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Abstract. The Tensor Product (TP) model transforma-
tion is a recently proposed technique for transforming
given Linear Parameter Varying (LPV) models into
polytopic model form, namely, to parameter varying
convex combination of Linear Time Invariant (LTI)
models. The main advantage of the TP model trans-
formation is that the Linear Matrix Inequality (LMI)
based control design frameworks can immediately be
applied to the resulting polytopic models to yield con-
trollers with tractable and guaranteed performance.
The effectiveness of the LMI design depends on the
type of the convex combination in the polytopic model.
Therefore, the main objective of this paper is to study
how the TP model transformation is capable of deter-
mining different types of convex hulls of the LTI mod-
els. The study is conducted trough the example of the
prototypical aeroelastic wing section.

Keywords: Non-linear control design, TP model trans-
formation, convex decomposition

1. Introduction

The polytopic model form is a dynamic model rep-
resentation whereupon LMI based control design tech-
niques can immediately be executed. It describes given
LPV models by a parameter varying convex combination
of LTI models. The TP model form is a kind of poly-
topic decomposition, where the convex combination is
defined by one variable weighting functions of each pa-
rameter separately. Convex optimization or linear matrix
inequality based control design techniques can immedi-
ately be applied to polytopic, hence to TP models [1–3].
An important advantage of the TP model representation is
that the convex hull defined by the LTI models can readily
be modified and analyzed via the one variable weighting
functions. Furthermore, the feasibility of the LMI’s can
be considerably relaxed by modifying the type of the re-
sulting convex hull.

The TP model transformation is a recently proposed
numerical method to transform LPV models into TP
model form [4, 5]. It is capable of transforming different
LPV model representations (such as physical model given

by analytic equations, fuzzy, neural network, genetic al-
gorithm based models) into TP model form in a uniform
way. In this sense it replaces the analytical derivations of
polytopic decompositions (that could be a very complex
or even an unsolvable task). Execution of the TP model
transformation takes a few minutes by a regular Personal
Computer. The TP model transformation minimizes the
number of the LTI components of the resulting TP model,
and is capable of determining different types of convex
hulls of the given LPV model.

In this paper we study how the TP model transforma-
tion is applicable to generate different types of convex
hulls of the given LPV models. The study is conducted
through the example of the prototypical aeroelastic wing
section.

2. Preliminaries

2.1. Linear Parameter-Varying state-space model
Consider the following parameter-varying state-space

model:

ẋ(t) = A(p(t))x(t)+B(p(t))u(t), (1)

y(t) = C(p(t))x(t)+D(p(t))u(t),

with input u(t), output y(t) and state vectorx(t). The
system matrix

S(p(t)) =

(

A(p(t)) B(p(t))
C(p(t)) D(p(t))

)

∈ R
O×I (2)

is a parameter-varying object, wherep(t) ∈ Ω is time
varying N-dimensional parameter vector, and is an el-
ement of the closed hypercubeΩ = [a1,b1]× [a2,b2]×
·· ·× [aN,bN] ⊂ R

N. p(t) can also include some elements
of x(t). Therefore (1) is considered in the class of non-
linear dynamic models.

2.2. Convex state-space TP model
S(p(t)) can be approximated for any parameterp(t) as

the convex combination of LTI system matricesS which
are also calledvertex systemsin the literature. Therefore,
one can define weighting functionsw(p(t)) ∈ [0,1] ⊂ R
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such that matrixS(p(t)) can be expressed as convex com-
bination of system matricesS. The explicit form of the
TP model in terms of tensor product becomes:

(

ẋ(t)
y(t)

)

≈
ε

S
N
⊗

n=1
wn(pn(t))

(

x(t)
u(t)

)

(3)

that is
∥

∥

∥

∥

S(p(t))−S
N
⊗

n=1
wn(pn(t))

∥

∥

∥

∥

≤ ε.

Here, ε symbolizes the approximation error, row vec-
tor wn(pn) ∈ R

In n = 1, . . . ,N contains the one variable
weighting functionswn,in(pn). Function wn, j(pn(t)) ∈

[0,1] is the j-th one variable weighting function defined
on then-th dimension ofΩ, and pn(t) is the n-th ele-
ment of vectorp(t). In (n = 1, . . . ,N) is the number of
the weighting functions used in then-th dimension of the
parameter vectorp(t). The (N + 2)-dimensional tensor
S ∈R

I1×I2×···×IN×O×I is constructed from LTI vertex sys-
temsSi1i2...iN ∈ R

O×I . For further details we refer to [4–
6]. The convex combination of the LTI vertex systems is
ensured by the conditions:

Definition 1: The TP model (3) is convex if:

∀n∈ [1,N], i, pn(t) : wn,i(pn(t)) ∈ [0,1]; (4)

∀n∈ [1,N], pn(t) :
In

∑
i=1

wn,i(pn(t)) = 1. (5)

This simply means thatS(p(t)) is within the convex
hull of the LTI vertex systemsSi1i2...iN for anyp(t) ∈ Ω.

TensorS(p(t)) has a finite element TP model represen-
tation in many cases (ε = 0 in (3)). However, exact finite
element TP model representation does not exist in general
(ε > 0 in (3)), see Ref. [7]. In this caseε 7→ 0, when the
number of the LTI systems involved in the TP model goes
to ∞. In this paper we will show that the LPV model of the
aeroelastic system can be exactly represented by a finite
TP model.

2.3. TP model transformation
The TP model transformation starts with the given LPV

model (1) and results in the TP model representation (3),
where the trade-off between the number of LTI vertex sys-
tems and theε is optimized [4]. The TP model transfor-
mation offers options to generate different types of the
weighting functionsw(·). For instance:

Definition 2: SN – Sum NormalisationVector w(p),
containing weighting functionswi(p) is SN if the sum of
the weighting functions is 1 for allp∈ Ω.

Definition 3: NN – Non-NegativenessVector w(p),
containing weighting functionswi(p) is NN if the value
of the weighting functions is not negative for allp∈ Ω.

Definition 4: NO – Normality Vector w(p), contain-
ing weighting functionswi(p) is NO if it is SN and NN
type, and the maximum values of the weighting functions
are one. We saywi(p) is close to NO if it is SN and NN
type, and the maximum values of the weighting functions
are close to one.

Definition 5: RNO – Relaxed Normality Vector
w(p), containing weighting functionswi(p) is RNO if the
maximum values of the weighting functions are the same.

Definition 6: INO – Inverted Normality Vectorw(p),
containing weighting functionswi(p) is INO if the mini-
mum values of the weighting functions are zero.

All the above definitions of the weighting functions de-
termine different types of convex hulls of the given LPV
model. The SN and NN types guarantee (4), namely, they
guarantee the convex hull. The TP model transformation
is capable of always resulting SN and NN type weight-
ing functions. This means that one can focus on applying
LMI’s developed for convex decompositions only, which
considerably relaxes the further LMI design. The NO
type determines a tight convex hull where as many of the
LTI systems as possible are equal to theS(p) over some
p ∈ Ω and the rest of the LTI’s are close toS(p(t)) (in the
sense ofL2 norm). The SN, NN and RNO type guaran-
tee that those LTI vertex systems which are not identical
to S(p) in the tight convex hull are in the same distance
from S(p(t)). INO guarantees that different subsets of the
LTI’s defineS(p(t)) over different regions ofp ∈ Ω.

These different types of convex hulls strongly effect the
feasibility of the further LMI design. For instance paper
[8] shows an example when determining NO is useful in
the case of controller design while the observer design
is more advantageous in the case of INO type weighting
functions.

In order to have a direct link between the TP model
form and the typical form of polytopic models and LMI
conditions, we define the following index transformation:

Definition 7: (Index transformation) Let

Sr =

(

Ar Br
Cr Dr

)

= Si1,i2,...,iN ,

wherer = ordering(i1, i2, .., iN) (r = 1. . .R= ∏n In). The
function “ordering” results in the linear index equivalent
of anN dimensional array’s indexi1, i2, . . . , iN, when the
size of the array isI1 × I2 × ·· · × IN. Let the weighting
functions be defined according to the sequence ofr:

wr(p(t)) = ∏
n

wn,in(pn(t)).

By the above index transformation one can write the TP
model (3) in the typical form of:

S(p(t)) =
R

∑
r=1

wr(p(t))Sr .

Note that the LTI systemsSr andSi1,i2,...,iN are the same,
only their indices are modified, therefore the hull defined
by the LTI systems is the same in both forms.

3. Case study of the prototypical aeroelastic
wing section

The prototypical aeroelastic wing section is used for
the theoretical as well as experimental analysis of two-
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Fig. 1. Two-dimensional flat plate airfoil small deflection,
force notation and schematic diagram

dimensional aeroelastic behavior. It has complex dynamic
behavior. One can find a whole series of detailed studies
of this wing section in theJournal of Guidance, Control
and Dynamic. For more details we refer to [6, 8, 9].

Let us consider the problem of flutter suppression for
the prototypical aeroelastic wing section as shown in Fig-
ure 1. The flat plate airfoil is constrained to have two
degrees of freedom, the plungeh and pitchα. In order
to have a deep description of the equations of motion, we
refer to Refs. [10–14]. Here we give only a brief discus-
sion. The equations of motion in linear parameter-varying
state-space form is:

ẋ(t) = A(p(t))x(t)+B(p(t))u(t) = S(p(t))

(

x(t)
u(t)

)

,

(6)
where

x(t) =







x1(t)
x2(t)
x3(t)
x4(t)






=







h
α
ḣ
α̇






and u(t) = β

and
A(p(t)) =









0 0 1 0
0 0 0 1

−k1 −(k2U2 + p(x2(t))) −c1(U) −c2(U)
−k3 −(k4U2 +q(x2(t))) −c3(U) −c4(U)









,

B(p(t)) =









0
0

g3U2

g4U2









,

wherep(t)∈R
N=2 contains valuesx2(t) = α andU . Fur-

therd = m(Iα −mx2
αb2);

k1 = Iα kh
d ; k2 =

Iα ρbclα +mxα b3ρcmα
d ;

k3 = −mxα bkh
d ; k4 =

−mxα b2ρclα −mρb2cmα
d ;

p(α) = −mxα b
d kα(α); q(α) = m

d kα(α);
c1(U) =

(

Iα(ch +ρUbclα )+mxαρU3cmα

)

/d;
c2(U) =
(

IαρUb2clα (1
2 −a)−mxαbcα +mxαρUb4cmα (1

2 −a)
)

/d;
c3(U) =

(

−mxαbch−mxαρUb2clα −mρUb2cmα

)

/d;
c4(U) =
(

mcα −mxαρUb3clα (1
2 −a)−mρUb3cmα (1

2 −a)
)

/d;
g3 = (−Iαρbclβ −mxαb3ρcmβ )/d;

g4 = (mxαb2ρclβ +mρb2cmβ )/d;

The system parameters are given in the Appendix.
These data are obtained from experimental models de-
scribed in full detail in Refs. [12, 15].

kα(α) = 2.82(1−22.1α +1315.5α2+8580α3+17289.7α4)

is obtained by curve fitting on the measured displacement-
moment data for non-linear spring [15]. We remark that
the uncontrolled response of the system achieves limit
cycle oscillation as claimed in Refs. [12, 15, 16]. One
should note that the equations of motion are also depen-
dent on the elastic axis locationa.

3.1. TP model representations of the prototypical
aeroelastic wing section

This subsection presents different TP model represen-
tations of the LPV model (6). We execute the TP model
transformation over aM1×M2, (M1 = 101 andM2 = 101)
rectangular grid net inΩ : [14,25] × [−0.1,0.1] (U ∈

[14,25](m/s) andα ∈ [−0.1,0.1](rad) ). The TP model
transformation shows that the LPV model of the wing sec-
tion can exactly be given by TP model with 6 LTI vertex
models, namely, by the parameter varying convex combi-
nation of 6 LTI models:

S(p(t)) =
3

∑
i=1

2

∑
j=1

w1,i(U(t))w2, j(α(t))Si, j

In the followings we show that the type of the con-
vex combination can readily be modified by the TP model
transformation:

TP MODEL 0: The resulting weighting functions de-
picted on Figure 2 are directly obtained by the TP model
transformation without any further modification. They are
between−1 and+1 and orthogonal. The resulting LTI
vertex systems do not define the convex hull of the LPV
model, but their number is minimized.

TP MODEL 1: In order to have convex TP model to
which the LMI control design conditions can be applied,
let us generate SN and NN type weighting functions by
the TP model transformation. The results are depicted on
Figure 3.
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Fig. 2. Weighting functions of the TP model 0 on the di-
mensionsα andU .

TP MODEL 2: In many cases the convexity of the TP
model is not enough, the further LMI design is not feasi-
ble. In order to relax the feasibility of the LMI conditions,
let us define the tight convex hull of the LPV model via
generating close to NO type weighting functions by the
TP model transformation, see Figure 4.

TP MODEL 3: Let us further modify the weighting
functions and define their INO–RNO type, see Figure 5.
Paper [8] shows that this type is advantageous in the case
of observer design.

Perhaps the above resulting weighting functions can be
derived analytically. The functionsw(α) can be derived
from kα . The analytical derivation ofw(U), however,
seems to be rather complicated. The analytical deriva-
tions of the tight convex hull or INO–RNO type weighting
functions need the analytical solution of the tight convex
hull problem that is unavailable in general. In spite of
this, the TP model transformation requires a few minutes
and is not dependent on the actual analytical form of the
given LPV model. If the model is changed we can simply
execute the TP model transformation again.
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Fig. 3. SN and NN type weighting functions of the TP
model 1 on the dimensionsα andU .

4. Typical polytopic model form

TP model 2 was applied in [6] to design stabilizing con-
troller. Let us transform TP model 2

S(p(t)) =
3

∑
i=1

2

∑
j=1

w1,i(U(t))w2, j(α(t))Si, j

in the typical polytopic model form:

S(p(t)) =
6

∑
r=1

wr(U(t),α(t))Sr ,

where Sr = Si, j , wr(U(t),α(t)) = w1,i(U(t))w2, j(α(t))
andr = 2(i−1)+ j (see Definition 7).

The weighting functionswr(·) are presented on the Fig-
ures 6.

5. Conclusion

This paper shows how the TP model transformation is
capable of defining polytopic models with various types
of convex hulls of a given LPV model in a few minutes
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Fig. 6. Weighting functions of the polytopic model

without analytical derivations. We may conclude that the
TP model transformation, as a uniform and tractable nu-
merical method, may replace the analytic polytopic model
decomposition techniques. We studied the example of the
LPV model of the prototypical aeroelastic wing section.

Appendix A. Nomenclature

• h = plunging displacement

• α = pitching displacement

• xα = the non-dimensional distance between elastic
axis and the center of mass

• m = the mass of the wing

• Iα = the mass moment of inertia

• b = semi-chord of the wing

• cα = the pitch structural damping coefficient
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Fig. 4. Close to NO type weighting functions of the TP
model 1 on the dimensionsα andU .

• ch = the plunge structural damping coefficient

• kh = the plunge structural spring constant

• kα(α) = non-linear stiffness contribution

• L = aerodynamic force

• M = aerodynamic moment

• β = control surface deflection

• ρ = air density

• U = free stream velocity

• clα = lift coefficients per angle of attack

• cmα = moment coefficients per angle of attack

• clβ = lift coefficients per control surface deflection

• cmβ = moment coefficients per control surface deflec-
tion

• a = non-dimensional distance from the midchord to
the elastic axis
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Fig. 5. INO–RNO type weighting functions of the TP model
2 on the dimensionsα andU .

Appendix B. System parameters

b = 0.135m; span= 0.6m; kh = 2844.4N/m; ch =
27.43Ns/m; cα = 0.036Ns; ρ = 1.225kg/m3; clα = 6.28;
clβ = 3.358; cmα = (0.5+ a)clα ; cmβ = −0.635; m =

12.387kg; xα = −0.3533− a; Iα = 0.065kgm2; cα =
0.036;
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Péter Korondi received Dipl. Eng. and Ph.D. degrees in electrical
engineering from the Technical University of Budapest in 1984 and 1995,
respectively. His research interests include tele-manipulation and motion
control. He published more than 100 papers. Since 1986, he hasbeen at
the Technical University of Budapest (the name of Universitywas changed
to Budapest University of Technology and Economics in 2000).He
teaches Motion control, Robot control, Power Electronics.He worked for
2 years in the laboratory of Professor Harashima and Professor Hashimoto
at the Institute of Industrial Science at the University of Tokyo from April
of 1993 to April of 1995. His cooperation did not end upon his return to
Hungary. He is in daily contact with his Japanese colleaguesthrough the
internet. He spends a month in Tokyo each year to continue their joint
research.
Membership in Learned Societies:
• Founding member of the Integrated Intelligent Systems
Japanese–Hungarian Laboratory
• Founding member of the International PEMC Council a chapter ofthe
European Power Electronic Association

Name:
Yeung Yam (yyam@acae.cuhk.edu.hk)

Affiliation:
Automation and Computer-Aided Engineering,
The Chinese University of Hong Kong

Address:
Shatin, New Territories, Hong Kong SAR, China
Brief Biographical History:
Yeung Yam received his B.S. and M.S. degrees in Physics from the
Chinese University of Hong Kong and the University of Akron,
respectively, in 1975 and 1977, and his M.S. and Sc.D. degrees in
Aeronautics and Astronautics from the Massachusetts Institute of
Technology, Cambridge, in 1979 and 1983, respectively. He joined the
Chinese University of Hong Kong in 1992, and is currently theChairman
of the Department of Automation and Computer-Aided Engineering.
Before joining the University, he was with the Control Analysis Research
Group of the Guidance and Control Section at Jet Propulsion Laboratory,
Pasadena, CA, USA. His research interests include intelligent control,
fuzzy approximation, system identification, dynamics modeling and
analysis. His has published over 100 technical papers in various areas of
his fields.
Membership in Learned Societies:
• Senior member of IEEE

8 Journal of Advanced Computational Intelligence Vol.0 No.0,200x
and Intelligent Informatics


