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Abstract. Motivated by optimization problems in structural engineering, we study the critical points of symmetric, ‘reflected’,

one-parameter family of potentials U (p, x) = max( f (p, x), f (p, −x)), yielding modest generalizations of classical bifurcations,

predicted by elementary catastrophe theory. One such generalization is the ‘five-branch pitchfork’, where the symmetric optimum

persists beyond the critical parameter value. Our theory may help to explain why symmetrical structures are often optimal.
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1. Introduction

Reflection symmetry can be observed in engineering structures as well as in nature and this suggests

that reflection-symmetric configurations are often optimal. In case of many optimization problems we

associate optima with minima, pessima with maxima of a potential. Symmetry-breaking bifurcations

(studied extensively in [1]) associated with one-parameter families of smooth potentials f (p, x) are

adequate to model many problems in engineering; however, the classical pitchfork, associated with

reflection-symmetric problems, predicts that the symmetric solution will become unstable beyond the

critical parameter value, i.e. it will cease to be an optimal solution.

This prediction may be correct in some cases, but apparently not in each one: the symmetrical (x = 0)

configuration of the three-hinged structure, illustrated in Figure 1A, proves to be (locally) optimal for

all values of the parameter p if we are looking for maximal safety against buckling of the individual

members (although there is a bifurcation if the optimal and pessimal values of x are plotted against p,

cf. Figure 1B).

The discrepancy between the classical model’s prediction and the actual behavior can be explained

if we try to define a suitable ‘potential’ for the optimization problem. Consider that the global optimum

is determined by a discrete assembly of ‘weak points’ the set of which, due to the reflection symmetry,

is itself invariant under reflection. The potential associated with each of these ‘weak points’ behaves

smoothly, but the envelope of these potentials will be, in general, non-smooth. In case of the three-hinged

structure in Figure 1, we have two smooth potentials: f (p, x) and g(p, x) defined by

f (p, x) = N1(x, p, N )

N cr
1 (x, p)

= l2
1(x, p)
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Figure 1. (A) A simple three-hinged model. (B) Optimization diagram (continuous line: optimum, dashed line: pessimum).

Figure 2. The reflected potential U (x, p) at p = 0.5, generated via (3) from (1).

where N1, N2 denote the compressive forces in the members, N cr
1 , N cr

2 denote the corresponding Euler

buckling loads. Observe that g(p, x) = f (p, −x); the latter will be called the generating potential
for the problem. The ‘optimization potential’ U (p, x) of the structure can be generated from f (p, x)

as

U (p, x) = max( f (p, x), f (p, −x)) (3)

(see also Figure 2). It is easy to see that U (p, x) has a (non-smooth) local minimum at x = 0 for

almost all values of p; thus, this simple example suggests that the symmetric configurations are robust

(non-smooth) optima in case of engineering structures.

In this paper, we take a systematic approach to the bifurcations associated with non-smooth potentials

of type (3). Analysis of bifurcations associated with special non-smooth potentials can be found in [2,

Section 16], where a generalization of Thom’s theorem is introduced in case of the so-called conditional
catastrophes; however, symmetrical potentials are not investigated.

The applications of classical catastrophe theory to engineering problems have been pioneered by

Michael Thompson. In particular, the books with Giles Hunt [3, 4] serve as standard reference. We

will follow the same line of thought, looking for the Taylor series expansion of the generating, smooth

potential f (p, x) at x = 0. This provides a classification of bifurcation points for the non-smooth

optimization potential U (p, x), containing both ‘classical’ cases as well as some new ones. The latter

include bifurcations where the symmetrical solution remains stable (optimal) beyond the critical param-

eter value. Section 2 is devoted to the construction of this list, Section 3 provides structural engineering

examples for each bifurcation. In Section 4 we summarize results and outline possible applications to

mathematical models in evolution.
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2. Reflected Potentials and the Associated Bifurcations

2.1. CRITICAL POINTS OF REFLECTED POTENTIALS

We will investigate the class of ‘reflected potentials’ U (x, p) defined in (3). At any constant value of p,

these functions are at some isolated points x = xi not C1 continuous (e.g. at x = 0, along the symmetry

axis); thus, we need a generalized interpretation of critical points. Critical points of a smooth f (x)

function are the solutions of the d f/dx = f ′(x) = 0 equation. The first derivative U ′(x) = dU (x)/dx
of reflected potentials U (x, p) suffer discontinuities of the first kind at some isolated values x = xi , i.e.

the left-hand and right-hand limits U ′(xi − 0, p) and U ′(xi + 0, p) exist but are not identical. We apply

the concept of interval derivative (see e.g. [5]) which is an interval [U ′(xi − 0, p), U ′(xi + 0, p)]. (For

example, the interval derivative of f (x) = |x | at x = 0 is the interval [−1,1].) At smooth points, the

interval derivative is a scalar, identical to the classical derivative. Using this concept, we call a point

critical if the interval derivative contains 0 as an element.

2.2. TYPICAL BIFURCATIONS OF REFLECTED POTENTIALS

As already mentioned in Section 1, our goal is to give a local classification of one-parameter classes

of reflected potentials U (x, p) (defined in (3)), at x = 0; this is an analogue to Thom’s theorem for

smooth functions. The local classification of U can be reduced to the local classification of the smooth

f generating potentials.

Thom’s theorem shows that the local classification of a smooth function is determined by the lowest

order non-vanishing term of the function’s Taylor expansion. Let T (n)
f denote the truncated Taylor series

of the function f (x, p) up to the nth-order term.

At a general point on the p-axis (x = 0) T (1)
f does not vanish typically. At the same time, there exist

typically a finite number of isolated points along the x = 0 line, where T (1)
f vanishes, and there is

typically no point where T (2)
f vanishes.

If T (1)
f does not vanish, f (x, p) is, according to Thom’s theorem, locally equivalent of the (0, 0) point

of the f (1)(x, p) function:

f (1)(x, p) = x . (4)

Consequently, the reflected U (0, p) function generated from f via (3) is locally equivalent to the

(0, 0) point of U (1)(x, p) generated from the f (1) potential in (4).

This type of point is analogous to non-degenerate critical points of smooth functions, but it is non-

smooth (Figure 3).

If T (1)
f vanishes but T (2)

f does not, U (0, p) is locally equivalent of U (2) (0, 0) generated from one of

the following two f (2) functions:

f (2)(x, p) = px ± x2 (5)

The (0, 0) point of U (2) is analogous to a fold catastrophe point of a smooth functions. It has two

dual forms: the unstable-X (Figure 4) and the point-like catastrophe (Figure 5). They appear different

because the different role of maxima and minima in case of reflected functions. Figure 1B, associated

with the three-hinged example, also shows an unstable-X type catastrophe point.
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Figure 3. Non-degenerate critical point of reflected functions.

Figure 4. Unstable-X catastrophe.

Figure 5. Point-like catastrophe.

As already introduced, higher degeneracy of f (x, p) is atypical and there are no more typical catas-

trophes of one-parameter families of reflected functions. At the same time, there are applications, where

f (x, p) is, for some reason odd or even (the even or the odd terms of the Taylor expansion vanish). In

these cases, some other catastrophes are typical.
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In the case when f (x, p) is odd, odd ( f (x, p) + c = −( f (−x, p) + c)), typically there exist isolated

points where U is locally equivalent of U (3) (0, 0) generated of f (3):

f (3)(x, p) = px + x3 (6)

This corresponds to a ‘five-branch pitchfork’ (Figure 6) (which has no dual form).

In the case when f (x, p) is even ( f (x, p) = f (−x, p)), U is a smooth, symmetric function. The two

emerging classes are well known: the first (typical) one is equivalent of U (4) (0, 0) generated of f (4)

U (4)(x, p) = f (4)(x, p) = ±x2, (7)

which is a one-dimensional Morse saddle, i.e. a smooth, non-degenerated critical point. Beyond this,

there are typically isolated points where U is locally equivalent of U (5) (0, 0) generated of f (5):

U (5)(x, p) = f (5)(x, p) = px2 ± x4 (8)

These are the well-known standard and dual cusp catastrophe (Figure 7) points, producing the ‘stable’

and ‘unstable’ symmetric bifurcation. This is the typical bifurcation occurring in a one-parameter family

of symmetric, smooth functions. In the following, this bifurcation will be called ‘three-branch pitchfork’.

Figure 6. Five-branch pitchfork.

Figure 7. Standard cusp catastrophe, or stable three-branch pitchfork.
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The presented catastrophes (5) and (6) have unusual properties. The most important is that x = 0

is always local optimum. This is completely atypical among smooth functions, it is true only at some

degenerated bifurcations.

2.3. MULTIPLE REFLECTED POTENTIALS

There are many applications where the Û (x, p) optimization potential is the envelope of several Ui (x, p)

reflected functions:

Û (x, p) = max(Ui (x, p)), i = 1, 2, . . . , n, (9)

where the functions Ui (x, p) are defined by (3).

Among these functions, the typical bifurcations are the same as those of reflected potentials: the

bifurcations of Û are a subset of the bifurcations of the individual Ui functions. A bifurcation of Uk at

p = p0 appears in Û , if

Uk(0, p0) = max(Ui (0, p0)). (10)

In addition, one new type of bifurcation emerges: typically there are isolated V points at the x = 0

axis, where

Ui (0, p) = U j (0, p), i �= j (11)

At these points, a special ‘wedge bifurcation’ may appear (there is an example in Figure 8), typically

if Ui has a local minimum, and U j has a local maximum at V . (The latter can occur only for U (4) and

U (5) type potentials.)

3. Examples in Engineering: Optimization of Structures

In this section, we provide a list of examples, illustrating all the bifurcations described in the previous

section. Our goal was to make this illustration homogeneous and easy to follow in the sense that each

bifurcation type is demonstrated on the same type of structure (continuous beam with four supports), as

a result, some illustrations are somewhat artificial. Including a larger variety of structures yields other

illustrations; however, their description is more lengthy. Similar examples have been studied in [6, 7].

Figure 8. An example of the wedge bifurcation.
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Load-bearing structures are designed based on design conditions, which have to be met by all parts

or points of the structure. The most common examples are the strength conditions of the form

f ≤ fu, (12)

where f and fu are, respectively, the design and ultimate value of an internal force or stress. If the

design variable x (describing the geometry of a structure together with the parameter p) is optimized

for this kind of condition, it is plausible to define an ‘optimization potential’ Û (x, p) as the maximum

of f (x, p) for all parts or points of the structure, a ‘better’ structure corresponding to smaller values of

Û (x, p).

Provided that:

– a one-parameter (p) family of structures is examined,

– f (x, p) is a smooth function at all points or parts of the structure,

– x is a ‘symmetrical’ variable in the sense that there exists an x0, such that x = x0 − c and x = x0 + c
determine, at an arbitrary value of p, effectively the same but reflected structure,

Û (x, p) is typically a ‘multiple reflected potential’ defined in (9).

In this section, we provide structures, the optimization of which produces the typical bifurcations of

reflected potentials listed in Section 2. The variable x is symmetric in all examples with x0 = 0 and all

the introduced bifurcations appear at the p-axis of the x-p plane.

3.1. UNSTABLE-X BIFURCATION

Let us regard the uniform, linearly elastic beam in Figure 9A with four supports, subjected to uniform

vertical load. Our goal is to optimism the position x of the hinge, making the maximum Û of the bending

moment as small as possible.

Calculating the support and hinge reactions under the assumption of small deformations (linear

theory) is a common structural engineering problem. Solution techniques are available in advanced

undergraduate textbooks; most easily it can be solved by the force method (cf. [8]), yielding finally the

internal bending moment acting at an arbitrary point of the beam. The qualitative moment diagram is

illustrated in Figure 9G. There are three pairs of local maxima in the moment diagram denoted by fi

and f ′
i ; i = 1, 2, 3. So Û (x, p) is now the maximum of three pairs of local maxima (cf. (9)):

Û = max(U1, U2, U3), (13)

where the Ui s are reflected functions as defined in (3):

Ui = max( fi , f ′
i ), i = 1, 2, 3 (14)

In our example, the fi functions can be determined analytically (cf. [8]) as:

f2(x, p) = (p + x)[x + 4p(xp2 + x3 + (p − x)3 + (p − x)2)]

8(p3 + 3px2 + p2 + x2)
(15)

f1(x, p) =
{

1/2(1/2 − f2(x, p))2 if f2(x, p) ≤ 1/2

0 if f2(x, p) > 1/2

}
(16)

f3(x, p) = 1

2

[
x + f2(−x, p) − f2(x, p)

2p

]2

(17)
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Figure 9. A–F: various parameterized beams and loads; G: qualitative moment diagram of the structures A–D.

We computed the catastrophe points of the Ui functions as the solutions of the d fi (x, p)/dx = 0

equation analytically and found the following results.

There is an unstable-X bifurcation in U2(x, p) at point

P =
(

0;
1

6
(19 + 3

√
33)1/3 + 2

3
(19 + 3

√
33)−1/3 − 1

3

)
≈ (0, 0.420) (18)

Since U2 > U1 at P, this X-bifurcation of U2 occurs in the Û function as well (cf. (10) and the

corresponding remarks in Section 2.3). A representative domain of the bifurcation diagram is plotted

in Figure 10. At point V = (0,
√

2 − 1) on the p-axis, we have U1 = U2, so we could expect a

Figure 10. An example of the unstable-X bifurcation.
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wedge bifurcation based on Equation (11). However, since both U1 and U2 have local minima at V , no

bifurcation occurs (cf. comments after Equation (11)).

3.2. POINT-LIKE BIFURCATION

In Section 3.1, Equation (16) provides a simple relationship between f1 and f2 and it shows that the

critical points of U1 and U2 typically coincide. Furthermore, the following form of (16) (where f 2
2 is

approximated by its truncated Taylor expansion)

f1(x, p) =
1
4

− f2(x, p) + f 2
2 (x, p)

2
≈

1
4

+ f 2
2 (0, p) − f2(x, p)(1 − 2 f2(0, p))

2
(19)

shows that an unstable-X bifurcation point of U2, corresponds to a dual, point-like bifurcation point of

U1 if f2(0, p) < 1/2 (which is true for p < 1). So U1 has a point-like bifurcation at P ≈ (0, 0.420) (cf.
Figure 10); however, it is hidden because Û �= U1 at point P. In order to make the point-like bifurcation

at P appear in Û , we change the geometry of the structure slightly.

The new geometry is illustrated in Figure 9B: the two inner supports are both symmetrically moved

down by the distance a (this could be the result of soil settlement). This modification causes, according

to our computations, the following effects:

– moves the critical point P downward in the bifurcation diagram,

– does not change the position of point V because the moment diagrams are unchanged if x = 0.

If, e.g. a = 0.003, the new bifurcation point P ′ is under V , and the point-like bifurcation of U1

appears in Û (Figure 11).

3.3. FIVE-BRANCH PITCHFORK BIFURCATION

The example of Figure 9C is similar to the previous ones, but the position of the middle supports is

optimized instead of the position of the hinge. Analysis is done in the same way as at the first example.

The bending moment fmid at the middle of the structure is zero at arbitrary (x, p) values, since there

is a hinge. On the other hand, fmid can be expressed from f2 and f ′
2 as:

fmid = ( f2 + f ′
2)/2 − p2/2 (20)

Figure 11. An example of the point-like bifurcation.
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Figure 12. An example of the five-branch pitchfork.

Combining (20) with fmid = 0 yields

p2 = f2(x, p) + f ′
2(x, p) = f2(x, p) + f2(−x, p) (21)

According to (21), f2 is an odd function of x (the non-vanishing constant term does not influence the

critical points), so at the bifurcation point p = (0,
√

3/2) it is locally equivalent to f (3) (defined in (6));

thus, the bifurcation of U2 is a five-branch pitchfork. In the neighborhood of P, U2 > U1, so, based on

(10), this bifurcation occurs in Û as well (cf. Figure 12.)

3.4. THREE-BRANCH PITCHFORK BIFURCATION

The beam of Figure 9D is again slightly different of the previous ones: the hinge is missing. This

structure is statically indeterminate of the second degree, so two compatibility equations are needed

beyond the equilibrium equations. The solution is constructed in the same way as at the other examples.

As f3 occurs at the symmetry axis of the structure, we have:

f3(x, p) = f3(−x, p) (22)

and

f3(x, p) = f ′
3(x, p) = U3(x, p) (23)

Since U3 is always a smooth, symmetric function of x , the typical bifurcation of U3 is the (stable or

unstable) three-branch pitchfork. In our example, U3 has a stable pitchfork at point P ≈ (0, 0.4805).

(The second coordinate of P has been computed numerically as a root of f ′′
3 = 0, leading to a sixth-order

polynomial equation.) Since U3 is not the global maximum of the bending moment at P , the structure

has to be modified in order to have the pitchfork in Û as well.

One example of such a modification is adding the loads of Figure 9E to the structure. This load has

the following properties:

– It leaves the moment diagram in the outer spans invariant and only changes the moment diagram in

the middle span: it increases U3 and does not influence U2 and U1. If N is chosen appropriately, U3

becomes global maximum.

– The effect of the load is independent of x , so the character of the bifurcation remains unchanged.
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Figure 13. An example of the ‘stable’ three-branch pitchfork.

Figure 14. An example of the wedge bifurcation.

Figure 13 shows the bifurcation diagram for N = 1. At this value of N we can observe the ‘stable’

symmetric bifurcation in Û .

3.5. WEDGE BIFURCATION

Let us consider Figure 9F. The structure is the same as the one in Figure 9D; however, the load on the

outer spans is now zero. At point V = (0, 1) we have U2 = U3. At this point, U2 has a local minimum

and U3 (which is a U (4) type potential, cf. (7)) has a local maximum. The two functions form a wedge

bifurcation, which appears in Û . The corresponding bifurcation diagram is illustrated in Figure 14.

4. Summary

In this paper, we developed a modest generalization of classical bifurcations to model the optimization

of engineering structures with reflection symmetry. Our basic observation was that an optimal shape

is determined often by an assembly of several weak points. As a consequence, the associated potential

can be obtained as a maximum of several smooth potentials, the resultant is a non-smooth function.

Elementary catastrophe theory provides a full ‘catalogue’ of bifurcations associated with one-parameter,

smooth potentials based on the truncated Taylor series expansion. Following the same line of thought, we

developed a systematic description of the bifurcations associated with non-smooth, ‘reflected’ potentials.
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The list of relevant bifurcations included the classical pitchfork as well as new types, such as the ‘X’

bifurcation or the five-branch pitchfork. Our study showed that in this class of one-parameter functions

the symmetric configuration is typically optimal and this confirms the engineer’s intuition. However,

this does not imply that structural optimization problems always have a trivial (symmetric) solution. On

one hand, globally several optima can co-exist and asymmetric ones are often superior to the symmetric

solution. On the other hand, there exist structures, where the symmetric solution is a pessimum. We

illustrated several types of structures and the associated optima. We believe that the perspective offered

by bifurcation theory may be helpful in the understanding of optimization problems in engineering.

We can observe that symmetric solutions are optimal not just in case of engineering structures but

in Nature as well. In evolutionary processes, the symmetric species may survive branching (produced

by the presence of asymmetric mutants) and classical models [9] can not capture this phenomenon.

Currently, we are investigating a model, based on [9], which predicts that symmetric species may

survive evolutionary branching (Várkonyi, P., Domokos, G., Meszéna, G: Emergence of asymmetry in

evolution. Adaptive Dynamics Workshop, Budapest, 2004).
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