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Abstract. The Tensor Product (TP) model transforma-
tion is a recently proposed technique for transforming
given Linear Parameter Varying (LPV) models into
polytopic model form, namely, to parameter varying
convex combination of Linear Time Invariant (LTI)
models. The main advantage of the TP model trans-
formation is that the Linear Matrix Inequality (LMI)
based control design frameworks can immediately be
applied to the resulting polytopic models to yield con-
trollers with tractable and guaranteed performance.
The effectiveness of the LMI design depends on the
type of the convex combination in the polytopic model.
Therefore, the main objective of this paper is to study
how the TP model transformation is capable of deter-
mining different types of convex hulls of the LTI mod-

by analytic equations, fuzzy, neural network, genetic al-
gorithm based models) into TP model form in a uniform
way. In this sense it replaces the analytical derivations of
polytopic decompositions (that could be a very complex
or even an unsolvable task). Execution of the TP model
transformation takes a few minutes by a regular Personal
Computer. The TP model transformation minimizes the
number of the LTI components of the resulting TP model,
and is capable of determining different types of convex
hulls of the given LPV model.

In this paper we study how the TP model transforma-
tion is applicable to generate different types of convex
hulls of the given LPV models. The study is conducted
through the example of the prototypical aeroelastic wing
section.

els. The study is conducted trough the example of the
prototypical aeroelastic wing section.
2. Preliminaries

Keywords: Non-linear control design, TP model trans-
formation, convex decomposition

2.1. Linear Parameter-Varying state-space model
Consider the following parameter-varying state-space

model:

1. Introduction X(t) = A(p(t))x(t) +B(p(t))u(t), (1)

The p'olytopric model lii)'\r/lrr tis addynamicI (rjnodel rep-h y(t) = C(p(t))x(t) +D(p(t))u(t),
resentation whereupon ased control design tech- ., .
niques can immediately be executed. It describes giveHv'tr; Input l:(.t)’ outputy(t) and state vectox(t). The
LPV models by a parameter varying convex combination®YSte€m matrix
of LTI models. The TP model form is a kind of poly- A(p(t)) B(p(t))
topic decomposition, where the convex combination is S(p(t)) = (C(p(t)) D(p(t))) e RO 2)

defined by one variable weighting functions of each pa-

rameter separately. Convex optimization or linear matrix;s g parameter-varying object, whepét) € Q is time

inequality based control design techniques can immedi'varying N-dimensional parameter vector, and is an el-

ately be applied to polytopic, hence to TP models [1-3].oment of the closed hyperculse = [ag, by x [ap, by] x
An important advantage of the TP model representation is . ., [an,bn] © RN p(t) can also include some elements

that the convex hull defined by the LTI models can readily x(t). Therefore (1) is considered in the class of non-
be modified and analyzed via the one variable weightingj;ya5r dynamic models.
functions. Furthermore, the feasibility of the LMI's can
be considerably relaxed by modifying the type of the re-
sulting convex hull. 2.2. Convex state-space TP model

The TP model transformation is a recently proposed S(p(t)) can be approximated for any parameiér) as
numerical method to transform LPV models into TP the convex combination of LTI system matricBsvhich
model form [4,5]. It is capable of transforming different are also calledertex systemis the literature. Therefore,
LPV model representations (such as physical model giverone can define weighting functiongp(t)) € [0,1] C R
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such that matridXS(p(t)) can be expressed as convex com-
bination of system matriceS. The explicit form of the
TP model in terms of tensor product becomes:

3)

that is
<e.

Here, ¢ symbolizes the approximation error, row vec-
tor wn(pn) € R n=1,...,N contains the one variable
weighting functionswyj,(pn). Functionwy j(pn(t)) €
[0,1] is the j-th one variable weighting function defined
on then-th dimension ofQ, and py(t) is the n-th ele-
ment of vectomp(t). I, (n=1,...,N) is the number of
the weighting functions used in timeth dimension of the
parameter vectop(t). The (N + 2)-dimensional tensor
€ Rlixl2xxIn<Oxl i constructed from LTI vertex sys-
temsSi,..iy € € RO*!'. For further details we refer to [4—
6]. The convex combination of the LTI vertex systems is
ensured by the conditions:

Definition 1: The TP model (3) is convex if:

- B walon(0)] <

vn e [1L,N],i, pn(t) : Wni(pn(t)) € [0,1]; 4)

ZWn i(pn(t)) =1. (5)

This simply means thaB(p(t)) is within the convex
hull of the LTI vertex system$§ for anyp(t) € Q.

vne [1,N],

102..0N

TensorS(p(t)) has a finite element TP model represen-

tation in many caseg (= 0 in (3)). However, exact finite

Definition 5: RNO — Relaxed Normality Vector
w(p), containing weighting functions; (p) is RNO if the
maximum values of the weighting functions are the same.

Definition 6: INO — Inverted Normality Vectorw(p),
containing weighting functione; (p) is INO if the mini-
mum values of the weighting functions are zero.

All the above definitions of the weighting functions de-
termine different types of convex hulls of the given LPV
model. The SN and NN types guarantee (4), namely, they
guarantee the convex hull. The TP model transformation
is capable of always resulting SN and NN type weight-
ing functions. This means that one can focus on applying
LMI's developed for convex decompositions only, which
considerably relaxes the further LMI design. The NO
type determines a tight convex hull where as many of the
LTI systems as possible are equal to 8{@) over some
p € Q and the rest of the LTI’s are close &p(t)) (in the
sense oL, norm). The SN, NN and RNO type guaran-
tee that those LTI vertex systems which are not identical
to S(p) in the tight convex hull are in the same distance
from S(p(t)). INO guarantees that different subsets of the
LTI's defineS(p(t)) over different regions gb € Q.

These different types of convex hulls strongly effect the
feasibility of the further LMI design. For instance paper
[8] shows an example when determining NO is useful in
the case of controller design while the observer design
is more advantageous in the case of INO type weighting
functions.

In order to have a direct link between the TP model
form and the typical form of polytopic models and LMI
conditions, we define the following index transformation:

Definition 7: (Index transformation) Let

element TP model representation does not exist in general A
(¢ > 01in (3)), see Ref. [7]. In this case— 0, when the S = (Cr > = Sijin,..ins

number of the LTI systems involved in the TP model goes '

toeo. In this paper we will show that the LPV model of the \yherer = ordering(iy, i, ..,in) (r = 1...R= Mnln). The
aeroelastic system can be exactly represented by a finitginction “ordering” results in the linear index equivalent
TP model. of anN dimensional array’s indei, i, ...,in, when the
size of the array id; x I, x .-+ x Iy. Let the weighting
functions be defined according to the sequenae of

Br
Dr

2.3. TP model transformation

The TP model transformation starts with the given LPV — |—| Wi (Pn(t))
model (1) and results in the TP model representation (3), no
where the trade-off between the number of LTI vertex sys- By the above index transformation one can write the TP
tems and the is optimized [4]. The TP model transfor- model (3) in the typical form of:
mation offers options to generate different types of the

weighting functionsv(-). For instance:

Definition 2: SN — Sum NormalisationVector w(p),
containing weighting functions; (p) is SN if the sum of
the weighting functions is 1 for ajpp € Q.

Definition 3: NN — Non-Negativenessvector w(p),
containing weighting functionsi(p) is NN if the value
of the weighting functions is not negative for gl Q.

Definition 4: NO — Normality Vector w(p), contain-
ing weighting functionsn; (p) is NO if it is SN and NN

type, and the maximum values of the weighting functions

are one. We saw;(p) is close to NO if it is SN and NN

R
= ;Wr<p(t))sr

Note that the LTI systemS; andS, ,, i, are the same,
only their indices are modified, therefore the hull defined
by the LTI systems is the same in both forms.

3. Case study of the prototypical aeroelastic
wing section

type, and the maximum values of the weighting functions The prototypical aeroelastic wing section is used for

are close to one.

2
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Fig. 1. Two-dimensional flat plate airfoil small deflection,
force notation and schematic diagram

Section by TP Model Transformation

wherep(t) € RN=2 contains valueg;(t) = a andU. Fur-
therd = m(lq — mX b?);
3
Ky = %; ko = |anqg+f:;>hb PCmg .

_ —mxgbky. . —Mxgb?pg, —mpbPey, .
|Q3 - d L] k4 - d

() = ek, (a); ga) = Tka(a);
c1(U) = (Ia(ch+pUba, ) + mxgpU3cm, ) /d;

(lapUbZcy, (3 — @) — mxgbcy +mxapUb%cr, (3 —a)) /d;
c3(U) = (—mxgba, — mx pUb?ci, — mpUb®cm, ) /d;
C4(U) =

(mcg — mxgpUb3c, (3 —a) — mpUb3cy, (3 —a)) /d

95 = (—lapba, —mxab*pcm,)/d;

9 = (Mxgb?pey; +mpbPem, ) /d;

The system parameters are given in the Appendix.
These data are obtained from experimental models de-
scribed in full detail in Refs. [12, 15].

kq(a)=2.82(1—221a+13155a%+8580°+172897a*)

is obtained by curve fitting on the measured displacement-
moment data for non-linear spring [15]. We remark that

dimensional aeroelastic behavior. It has complex dynamidhe uncontrolled response of the system achieves limit
behavior. One can find a whole series of detailed studiegycle oscillation as claimed in Refs. [12,15,16]. One
of this wing section in thdournal of Guidance, Control ~should note that the equations of motion are also depen-
and Dynamic For more details we refer to [6, 8, 9]. dent on the elastic axis locati@n

Let us consider the problem of flutter suppression for
the prototypical aeroelastic wing section as shown in Fig- i )
ure 1. The flat plate airfoil is constrained to have two 3-1- TP model representations of the prototypical
degrees of freedom, the plungeand pitcha. In order aeroelastic wing section
to have a deep description of the equations of motion, we Thjs subsection presents different TP model represen-
refer to Refs. [10-14]. Here we give only a brief discus- tations of the LPV model (6). We execute the TP model
sion. The equations of motion in linear parameter-varyingtransformation over M, x My, (M; = 101 andMl, = 101)

state-space form is:

~ ~ ~ o~

A P e
|

QS5TQ T

and

Vol.0 No.0, 200x

rectangular grid net imQ : [14,25 x [-0.1,0.1] (U €
[14,25](m/s) anda € [—0.1,0.1|(rad) ). The TP model
transformation shows that the LPV model of the wing sec-
tion can exactly be given by TP model with 6 LTI vertex
models, namely, by the parameter varying convex combi-
nation of 6 LTI models:

3 2
> wii(U(t)wej(a(t)S

i=1j=1

S(p(t)) =

In the followings we show that the type of the con-
vex combination can readily be modified by the TP model
transformation:

TP MODEL 0: The resulting weighting functions de-
picted on Figure 2 are directly obtained by the TP model
transformation without any further modification. They are
between—1 and+1 and orthogonal. The resulting LTI
vertex systems do not define the convex hull of the LPV
model, but their number is minimized.

TP MODEL 1: In order to have convex TP model to
which the LMI control design conditions can be applied,
let us generate SN and NN type weighting functions by
the TP model transformation. The results are depicted on
Figure 3.
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Fig. 2. Weighting functions of the TP model 0 on the di-

mensionsy andu Fig. 3. SN and NN type weighting functions of the TP

model 1 on the dimensiorts andU.

4. Typical polytopic model form

TP model 2 was applied in [6] to design stabilizing con-
TP MODEL 2: In many cases the convexity of the TP troller. Let us transform TP model 2

model is not enough, the further LMI design is not feasi- 3 2

ble. In order to relax the feasibility of the LMI conditions, S(p(t)) = Wi (U EIWs (o (S
let us define the tight convex hull of the LPV model via (P(V) & le LU M)z (@(t)S,
generating close to NO type weighting functions by the _ _
TP model transformation, see Figure 4. in the typical polytopic model form:

TP MODEL 3: Let us further modify the weighting 6
functions and define their INO—RNO type, see Figure 5. _
Paper [8] shows that this type is advantageous in the case S(p(t)) = F;Wr Un),av)s,

of observer design.

Perhaps the above resulting weighting functions can bavhere S, = S j, w; (U (t),a(t)) = wy;(U(t))woj(a(t))
derived analytically. The functions(a) can be derived andr = 2(i — 1) + j (see Definition 7).
from ky. The analytical derivation ofv(U), however, The weighting functionsy (-) are presented on the Fig-
seems to be rather complicated. The analytical derivaures 6.
tions of the tight convex hull or INO—RNO type weighting
functions need the analytical solution of the tight convex
hull problem that is unavailable in general. In spite of 5. Conclusion
this, the TP model transformation requires a few minutes
and is not dependent on the actual analytical form of the This paper shows how the TP model transformation is
given LPV model. If the model is changed we can simply capable of defining polytopic models with various types
execute the TP model transformation again. of convex hulls of a given LPV model in a few minutes

4 Journal of Advanced Computational Intelligence Vol.0 N@@Ox
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Fig. 6. Weighting functions of the polytopic model

without analytical derivations. We may conclude that the . a = pitching displacement

TP model transformation, as a uniform and tractable nu-

merical method, may replace the analytic polytopic model * Xa = the non-dimensional distance between elastic

decomposition techniques. We studied the example ofthe ~ axis and the center of mass

LPV model of the prototypical aeroelastic wing section. .
« m=the mass of the wing

o |l =the mass moment of inertia

Appendix A. Nomenclature
« b =semi-chord of the wing

« h=plunging displacement

\Vol.0 No.0, 200x

« Cq =the pitch structural damping coefficient
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Fig. 4. Close to NO type weighting functions of the TP Fig. 5. INO-RNO type weighting functions of the TP model
model 1 on the dimensiorts andU. 2 on the dimensiong andU.
« Cy = the plunge structural damping coefficient Appendix B. System parameters
« kn = the plunge structural spring constant — 0.135m; span= 0.6m; kn = 28444N/m; ¢, =

27.43Ns/m; ¢ = 0.036Ns p = 1.225%g/m?; ¢, = 6.28;
Gy = 3.358; cm, = (0.5+a)c,; Cm; = —0.635; m =
« L =aerodynamic force 12.387Kg, Xg = —0.3533— a; Ig = 0.065%gn?; cq =
0.036;

Ko (a) = non-linear stiffness contribution

« M = aerodynamic moment

« 3 = control surface deflection
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