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Abstract

While imperfect symmetry (i.e., small deviation from symmetry) is abundant in Nature, it is not common among engi-
neering structures. Here we investigate whether, and under which conditions the response of engineering structures with
given symmetry group C may be improved by adding small perturbations xi to the geometry. We will prove that a naturally
emerging representation of C in the space of the variables {xi} plays a key role and, based on this representation, we for-
mulate exact conditions of improvability, utilizing classical representation theory of finite groups. We also present various
examples among which optimal structures with imperfect symmetry emerge, somewhat counter to the engineer’s intuition.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Engineering structures are often built with some degree of symmetry, in fact, it is hard to find structures
without local or global symmetry. The concept of symmetry not only simplifies the design and construction
process; there is a deep-rooted belief among structural engineers that symmetrical geometry represents an opti-
mum, at least locally. We will show that this intuition is not unfounded. It is remarkable that an extensive
study on shape optimization (Sokolowski and Zolesio, 1992) lists exclusively examples with reflection symme-
try. Nevertheless, bold designers abandon this concept once in a while (Tzonis, 1999), resulting in structures
with fundamental asymmetry. Structures with slight asymmetry seem to appear as less desirable, ‘‘imperfect’’
solutions to engineering problems.

In contrast, Nature produces creatures with imperfect symmetry (i.e., slight asymmetry) in abundant quan-
tities: the human body itself, while obeying a fundamental body plan of planar reflection symmetry, displays a
remarkable collection of small asymmetries, ranging from the heart’s location to the functional neural wiring
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of the brain. These asymmetries have all emerged in the process of evolution, seeking competitive optima (cf.
Várkonyi et al., 2006).

Whether or to what extent slight asymmetry should be treated as imperfect (as opposed to perfect symme-
try) is a philosophical question beyond the scope of this paper. As Weyl (1952) notes, Western art, similar to
Nature, is inclined to relax rigorous symmetry. Nevertheless, it is rare that asymmetry means merely the lack
of symmetry: asymmetric compositions are often very close to some symmetric pattern (cf. Fig. 1). Undoubt-
edly, both artistic and human beauty is often associated with slight asymmetry so it should not be viewed as
inferior to intact, perfect symmetry.

Based on the appearance of slightly asymmetric optima in Nature one could hope to find their analogies in
structural design as optimal solutions; this is one goal of the current paper. On the other hand, appearance of
slight asymmetry in western art suggests that slightly asymmetrical structures may even be visually attractive.
Nature produces slightly asymmetric optima in the process of evolution, i.e., time appears as an essential
parameter (Várkonyi et al., 2006). In the structural analogy the study of individual structures may only reveal
whether the given, symmetric configuration is locally a ‘pessimum’ or optimum, i.e., whether or not it can be

improved via small perturbations. This is the question, which we will address in full generality. In order to
locate slightly asymmetric optima we will follow the analogy to evolution and study one-parameter families

of structures in search for bifurcations of structural optima; this rather complex issue will be addressed only
at specific points in the paper.

Existence of structural optima with imperfect symmetry (i.e., bifurcations of structural optima) has been
reported in Várkonyi (2006) for structures with reflection symmetry. However, Várkonyi (2006) predicts that
if only one symmetry-breaking geometric variable (x1) is admitted, the perfect configuration (x1 = 0) is typi-
cally optimal, at the same time, structural optima with imperfect symmetry (jx1j � 1) are atypical in a wide
class of engineering optimization problems (see ‘local’ optimization criteria in Section 2). This confirms the
engineer’s fundamental intuition. Nevertheless, examples with different symmetry groups and higher number
of variables suggest that this may not be always the case, so it is natural to ask the following, generalized
questions:
Fig. 1. (A) Falcon-shaped Vedic sacrificial altar made of brick (Joseph, 2000). (B) Wall-painting of the Etruscan ‘Tomb of the Baron’,
Tarquinia.
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1. What are exactly the conditions for the local optimality of structures with arbitrary (finite) symmetry

groups C and arbitrary number of symmetry-breaking variables xi?
2. What are exactly the conditions for the existence of slightly asymmetric optima (i.e., bifurcations of optima)

in a one-parameter family of structures with arbitrary (finite) symmetry group C and arbitrary number of
symmetry-breaking variables xi?

In this paper we address primarily the first question and provide rigorous conditions for typical cases. The
answer depends essentially on the representation of the group C in the space of the variables {xi}, and classical
group representation theory provides easy tools to determine the properties of this representation. Group-the-
ory based analysis does not offer a full answer; however, by using this method one can quickly exclude the bulk
of the cases where the structure may not be improved with the given variables. If improvability cannot be
excluded based alone on group theory arguments, the structure will be called ‘potentially improvable’. To ver-
ify actual improvability in such cases, further, more cumbersome structural analysis is required.

We will discuss the second question only partially in Section 6, in connection with the structural examples.
Our results demonstrate that the relation of the answers to the first and to the second question is far from
trivial; however, a general treatment of the second question is beyond the scope of this paper.

Section 2 introduces the basic concepts on a simple reflection-symmetric structure. We point out fundamen-
tal differences between local and global optimum criteria and between one and two symmetry-breaking vari-
ables. Section 3 discusses our main question on improvability in full generality, assuming an arbitrary,
finite symmetry group and arbitrary number of perturbing variables. Section 4 illustrates the results on simple
examples, Section 5 outlines exceptional cases, and results are summarized in Section 6. It is also discussed in
this part how the main questions of the paper are related to the design of structural optima with imperfect
symmetry. Finally, Appendices A.1–A.4 contain the proofs of several lemmas and theorems.

2. Structural optima and symmetry

We consider the simplest kind of optimization problem: a scalar ‘‘optimization’’ potential U (p,x) will be
associated with the structure and we seek local minima of U as optimal structural configurations. The variable
x will refer to the deviation from the symmetric configuration, i.e., x = 0 will be always associated with the
symmetric problem. The parameter p will describe a family of structures, each of which possesses the same
symmetry at x = 0. As final goal, we seek optimum-bifurcation diagrams in the [x,p] plane, describing how opti-
ma evolve as the parameter p is varied.

Fig. 2 presents a planar three-hinged structure subjected to vertical loading N at the internal hinge C, the
length of the bars is denoted by li, the area of the cross sections by Ai, the bending stiffnesses by EIi (i = 1,2).
The horizontal location of C is identified by the variable x, the vertical location of C by the parameter p. After
obtaining the internal forces N1, N2 and the critical (Euler) loads N cr

1 , N cr
2 , the risk against buckling can be cal-

culated in the individual bars as f1 ¼ N 1=N cr
1 , f2 ¼ N 2=N cr

2 , in more detail:
fiðp; xÞ ¼ Niðp; xÞ=N cr
i ðp; xÞ ¼

Niðp; xÞl2
i ðp; xÞ

EIip2
; ð1Þ
Fig. 2. A simple three-hinged model loaded by the concentrated force N.
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We will now introduce the concept of global and local optimum criteria.
First we intend to minimize the total mass, i.e., we have U (p,x) = A1l1 + A2l2 with equal, given f1 = f2 = r

risk of buckling in each bar (i.e., A1 5 A2 is determined according to this constraint). The resulting optimum-
bifurcation diagram (Fig. 3A) is not surprising. Since U is smooth and symmetrical (U (p,x) = U (p,�x)),
x = 0 is either at a local minimum or maximum of U, as predicted by elementary catastrophe theory (Poston
and Stewart, 1978), and the type of x = 0 changes typically at pitchfork bifurcations.

Now we modify our potential to obtain an example for local optimum criteria.
Engineers often prefer to apply identical structural elements. By adopting this concept we now prescribe

A1 = A2, I1 = I2 resulting in f1 5 f2. The task will be to minimize the risk of buckling, i.e., we consider the high-

est risk among the bars. The potential is defined as U (p,x) = max{f1 (p,x), f2 (p,x)}. We call this criterion
‘‘local’’ because it considers the local, weak points (in this case, bars) of the structure individually; this
approach is perhaps more natural for engineers than the global criterion. The optimum-bifurcation diagram
features an unusual ‘X-bifurcation’ (Fig. 3B). Notice that x = 0 remains a local optimum on both sides of the
bifurcation point. The reason of the unexpected results is the special type of potential U. Observe that
f1 (p,x) = f2 (p,�x), and x = 0 is typically a non-smooth local optimum (Fig. 4), which does not vanish at bifur-
cation points. The bifurcation patterns of similar optimum diagrams have been studied in Várkonyi and
Domokos (2006). It has also been demonstrated there that one-parameter families of such examples typically
do not contain critical points where symmetrical optima bifurcate, i.e., slightly asymmetrical optima do not

exist in typical cases. The aim of the present paper is to generalize these results to arbitrary number of sym-
metry-breaking variables xi (instead of one) and arbitrary, finite symmetry groups (instead of planar reflection
symmetry).

Before we enter the general and rigorous discussion, we would like to illustrate that increasing the number
of variables by one already has radical effects. The previous variable will be denoted by x = x1 and we
introduce x2 as half of the vertical distance between the support hinges. As before, x1 = x2 = 0 refers to the
Fig. 3. (A) Optimization diagram of total mass with prescribed safety against buckling in both bars. (B) Optimization diagram of safety
against buckling if the cross sections are equal and prescribed (continuous line: optimum, dashed line: pessimum).



Fig. 4. The potential U (x,p) at p = 0.5, generated from (1).
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symmetric configuration (Fig. 5A). The only modification needed in the previous arguments is to replace x by
the vector x = [x1x2]T, however, this minor modification results in radical change. The potential U is again the
maximal risk among individual members criterion. In Fig. 5B and C we can observe that x = 0 need not be a
local optimum any more, and the bifurcation patterns of the optimum diagram (Fig. 6) become similar to
those of smooth functions (such as Fig. 3A). Still, similar to the single-variable case, a typical random pertur-
bation increases the potential (i.e., makes the structure worse), however a special, adequate one might improve
it (Fig. 5D). Thus, the 2-variable case suggests that improvement of symmetrical structures by small pertur-
bations is difficult, however possible in case of ‘local’ optimization criteria. With other words, spontaneous
imperfection (e.g., due to errors during the construction) has typically a bad effect, however, calculated geo-
metrical imperfectness of a symmetrical structure may – under some circumstances – be of advantage. In the
next section we proceed to define these circumstances rigorously for arbitrary number of variables and arbi-
trary, finite symmetry groups.
Fig. 5. (A) A simple three-hinged model with two perturbing variables. (B) Optimization potential of the structure if p = 0.15. The
symmetrical configuration is partially smooth optimum. (C) Optimization potential if p = 2. The symmetrical configuration is a partially
smooth saddle, i.e., not optimum. Notice in (B) and (C) that optimization with only one of the variables (white sections of the surfaces)
would result in non-smooth optima. (D) The grey domain indicates values of x, for which U (p,x) < U (p,0) if p = 2. Notice that a
randomly chosen small (jxj � 1) value of x is typically out of this range. Thus, a small, random perturbation of the symmetry typically
spoils the structure.



Fig. 6. Optimum diagram of the example of Fig. 5A. Thick, black lines denote local minima, thin grey lines denote maxima, and saddle
points of the function U (x1,x2). Small pictograms indicate the local shape of U (partially smooth or smooth) at all branches.
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3. The general problem

3.1. Definition

In this section, we discuss the natural generalization (arbitrary symmetry group C, d variables) of our pre-
vious observations on optimisation problems with local optimum criteria. The corresponding results of Section
2 suggest that symmetrical structural forms tend to be local optima. If the number of variables is low, then the
symmetrical configuration corresponds to a non-smooth, ‘‘robust’’ optimum – in this case there is little hope to
improve the structure by local perturbations. However, if the number of variables is sufficiently high then
smooth submanifolds will pass through the point associated with the symmetric structure. In the subspace of
these manifolds one can hope to improve the symmetric configuration, however actual improvability depends
on nonlinear terms in fi (Fig. 5B vs. C). In this section we take a rigorous approach to find sufficient, necessary,
as well as sufficient and necessary conditions for the existence of the smooth submanifolds, i.e., for the potential

improvability of the symmetric structure. The goal of these criteria is to determine without detailed example-spe-

cific analysis the number and type of perturbing variables, which make a structure potentially improvable.
Let C � {ci i = 1,2, . . . , r} denote the symmetry group associated with the perfect structure (r is the order of

C). In practical engineering problems, C is usually a cyclic or dihedral group. It is required that the loads, the
internal forces, and, in fact, any external condition, which has an effect on the optimization process, support
the ‘C-symmetry’ of the structure.

The symmetry of the structure will be perturbed via symmetry-breaking variables collected in vector x = [x1

x2� � �xd]T, x 2 Rd. These variables represent the set of structures, which are considered as candidate solutions
of the optimization problem. The structure corresponding to x = x0 is referred to as S (x0). We apply the fol-
lowing three restrictions on x:

(i) S (x) is C-invariant if and only if x = 0.
(ii) the set {S (x), x 2 Rd} is C-invariant.

(iii) S (x1) � S (x2) if and only if x1 = x2.

Condition (i) is a natural consequence of the fact that our investigation relies on the optimality of the C-
symmetrical configuration x = 0 compared to non-symmetrical ones, i.e., disturbed configurations should not
be C-symmetrical. According to condition (ii), if an asymmetrical configuration S (x) is a potential solution
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then the transformed configuration ci (S (x)), ci 2 C is also potential solution. Since the set of possible solutions
is limited primarily by external conditions, which should not break the C-symmetry, (ii) is a natural symmetry

condition. Finally condition (iii) is purely technical: it states that the symmetry-breaking variables are ‘inde-
pendent’ of each other in the sense that non-identical perturbations yield indeed non-identical structures.

According to conditions (ii), (iii) there are di : Rd! Rdi = 1,2, . . . , r transformations satisfying
ci (S (x)) = S (di (x)). We restrict ourselves to the case when di are linear transformations, (which includes all
examples of practical interest according to the authors’ experience). Since ci (S (0)) = S (di (0)) = S (0) yields
di (0) = 0 by condition (iii), the symmetry transformations now correspond to simple matrix multiplications
in the space of the variables:
ciðSðxÞÞ ¼ SðDixÞ; ð2Þ
Due to Eq. (2) and condition (iii), the set of matrices D � {Di i = 1,2, . . . , r} mimic the group structure of C: if
ci,cj,ck 2 C satisfy cicj = ck, we also have Di Dj = Dk. Thus, D is a linear representation of group C (Jones,
1998); it will be referred to in this paper as the ‘induced representation’ of C’ (Note that the concept of induced
representations is used in group representation theory in a different sense, see e.g., Barut and Raczka (1986). It
is also worth mentioning that C has another representation in the physical space of the structure, since the ele-
ments ci correspond to matrix transformations in an adequate physical coordinate system. The latter represen-
tation of C will not gain importance during the following investigations).

In case of local optimization criteria, the potential of the structures is of the form
UðxÞ ¼ max
i

fiðxÞ i ¼ 1; 2; . . . ; k; ð3Þ
where the functions fi (x) are local goodness measures corresponding to ‘weak’ elements/points of the struc-
ture. We are interested in local properties of U (x) at x = 0, thus we only need to consider the weakest points
of the perfect configuration S (0), i.e., those fi (x) functions for which fi (0) = U (0). (At the same time, S (0) has
usually more than one ‘weakest’ points due to its symmetry.) The functions fi (x) are supposed to be analytic,
which allows approximating them via linearization: fiðxÞ ¼ Uð0Þ þ gT

i xþ oðjxj2Þ. Thus, Eq. (3) yields
UðxÞ ¼ Uð0Þ þmaxiðgT
i xÞ þ oðjxj2Þ i ¼ 1; 2; . . . ; k if jxj � 1: ð4Þ
We have already seen this type of potential in the first example, where x = 0 was not only a local optimum, but
it was a ‘robust’ one, i.e., for jxj � 1, we had U (x) � U (0) � cjxj(c > 0 is a constant), while at smooth optima
we would have typically U (x) � U (0) � cjxj2. This kind of non-smooth optimum is a characteristic property
of similar examples. Before going into details, we give an exact definition of robust optima, which applies for
problems with arbitrary number of variables:

Definition 1. The point x = 0 is a robust local optimum (or minimum) of the scalar function U(x), x 2 Rn if
there exist real scalars d, e > 0 such that jxj < d yields U (x) � U (0) P eÆjxj. (jxj denotes the l2-norm of the
vector x.)

Based on Definition 1, functions of type (3) can be classified according to the following, simple scheme:

(A) x = 0 is a robust minimum of U (x). In this case S (0) is not improvable via small perturbations.
(B) x = 0 is a singular point (minimum saddle or maximum) of U (x), however it is not a robust minimum. In

this case, S (0) is called ‘potentially improvable’, because we have two possibilities according to nonlinear

terms of the generating fi (x) functions:

(B1) x = 0 is local minimum: S (0) cannot be improved via small perturbations.
(B2) x = 0 is not local minimum: S (0) can be improved via small perturbations.
(C) x = 0 is not singular point of U (x). In this case, S (0) is improvable via small perturbations.

As we will show, U (x) cannot be of type C if conditions (i)–(iii) are satisfied (Lemma 1). At the same time,
one can decide whether S (0) belongs to (A) or (B) without computing structural behaviour, solely based on the
symmetry group C and the variables xi. Our goal is to describe this algorithm (Section 3.2) together with some
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interesting additional results (Section 3.3) and also, to formulate sufficient as well as necessary criteria for S (0)
belonging either to (A) or to (B) (Section 3.4).

If S (0) belongs to (B), the question of actual improvability (class B1 vs. B2) depends on nonlinear terms of
the functions fi (x), and finding the answer requires detailed computations on the structure under investigation.
Although we will provide specific examples of such computations in Section 4, we can not give any general
method to distinguish between structures in (B1) and (B2), so we call all structures in category (B) ‘‘potentially

improvable’’.
3.2. Exact conditions of potential improvability

In this section, conditions of potential improvability of S (0) are derived. After presenting a general, how-
ever, somewhat cumbersome condition in Section 3.2.1, we develop an easy-to-check condition for typical

cases in Section 3.2.2.
Throughout the rest of the paper, we use the following notations (in accordance with previous ones): vector

x for the perturbing variables and d for the number of variables, S (x) for the corresponding structures,
C � {c1,c2, . . . ,cr} for the symmetry group of S (0), r for the order of C,D � {D1,D2, . . . ,Dr} for the elements
of the induced representation, Pi (i = 1,2, . . . , k) for the weakest points of S (0), fi (x) for the potentials asso-
ciated with Pi and finally gi = grad fi (x)jx=0.
3.2.1. Example-specific classification of problems

Considering vectors gi in Rd, we can characterize the local configuration of U at x = 0 as stated in

Theorem 1. Based on the classification of Definition 3.1, S (0) belongs to

a: class ‘A’ iff the point x = 0 is inside the convex hull of the endpoints of vectors gi,
b: class ‘B’ iff it is at the border of the convex hull and

c: class ‘C’ iff it is outside the convex hull.

(For the proof see Appendix A.1). To apply Theorem 1, all gradients gi have to be computed via structural
analysis.

We can improve Theorem 1 since the gradients gi are not independent of each other. Pick one arbitrary
weak point (P1) of S (0) (such as the left bar of the example of Fig. 2.). Due to the C-symmetry of S (0),
each point ci (P1) is associated with the same potential as P1 if x = 0 (in the introductory example
c1 (P1) = P1 and c2 (P1) = P2 are the left and the right bar, respectively). It is possible that some additional
points have the same potential, however such a coincidence can be considered as atypical (unless the poten-
tial of the structure possesses some hidden constraints, which possibility is discussed in Section 5). The
local potentials of the weak points ci (P1) = Pi are fi (x) = f1 (Di x), yielding gi = grad ðf1ðDixÞÞjx¼0 ¼ DT

i

grad (f1ðxÞÞjx¼0 ¼ DT
i g1. Thus, the resultant potential U (x) of the structure is typically of the form (cf.

Eq. (4)):
UðxÞ ¼ Uð0Þ þmaxiððDT
i g1Þ

T
xÞ þ oðjxj2Þ ¼ Uð0Þ þmaxi ðDT

i g1Þ
T�x

� �
� jxj þ oðjxj2Þ ð5Þ
where �x ¼ x= xj j. In Eq. (5), ‘>’ might emerge instead of ‘=’ in atypical cases.
Based on Eq. (5), we derive typical conditions for the classification of optimization problems, which are

simpler to check than Theorem 1. The set of vectors DT
i g1 in (5) is called the orbit of g1, with respect to

the representation DT � fDT
i g, which we denote by orbDT g1. Let us introduce the following concepts:

Definition 2. An n-dimensional representation R is ‘cyclic’ if there exits a vector v 2 Rn so that dim(orbR v) = n.
Definition 3. If R is an n-dimensional (cyclic) representation, v 2 Rn, and dim(orbRv) = n, v is ‘cyclic vector’ of R.

The above definitions are used mostly in the theory of the representations of inifinite groups (Barut and Rac-
zka, 1986), where properties of complicated representations are studied via their decompositions to the direct
sum of cyclic representations. At the same time, representations D of finite groups C can be further decomposed:



P.L. Várkonyi, G. Domokos / International Journal of Solids and Structures 44 (2007) 4723–4741 4731
an adequate similarity transformation applied on all elements of a D transforms them to block-diagonal matri-
ces (each with the same block-sizes), in which all blocks correspond to lower dimensional representations of C,
called subrepresentations of D. Representations, which cannot be further decomposed are called irreducible. The
representation theory of finite groups strongly relies on the fact that decomposition to the direct sum of irre-
ducible representations is unique, thus it is an effective tool of analyzing complex representations. Due to
the above reason, the notion of cyclic representations is not widely used when finite groups are considered.
However, in this paper the notion of cyclic representations/vectors becomes essential by

Lemma 1. x = 0 is a robust, local optimum (i.e., S (0) is in class A) iff g1 is a cyclic vector of DT. Otherwise it is
typically potentially improvable (type B).
Proof of Lemma 1. Let Dk be an arbitrary element of D. The sum of the orbit of g1 is invariant to multipli-
cation by DT

k , because the matrices Di Dk, i = 1,2, . . . , r are a permutation of Di, i = 1,2, . . . , r, i.e.,
DT
k

Xr

i¼1

DT
i g1 ¼

Xr

i¼1

ðDiDkÞTg1 ¼
Xr

i¼1

DT
i g1: ð6Þ
Eq. (6) yields
Xr

i¼1

DT
i g1 ¼ 0; ð7Þ
since x = 0 is the only invariant point of DT by condition (i) and Eq. (2). According to (7), x = 0 is a convex
combination of vectors DT

i g1 (all coefficients are 1/r), i.e., it is inside their convex hull, unless the convex hull is
degenerate. The latter case occurs if g1 is not a cyclic vector of DT. The convex hull has then only borders, and
x = 0 is one of them. Thus, Theorem 1 yields Lemma 1. h

Notice that the second part of Lemma 1 is only typically true. The origin of this fact has been pointed out
after Eq. (5). Furthermore, we remark that Lemma 1 states the emptiness of class C as a consequence of con-
dition (i). One could, however, analyze problems violating condition (i). In that case, (7) does not follow from
(6), and such problems would belong typically to class C.

Now, in order to classify the problem, we only have to decide whether dim ðorbDT g1Þ ¼ d or not. This property
depends both on D and on g1. The former one represents the type of the symmetry-breaking variables, while the
latter one is completely example-specific. In the forthcoming section, we derive typical conditions for
dim ðorbDT g1Þ ¼ d, which rely only on D. These conditions can be applied even if the specific form of U is unknown.

3.2.2. General classification of problems

No we improve Lemma 1 in such a way that g1 will no more be needed as input data. In fact, whether g1 is
cyclic vector of D or not, depends primarily on D, and only secondarily on g1. Clearly, if D is not cyclic, it has
no cyclic vectors by Definition 2, however if D is cyclic, an arbitrary vector is not necessarily cyclic vector of D.
(The zero vector is a trivial example of non-cyclic vectors.). However

Lemma 2. If D is cyclic, a randomly chosen, non-zero vector is typically cyclic vector of D.

See the proof in Appendix A.2. According to Lemma 2 it is sufficient to decide whether D is cyclic or not, if
we want to determine the potential improvability of S (0) in typical cases. Thus we have derived a ‘typical’ con-
dition, which is not example-specific.

Moreover, determining whether a representation of a finite group is cyclic or not, is a simple task by using

Lemma 3. A representation of a finite group C is cyclic if and only if it is subrepresentation of the regular

representation of C.

See the proof in Appendix A.3. We mention that the regular representation (RC) of group C is a represen-
tation of special interest. Its decomposition contains di examples of each irreducible representation Ii of C,
where di = dim (Ii). Moreover, dim (RC) is equal to the order of (the number of elements in) C according to
the Dimensionality theorem (Jones, 1998).
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Now, we can summarize Lemmas 1–3 in the main result of the paper:

Theorem 2. S (0) is typically not potentially improvable if D is a subrepresentation of the regular
representation of C; otherwise it is typically potentially improvable.

Deciding whether DT (or, equivalently, D) is a subrepresentation of RC or not, is a simple standard task, the
solution technique can be found in textbooks of representation theory (Jones, 1998). It has the following steps:

(1) Determining the ‘character’ of D, i.e., the r-dimensional vector char(D) = [trace(Dj) j = 1,2, . . . , r]T.
(2) Determining the list Ii i = 1,2, . . . , l of the irreducible representations of C and the character of each of

them.
(3) Solving the
charðDÞ ¼
X
ðmicharðI iÞÞ ð8Þ
linear vector equation. It can be shown that the solution always exists and it is unique, furthermore,
mi 2 N (non-negative integers). The constants mi represent the number of Ii components in D.

(4) As mentioned after Lemma 3, the number of Ii components in RC is dim(Ii), thus D is a subrepresenta-
tion of RC iff mi 6 dim(Ii) for every i.

The main step of the process is the solution of a simple system of linear equations, provided that Ii are
known. In case of simple groups (such as the symmetry groups associated with engineering structures), the
irreducible representations Ii are known, they can be found in text books.

3.3. Further properties of optimization problems

Here we show two further results on the optimization problems, which are based on the type of D and fol-
low from results of representation theory.

3.3.1. Verification of condition (i)

Conditions (ii) and (iii) must be checked at the beginning of the analysis (otherwise D makes no sense). At
the same time condition (i) need not be satisfied to perform the analysis. It has already been mentioned that
such problems typically belong to class C. Now, we show how the violation of condition (i) is indicated by the
results of the analysis of the induced representation.

Each group has a one-dimensional trivial representation I1, in which all group elements are represented by 1
(one-dimensional unit matrix). Clearly, D may not be the trivial representation by condition (i), because all
points are invariant points of the trivial representation. Furthermore

Lemma 4. Condition (i) is satisfied iff D (or the equivalent representation DT) has no trivial component.

See the proof in Appendix A.4. According to Lemma 4, the process of deciding whether D is cyclic also
indicates whether condition (i) is met or not.

3.3.2. Irreducible representations

As already mentioned, Lemma 2 and the consequent results are typical but not exact. One main reason of
this restriction is that cyclic representations have non-cyclic vectors (e.g., the 0 vector). However, we have

Lemma 5. If D is irreducible, all non-zero vectors are cyclic vectors of D.

The proof of Lemma 6 can be found in Barut and Raczka, 1986, pp. 146. Furthermore, the representation
D emerging in structural optimization problems is always real-valued (since U is real-valued function). Lemma
5 can be improved for real representations as

Lemma 5A. If D is irreducible among real-valued representations, all non-zero real vectors are cyclic vectors
of D.

The proof of Lemma 5A is essentially the same as that of Lemma 5.
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3.4. Weaker criteria of improvability

Theorem 2 proved to be an effective tool for classifying optimization problems without performing exten-
sive structural computations. At the same time, there are cases where even simpler criteria can be applied to
answer the same question. In Section 3.2.2 we summarized how to determine whether a representation is cyclic
or not. This summary shows that irreducible representations are always cyclic. Since one-dimensional repre-
sentations are always irreducible, we have

Theorem 3. d P 2 is typically a necessary condition of potential improvability.

We mention without proof that this statement can be improved in case of special groups, e.g., in case of
cyclic groups of odd order, d P 4 is also a necessary condition.

At the same time, cyclic representations are subrepresentations of the regular representation RC (Theorem 2)
and they may not contain the trivial component I1 (Lemma 4). Since dim(RC) = r, dim(I1) = 1, and RC has one
trivial component, cyclic representations are at most r � 1 dimensional. Thus,

Theorem 4. d P r is a sufficient condition of potential improvability.

If 2 6 d 6 r � 1, the more precise condition of Theorem 2 should be applied.

4. Simple examples

In this Section, six simple optimization examples illustrate our group theory-based method (see Figs. 7 and
8), and we also analyse the examples of Section 2 (referred to as 1A, B). While these ones have D1 (reflection-)
symmetry, four of the new Examples (2A–D, see Fig. 7) have D2 symmetry, and two of them (3A, B and
Fig. 8) have D3. All structures consist of straight elastic bars of equal cross sections, connected by hinges.
In all cases, the risk of buckling for the total structure is minimised. From among the individual bars, the worst
one determines the global risk of the structure. Thus, U (x) is of type (3), where the potential of the ith bar is of
the form (1). We introduce a geometrical parameter p (vertical size of the structures) in all examples, thus
numerical computations will result in bifurcation diagrams of optima (see Fig. 9).

The steps of the analysis follow the description in Section 3.2.2. We show these steps for Example 2A only.
Fig. 7. Example 2 with four different perturbations.



Fig. 8. Example 3 with two different perturbations. A1A2A3 is a regular triangle. There are two variables at A, while at B, the number of
perturbations is 4; x3 and x4 refer to the cross-sectional areas of the bars.

Fig. 9. Optimum-bifurcation diagrams for Examples 2A–D computed by the simplex method. Thick, black lines denote local minima, thin
grey lines denote maxima, and saddle points of the functions U (x1,x2). Small pictograms indicate the local shape of U (sharp, wedge-like
or smooth) at all branches. Notice that sharp critical points are always robust optima and wedge-like points are optima or saddles. For
clarity, only the domain x1, x2 P 0 has been plotted for 2A and 2D.
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(1) The perfect structure has D2 symmetry, with the following symmetry transformations:{c1 � identity;
c2 � rotation by p around axis z; c3 � reflection to plane [vz]; c4 � reflection to plane [uz]}. These corre-
spond to the x! Di x (i = 1,2,3,4) transformations, where
Table
Repres

Irredu

Dimen

Chara

Examp

Examp

IðD1Þ
i d

represe
compo

Table
Analys

Irredu

Dimen

Chara

Examp
Examp
Examp
Examp

IðD2Þ
i d

sentati
D1 ¼
1 0

0 1

� �
; D2 ¼

�1 0

0 �1

� �
; D3 ¼

�1 0

0 1

� �
; D¼4

1 0

0 �1

� �
: ð9Þ
The character of D � {Di} is ½ 2 �2 0 0 �T.
(2) The characters of the irreducible representations of group D2 are taken from Jones (1998) and are col-

lected in the top panel of Table 2.
(3) The unique solution of (8) is m1 = m2 = 0, m3 = m4 = 1.
(4) Since mi 6 dimðI ðD2Þ

i Þ for all i, D is subrepresentation of the regular representation of D2, the perfect
structure is not improvable by Theorem 2.

The results of all examples are summarized in Tables 1–3. They show that 1A, and 2C are potentially
improvable, the rest is not improvable.

The numerically obtained bifurcation diagrams of Examples 1A, B (Figs. 3B and 6) support the theoretical
predictions. The diagrams of the novel examples are collected in Fig. 9, and Fig. 10. Since 3B has d = 4 vari-
ables in addition to the parameter p, its optimum diagram would be 5 dimensional. Instead of this one, we
plotted the optimum diagram of a ‘restricted version’ of 3B, in which x2 = 0, and x3 = x4, thus there are only
2 free variables. Most plots are in harmony with the predictions, however not all of them. The restricted plot
1
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le 2C 2 �2 2 �2½ �T 0 0 0 2
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char(D) m1 m2 m3 m4

enotes the irreducible representations of the symmetry group D2 ðIðD2Þ
1 is the trivial representation). None of the induced repre-

ons contains the I1 component, i.e., condition (i) is satisfied in both cases. 2A, B, D are cyclic, but 2C is not (2I4 components).



Fig. 10. Optimum-bifurcation diagrams for Example 3A and a restricted version of 3B. Thick, black lines denote local minima, thin grey
lines denote maxima, and saddle points of the functions U (x1,x2). Small pictograms indicate the local shape of U (robust, wedge-like or
smooth) at all branches.

Table 3
Analysis of Examples 3A, B

Irreducible representations of D3 IðD3Þ
1 I ðD3Þ

2 IðD3Þ
3

Dimension 1 2 1

Character

1
1
1
1
1
1

2
6666664

3
7777775

2
�1
�1
0
0
0

2
6666664

3
7777775

1
1
1
�1
�1
�1

2
6666664

3
7777775

Example 3A 2 �1 �1 0 0 0½ �T 0 1 0
Example 3B 4 �2 �2 0 0 0½ �T 0 2 0

char(D) m1 m2 m3

IðD3Þ
i denotes the irreducible representations of the symmetry group D3 ðIðD3Þ

1 is the trivial representation). Neither of the induced
representation contains I1 component; both are cyclic.
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of 3B shows that this example cannot belong to class A, since it is improvable in some range of p even with the
restrictions on the variables. The plot of 2B also shows unexpected behaviour.

Finding exceptions is not impossible since the main results of this paper are only ‘typical’, with several pos-
sibilities of exceptional behaviour. At the same time, these simple examples suggest that we should be cautious
when declaring unexpected behaviour simply as atypical. In the next section we collect the potential sources of
exceptions, and also find the reasons, why these two examples yield surprising results.

5. Exceptional cases

At two instances in Section 3, while deriving the main results of the paper, we utilized statements which
were true typically, however, not always:

(1) In Section 3.2.1, we generated the set of weak points of S (0) from one such point P1 as ci (P1),
i = 1,2, . . . , r. However it is possible that there are more weakest points in S (0), because there is a point
P 0 5 ci (P1) for which accidentally f1ð0Þ ¼ fP 0 ð0Þ. In this case, a problem might fall into class A instead
of class B.

(2) Cyclic representations have non-cyclic vectors such as the 0 vector. If g1 happens to be a non-cyclic vec-
tor, the problem falls into class B instead of class A.
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Clearly, our simple examples cannot be type (1) exceptions, since the whole set of their weak points can be
generated from one such point P1 as ci (P1). Class (1) contains only more complex structures with higher
number of weak points. However, we can observe type (2) exceptions at several examples: some optimum dia-
grams contain bifurcation points at x = 0, p = p0. In fact, these are exactly the points where g1 is non-cyclic.
Since bifurcations occur at isolated values of p, this phenomenon is atypical. At the same time, the vectors g1

associated with Examples 2B and 3B seem to be non-cyclic for arbitrary values of p. Below we explore the rea-
son of this phenomenon.

While looking at Example 2B, it turned out that an example-specific constraint of/ox2 = 0 emerges in the
potential f (x) of one of the bars (see Várkonyi (2006) for details), and vectors of the form g = [* 0]T happen to
be non-cyclic vectors of the induced representation of Example 2B (which is the same as (Várkonyi and
Domokos, 2006)). The identity of/ox2 = 0 cannot be detected without detailed analysis of the problem, i.e.,
the fast analysis necessarily fails at this point. Nevertheless, 2B would show standard behaviour (in this case
no improvability) if we chose another type of optimization potential, such as risk against exceeding maximum
stress in the bars.

In Example 3B (and also 3A) we again find of/ox2 = 0 if f denotes the potential of bar A3B. However, this
constraint is now far from example-specific: in Section 3.2.1, we generated the set of weak points from one of
them as ci (P1), c 2 C. This method results in 6 weakest points in case of D3 symmetry. However, Example 3
has only 3 bars, i.e., only three weakest points. Three pairs of the points ci (P1) coincide, because P1 is invariant
under an element ci of C (e.g., bar A3B � P1 is invariant under reflection to plane [vz]). Consequently,
f (x1,x2,x3,x4) = f (x1, � x2,x3,x4), yielding of/ox2 = 0. This type of exception cannot be considered as atypi-
cal, since many symmetrical structures have their weakest points in special positions. At the same time, this
exception is robust in the sense that the special behaviour is preserved if a different potential U is applied
to the same structure.

As we see, type (2) exceptions have two subclasses:

(a) g1 becomes a non-cyclic vector atypically, or due to an example-specific constraint.
(b) the weak point P1 is invariant under a subgroup C 0 of C, which automatically results in a symmetry-con-

straint on g1.

Examples of the latter type (2b) behave as if they had only weaker symmetry (cf. the modified analysis of
Example 3 in Table 4, where the assumption of C3-symmetry helps to generate the set of weakest points cor-
rectly as Pi � ci (P1)). In the extreme case C � C 0, U becomes smooth and all problems are potentially improv-
able, regardless of the number and type of perturbing variables.

The listed, various possibilities of exceptional behaviour indicate that the presented results should be
applied with caution, this section provided some hints in this respect. Exceptions of type 2b occur in numerous
cases, however, these cases can be readily recognised if the position of the weakest point is determined. Excep-
tions of type 1, and 2a are much rarer, however, declaring that such cases are atypical is questionable; engi-
Table 4
Modified analysis of Examples 3A, B, assuming C3 instead of D3 symmetry

irreducible representations of C3 I ðC3Þ
1 I ðC3Þ

2 I ðC3Þ
3
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Example 3A 2 �1 �1½ �T 0 1 0
Example 3B 4 �2 �2½ �T 0 2 0

char(D) m1 m2 m3

3A is cyclic, but 3B is not (2I2 components).
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neering designs may often contain hidden constraints. Exceptions of these types cannot be recognised without
detailed analysis of the problems.

6. Summary and connection to slightly asymmetrical optima

In this paper we analysed whether and under which conditions engineering structures with symmetry
may be improved via small geometric perturbations. Our main motivation was the observation of many
creatures in Nature with secondary slight asymmetry. Since those creatures evolved as competitive opti-
ma, we looked for similar solutions among structures, despite the engineer’s fundamental intuition that
symmetry is locally optimal. Our analysis showed that in several cases of practical interest the engi-
neer’s intuition is correct, and symmetrical structures may not be locally improved. On the other hand,
there are still many cases where the opposite is true and our goal was to identify those cases and also
to indicate, exactly how the local perturbations have to be introduced to achieve better structural
response.

We realised that one has to distinguish between global and local optimum criteria. The former refer to some
overall scalar quantity (potential) U associated with the structure as a whole (e.g., total mass), the latter derive
the optimisation potential as the supremum of local potentials Ui, each of which is associated with a weak

point (e.g., individual bar of a truss, individual fibre of a beam) of the structure. We found that on one hand
structures with global criteria are relatively easy to improve; on the other hand this formulation is less adapted
to real engineering problems. Consequently, our paper focused on the problem how to improve symmetrical
structures with local optimum criteria.

Whether or not such a structure with symmetry group C can be improved, depends essentially on the prop-
erties of the induced representation D, i.e., the representation of C in the space of the symmetry-breaking vari-
ables. On one hand, this is a strong result because structural symmetry is mostly described by simple (cyclic,
dihedral) groups and the representations of those groups are easy to obtain. On the other hand, the result
appears weaker because we can identify only potential improvability by this methods, to prove actual improv-
ability more complex, problem-specific structural analysis s needed where the gradient g1 of U (0) has to be
considered. We provided examples of such an analysis.

Specifically, improvability can be predicted for typical cases by classifying the problem according to the sim-
ple scheme in Section 3.1. Briefly, classes A, B and C refer to not improvable, potentially improvable and
improvable cases. Based on the induced representation D the symmetrical structure S (0) can be classified
according to the following conditions:

• if D has a trivial component, condition (i) of Section 3.1 is not satisfied (Lemma 5), the perturbing variables
are badly chosen (the problem belongs typically to class C, exceptionally to class B or A). if D has no trivial
component, and

• D is a subrepresentation of RC, S (0) is typically not improvable, i.e., of class A.
• D is not a subrepresentation of RC, S (0) is typically potentially improvable (class B)

In case of a one-parameter family of structures S (p, x) (where for each value of p criteria (i)–(iii) are sat-
isfied) one can look for bifurcations of optima resulting in ‘‘slightly asymmetrical optima’’ (i.e., optima arbi-
trarily close to symmetry). The existence of these was the subject of question 2 in the Introduction. Despite the
formal similarity of questions 1 and 2, the answers are remarkably different. On one hand, the structural exam-
ples of Section 4 illustrate that potential improvability often leads to the emergence of slightly asymmetric
optima in one-parameter families of structures (cf. the bifurcations in Fig. 7C and D). On the other hand,
one has the natural intuition that the lack of improvability (local optimality) of perfect symmetry precludes
the emergence of slightly asymmetrical optima in a one-parameter structural family. This intuition is true
for simple reflection-symmetry (one-parameter families of class A structures typically contain no bifurcating
optima according to the bifurcation analysis of Várkonyi and Domokos (2006)) but fails in the general
case: Fig. 10 is an example of bifurcating asymmetrical optima in a family of non-improvable structures. A
deeper analysis of this example in Várkonyi (2006) suggests that similar bifurcations may occur in many other
cases.
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According to the above arguments, local optimality of perfect symmetry (question 1) has much in common
with slightly asymmetrical optima (question 2), however transforming the results of this paper directly to state-
ments about slight asymmetry in structural optimization is anything but trivial. There is still much to do in
exploring the role of imperfect symmetry in structural optimization and we are convinced that learning from
Nature, which was the motivation of our paper, repeatedly offers new aspects in structural design.
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Appendix A

A.1. Proof of Theorem 1

We only prove Theorem 1a, the other two statements are straightforward consequences.

Proof. ‘if’ part of Theorem 1a. Assume that x = 0 is inside the convex hull. In this case it can be written as a
convex combination of the nodes of the convex hull:
0 ¼
Xk

i¼1

cigi where ci > 0;
Xk

i¼1

ci ¼ 1: ð10Þ
Transposing both sides of Eq. (10) and multiplying them by a unit vector (v 2 Rd,jv = 1) yields
0 ¼
Xk

i¼1

cig
T
i v: ð11Þ
In the above sum, either all components are 0 or some of the components are positive. If there exists a v = v0,
for which all terms are zero, then v0 is orthogonal to the vectors gi, i.e., the vectors do not span Rd, which
means that their convex hull is degenerate: it has no internal point at all in Rd. This is in contradiction with
the initial assumption. Thus, there must be a positive component in (11) for arbitrary v:
max
16j6k
ðgT

j vÞ > 0 for arbitrary jvj ¼ 1; ð12Þ
The function on the left side of Eq. (12) is continuous in v and the set {v 2 Rd, jvj = 1} is compact. According
to the Extreme Value Theorem (see e.g., Malik, 1992), such functions have a global minimum, which is posi-
tive, due to Eq. (12)
m ¼ min
jvj¼1
ðmax

16j6r
ðgT

j vÞÞ > 0; ð13Þ
Eq. (4) can be rearranged as
UðxÞ ¼ Uð0Þ þmax
16i6r
ððgT

i �xÞ � jxj þ oðjxj2ÞÞ; ð14Þ
where �x ¼ x=jxj and j�xj ¼ 1. From (13) and (14) we have
UðxÞP Uð0Þ þ m � jxj þ oðjxj2Þ; ð15Þ

which means that x=0 is robust minimum of U (x). h
Proof. Indirect proof of the ‘only if’ part of Theorem 1a. Suppose that x = 0 is outside the convex hull, but U
has robust minimum at x = 0. Let vector g* point to the closest point of the convex hull to x = 0. Because of
the robustness of the local minimum and Eq. (4), there exits k for an arbitrary vector v satisfying gT

k v > 0.
Substituting v = �g* yields
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g�Tgk < 0; ð16Þ
Consider 1	 e > 0 constant and vector g** = (1 � e)g* + egk, which should be inside the convex hull, since it
is convex combination of g* and gk. In this case
jg��j ¼ g��Tg�� ¼ ð1� eÞ2g�Tg� þ 2eð1� eÞg�Tgk þ e2gT
k gk; ð17Þ
Substituting (16) into (17) and neglecting nonlinear terms in e, we get
jg��j < jg�j � 2ejg�j þ oðe2Þ < jg�j; ð18Þ
which is contradiction, since g* was supposed to be the closest point of the convex hull to x = 0. h
A.2. Proof of Lemma 2

Let D be a cyclic representation. Consider the vector-matrix function M (v) = [D1v D2v� � �Drv]. M is of size
d · r. D has a cyclic vector v0, for which rank(M) = d, i.e., M (v0) has a non-zero subdeterminant S (M (v0)) 5 0
of order d. S (M (v)) is a polynomial of v, which is either S (M (v)) � 0, or S (M (v)) 5 0 for typical v. Now we
have the latter case, since S (M (v0)) 5 0, thus the orbit of v is typically d-dimensional.
A.3. Proof of Lemma 3

We divide the proof into 3 steps:

– Step 1.: if D is not subrepresentation of the regular representation of C, it is not cyclic.
– Step 2.: the regular representation is cyclic.
– Step 3.: subrepresentations of a cyclic representation are cyclic.

Throughout the proof, we apply the notation M = diag (M1,M2, . . . , Mn) for block-diagonal matrices, and *
for arbitrary matrices, vectors or scalars.

Proof of Step 1: Assume that D is not subrepresentation of the regular representation R of C. An adequate
unitary transformation decomposes the elements Di of D to the direct sum of irreducible representations (i.e.,
to block-diagonal form). Consider the block diagonal form of representation D. According to the Dimension-

ality theorem (Jones, 1998), each irreducible representation I � {Ij, j = 1,2, . . . , r} of C occurs dim(I) times in
R, thus there must be an I, which occurs at least dim (I) + 1 times in D. Consider now the following unitary
form of the elements Dj 2 D:
Dj ¼ diagðIj; Ij; . . . ; Ij;
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{dimðIÞþ1

�Þ ð19Þ
Consider an arbitrary d-dimensional vector v in the form
v ¼ ½vT
1 vT

2 � � � vT
dimðIÞþ1 � ��

T
; ð20Þ
where the vj-s are dim(I)-dimensional vectors. Since dim(I) + 1 dim(I)-dimensional vectors are linearly depen-
dent, they have a non-trivial zero linear combination:
c1v1 þ c2v2 þ . . . cd1þ1vd1þ1 ¼ 0; ð21Þ
Multiplying both sides by Ij, we obtain
c1Ijv1 þ c2Ijv2 þ . . . cdimðIÞþ1IjvdimðIÞþ1 ¼ 0 for any arbitrary j; ð22Þ
The elements of the orbit of v are
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Djv ¼

Ij

. .
.

Ij

� �
� �

2
66666664

3
77777775

v1

..

.

vdimðIÞþ1

�
�

2
66666664

3
77777775
¼

Ijv1

..

.

IjvdimðIÞþ1

�
�

2
66666664

3
77777775
: ð23Þ
Eq. (22) determines a subspace of Cd, which contains all elements of the orbit in case of arbitrary v, thus D is
not cyclic.

Proof of step 2: The regular representation, by definition, consists of permutation matrices, and the orbit of
vector ½ 1 0 0 . . . 0 �T is the set of vectors ½ 1 0 0 . . . 0 �T; ½ 0 1 0 . . . 0 �T; . . . ; ½ 0 0 . . . 0 1� T .We
have found a cyclic vector of R, thus R is cyclic.

Proof of step 3: Let D0 � fD0ig denote a d 0-dimensional subrepresentation of the d-dimensional representa-
tion D � {Di}, and assume that the latter one is cyclic, i.e., it has a cyclic vector v. Assume further that D has
been transformed to the block-diagonal form Di ¼ diagðDi0 ; �Þ. Separate v as v = [v 0T*]T, where dim(v 0) = d 0.
The elements of the orbit of v are now of the form Div ¼ ½ðDi0v

0ÞT � �T. If vectors Di v, i = 1,2,. . .,r span Rd,
vectors Di0v

0, i = 1,2, . . . , r also span Rd 0. Thus we have found that v 0 is cyclic vector of D 0, i.e., D 0 is cyclic.

A.4. Proof of Lemma 4

Assume that D has a trivial component. We can consider the following block-diagonal form of the induced
representation: TDi T

�1 = diag(1, *). Consider the vector x ¼ T�1½ 1 0 0 . . . 0 �T! In this case
Dix ¼ T�1TDiT

�1Tx ¼ T�1 � diagð1; �Þ � ½ 1 0 0 . . . 0 �T ¼ T�1½ 1 0 0 . . . 0 �T ¼ x, i.e., x is an invariant
point of D. Thus, we have
ciðSðxÞÞ ¼ SðDixÞ ¼ SðxÞ; ð24Þ

which means that S (x) is invariant under C, contradicting condition (i). The converse statement can be proven
in the same steps in reversed order; Eq. (24) follows from condition (iii).
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