfaction problems. Artif. Intell. 34, 1 (1987), 1–38.

[12] Ehrig, H., Engels, G., Kreowski, H.-J., and Rozenberg, G.,
Eds. Handbook on Graph Grammars and Computing by Graph Trans-
formation, vol. 2: Applications, Languages and Tools. World Scientific,
1999.

[13] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional Computing Series. Addison-Wesley Publishing Company,
New York, NY, 1995.

[14] Gecode Team. Gecode: Generic constraint development environment,
2006. Available from http://www.gecode.org.

36

http://www.gecode.org
http://www.eclipse.org/gmt/
http://www.eclipse.org/gmt/
http://www.w3.org/TR/xml/
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt


[15] ILOG S.A. ILOG Solver 5.0: Reference Manual. Gentilly, France, 2000.

[16] Jussien, N. e-constraints: explanation-based constraint programming.
In CP01 Workshop on User-Interaction in Constraint Satisfaction (Pa-
phos, Cyprus, 1 Dec. 2001).

[17] Kamfonas, M. J. Recursive hierarchies: The relational taboo! The
Relational Journal (October/November 1992).

[18] Lindahl, T., and Sagonas, K. Practical type inference based on
success typings. In PPDP ’06: Proceedings of the 8th ACM SIGPLAN
international conference on Principles and practice of declarative pro-
gramming (2006), ACM.

[19] Nickel, U., Niere, J., and Zündorf, A. Tool demonstration:
The FUJABA environment. In The 22nd International Conference on
Software Engineering (ICSE) (Limerick, Ireland, 2000), ACM Press.

[20] Pointon, R., Trinder, P., and Loidl, H.-W. The design and im-
plementation of glasgow distributed Haskell. In IFL’00, Implementation
of Functional Languages (September 2000).

[21] Pottier, F. A modern eye on ml type inference, 2005. In Proc. of the
International Summer School On Applied Semantics (APPSEM ’05).

[22] Rensink, A. Representing first-order logic using graphs. In Proc. 2nd
International Conference on Graph Transformation (ICGT 2004), Rome,
Italy (2004), H. Ehrig, G. Engels, F. Parisi-Presicce, and G. Rozenberg,
Eds., vol. 3256 of LNCS, Springer, pp. 319–335.

[23] Robin, M. A theory of type polymorphism in programming. Journal of
Computer and System Sciences 17 (December 1978), 348–375.

[24] Tozawa, A. Towards static type checking for XSLT. In In DocEng
’01: Proceedings of the 2001 ACM Symposium on Document engineering
(2001), ACM, pp. 18–27.

[25] Ujhelyi, Z., Horváth, A., and Varró, D. A generic static anal-
ysis framework for model transformation programs. Technical report,
Budapest University of Technology and Economics, June 2009.

[26] Varró, D., and Pataricza, A. VPM: A visual, precise and multilevel
metamodeling framework for describing mathematical domains and UML.
Journal of Software and Systems Modeling 2, 3 (October 2003), 187–210.

37


	Introduction
	Main Goals
	The Structure of the Report

	Background Concepts
	Models and Transformations in Viatra2
	Metamodeling
	Graph Patterns
	Graph Transformation Rules
	ASM Rules

	Static Analysis and Type Inference
	Constraint Satisfaction Problems

	Static Analysis of Transformation Programs
	Type Checking of the VTCL Language
	Integrating the Analyser
	Representing the Metamodel
	Representing Type Hierarchies with Integer Variables
	Creating Constraints based on the Metamodel
	The Constraint Handler API for the Traversal
	Selecting a CSP Solver Engine


	Type Checking of the TPM Nodes
	Traversing ASM Term Nodes
	Variable and Constant Terms
	Arithmetic Terms
	Conversion Operators
	Relational and Logical Operators
	Model Element Query Operations
	ASM Functions

	Traversing ASM Rule Nodes
	Calling ASM Rules
	Simple ASM Rules
	Variable Definition Rules
	Nested Rules
	Conditional Rule
	Model Manipulation Rules
	Collection Iterator Rules

	Traversing GT Rule Nodes
	Calling Graph Patterns
	Graph Patterns
	Calling Graph Transformation Rules
	Graph Transformation Rules


	The Detected Type Handling Problems
	Related Work
	Conclusion and Future Work

