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Abstract Using phase response curves and averaging
theory, we derive phase oscillator models for the lam-
prey central pattern generator from two biophysically-
based segmental models. The first one relies on
network dynamics within a segment to produce the
rhythm, while the second contains bursting cells. We
study intersegmental coordination and show that the
former class of models shows more robust behavior
over the animal’s range of swimming frequencies. The
network-based model can also easily produce approx-
imately constant phase lags along the spinal cord, as
observed experimentally. Precise control of phase lags
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in the network-based model is obtained by varying the
relative strengths of its six different connection types
with distance in a phase model with separate coupling
functions for each connection type. The phase model
also describes the effect of randomized connections,
accurately predicting how quickly random network-
based models approach the determinisitic model as the
number of connections increases.
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1 Introduction

Central pattern generators (CPGs) are neural networks
that can produce functional patterns of muscular activ-
ity in the absence of sensory feedback [see e.g. Getting
1988; Cohen et al. 1988; Pearson 2000 and Wilson 1999,
Chaps. 12-13] or other inputs such as those from the
brain. Across a wide variety of animals, from inverte-
brates to mammals, the CPGs that underlie locomotion
have been found to be distributed systems of non-linear
oscillators coupled through ascending and descend-
ing neurons. In leech (Kristan et al. 2005), lamprey
(Grillner 2003), and neonatal rats (Kiehn 2006), the
oscillators are themselves composed of networks of
neurons with connections that produce alternation
among antagonistic muscles either across joints or seg-
ments. In addition, many of the network neurons have
complex membrane properties that, when activated,
confer the ability to oscillate independently.

This paper describes a framework for modeling dis-
tributed CPGs. Focusing on the locomotory system of
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lamprey, we examine two generic forms of CPG model:
one network-based and the other cell-based. In the
former, the pattern emerges from connections among
the neurons, while in the latter it is due to intrinsic
properties of single neurons or of a small group of
oscillatory neurons.

The lamprey CPG for locomotion itself consists of
interneurons and motoneurons distributed along the
spinal cord. Suitably stimulated, an isolated spinal
cord in vitro, with brain, muscle, and afferent inputs
removed, exhibits fictive locomotion, producing ap-
proximately periodic bursts of action potentials from
motoneurons via the ventral roots (Cohen and Wallén
1980). Contralateral roots burst in antiphase, and ipsi-
lateral roots along the spinal cord exhibit a phase lag of
1 − 2% of the bursting period, leading to propagation
of a traveling wave comprising approximately one full
wavelength along the ≈ 100-segment cord (Williams
and Wallén 1984). Sections containing as few as four
segments can produce bursts, suggesting that the CPG
is a chain of localized oscillatory units. Furthermore,
each side of the spinal cord is capable of generating
oscillations (Cangiano and Grillner 2003). For further
background information, see Cohen et al. (1992) and
Grillner (2003).

There is no complete agreement as to the com-
position of the lamprey CPG. Several different cell
types, common to each segment, have been identified
and their interconnections, both within and among
segments, have been partially described (Rovainen
1974; Buchanan 1982; Buchanan and Grillner 1987;
Buchanan 2001), as have membrane properties capable
of generating intrinsic oscillations within a hemiseg-
ment (Schotland and Grillner 1993; Kotaleski et al.
1999b; Cangiano and Grillner 2003). Models involving
three of these neuronal classes have been proposed, but
it is known that other neurons very probably contribute
to the network (Parker 2006). Similarly, the critical
intrinsic properties remain to be identified, with some
incorporated into models, and others to be omitted.
Evidence on the exact nature of intersegmental coor-
dinating neurons is very incomplete, but it is clear that
connections are ascending, descending, long and short,
and overall quite strong (Rovainen 1985; Miller and
Sigvardt 2000; Kiemel et al. 2003).

In the absence of detailed architectural information,
some early models of lamprey CPG were phenomeno-
logical: single chains of phase oscillators of the form

φ̇i = ωi + hi(φ1, φ2, . . . , φn) , i = 1, 2, . . . , n , (1)

where φi denotes the phase of the ith unit in the
chain and the coupling functions hi are 2π -periodic in
each of the phases. These models produce ipsilateral

phase lags either by frequency gradients ωi > ωi+1

(Cohen et al. 1982), or by asymmetrical coupling in the
rostral and caudal directions (Ermentrout and Kopell
1984, 1991; Kopell and Ermentrout 1988). Simple si-
nusoidal coupling functions hi = α ji sin (φ j − φi) were
typically assumed, as in the Kuramoto rotator model
(Kuramoto 1984). Whatever proves to be the correct
structure, there is clear evidence that the spinal seg-
ments comprise a chain of oscillators coupled together
to produce a traveling wave motion in the body.

In this paper we review and compare two seg-
mental models that share the same network archi-
tecture (Buchanan and Grillner 1987) but are based
on the different rhythm-generating mechanisms noted
in (Grillner et al. 1988). Our cell-based model, inspired
by Grillner et al. (Wallen et al. 1992; Hellgren et al.
1992), contains spontaneously bursting neurons within
each hemisegment, while the network-based scheme
of Buchanan and Williams (Buchanan 1992; Williams
1992), relies on contralateral mutual inhibition in the
manner of a half-center oscillator. Both have stable
limit cycles and we use phase reduction and averag-
ing (Hoppensteadt and Izhikevich 1997) to compute
intersegmental coupling functions hi, extending the
study of Williams and Bowtell (1997), who found such
functions for the network-based model with nearest-
neighbor coupling. (For the cell-based model we also
find intrasegmental coupling functions.) This adds bio-
logical detail to the simple models of (Cohen et al. 1982;
Ermentrout and Kopell 1984; Kopell and Ermentrout
1988) and allows us to study the robustness of phase
lags and the traveling wave pattern as the overall level
of excitation, and hence swimming speed, changes.

Current network-based models employ population
(firing-rate) descriptions, while cell-based oscillators
have mostly used bursting cell descriptions (see how-
ever Ekeberg 1993; Wilson 1999). Phase response and
averaging techniques can be applied to models of
both types (for recent examples with bursting cells,
see (Ghigliazza and Holmes 2004a, b), but to more
directly compare the two mechanisms, here we treat
only population models. As noted in Section 4.2, the
behavior of our averaged population model agrees well
with numerical simulations of bursters, despite multiple
simplifications in its derivation. Our goal is twofold: to
justify phase oscillators as models for lamprey CPG,
showing that they can include and allow comparison of
biophysical details, and to investigate and compare how
cell type and coupling details contribute to the traveling
waves characteristic of fictive swimming in lamprey.

In Section 2 we outline the use of the phase reduction
and averaging theory that is used in Sections 3–5 to
compute phase response curves (PRCs) and coupling



J Comput Neurosci

functions for the cell- and network-based models. Sec-
tion 3 concerns the reduction of intrasegmental models
to phase oscillators, and Section 4 deals with coupling
along the cord. Section 5 describes a tuning mechanism
for each type of connection and in Section 5.2 the
connections from the tuned deterministic model in the
previous section are randomized. The paper concludes
in Section 6.

2 Phase reduction and averaging

Here we briefly review the tools to be used in this
paper. Phase reduction theory was originally developed
by Malkin (1949, 1956) and is discussed in (Ermentrout
and Kopell 1991; Ermentrout 1996; Hoppensteadt and
Izhikevich 1997). It allows one to describe interactions
among weakly-coupled oscillators of the form

ẋi = f(xi) + εg(xi, x j, . . .) ; xi = (
x1

i , . . . , xn
i

) ∈ R
n ,

ε � 1 , (2)

each possessing a hyperbolic limit cycle �i of period
T0 = 2π/ω0, solely in terms of their phases along �i:

φ̇i = ω0 + εz(φi) · g(xi(φi), xi(φ j), . . .) |�0(φi) +O(ε2) .

(3)

In (3) the vector-valued function z(φi)
def= ∂φi

∂xi
encodes

the asymptotic phase shifts due to infinitesimal impul-
sive perturbations in the directions xk

i ; each component
of z(φi) is called a PRC. PRCs may be computed via an
adjoint method or directly, by perturbative or numeri-
cal means, as will be done below.

Substituting the slow phase ψi = φi − ω0t into (3) re-
moves the fast frequency ω0, so that the averaging theo-
rem (Guckenheimer and Holmes 1983, Sections 4.1–2)
can be applied to yield ordinary differential equations
(ODEs) that depend, at leading order, only on phase
differences:

ψ̇i = ε H̄i(ψi − ψ j) + O(ε2)where (4)

H̄i(ψi−ψ j)= 1

T0

∫ T0

0
z(φi)

· g(xi(ψi + ω0t), xi(ψ j + ω0t), . . .) dt . (5)

If the coupling function g of Eqs. (2–3) is additive, as
in Sections 3–5, (5) implies that the effects of multiple
connections into a given unit are approximated by lin-
ear superposition.

To further prepare for the analyses below, we con-
sider a pair of symmetrically coupled units, in which
case the coupling functions share a common form H̄.

The averaged equations (4) can then be subtracted to

yield a single ODE for the phase difference ψij
def= ψi −

ψ j = φi − φ j:

ψ̇ij = ε[H̄(ψij) − H̄(−ψij)] def= εG(ψij) , (6)

where we neglect terms of O(ε2). Since H̄ is 2π -
periodic, G(π) = H̄(π) − H̄(−π) = H̄(π) − H̄(π) = 0
and G(0) = H̄(0) − H̄(0) = 0, implying that fixed
points corresponding to in-phase and anti-phase solu-
tions always exist, regardless of the form of H̄. Fixed
points ψ∗ �= 0, π may also exist, and they and the sta-
bility properties of all fixed points depend on the details
of H̄.

3 Phase reduction of segmental CPG models

As noted in the introduction, the lamprey CPG is
generally modeled as a chain of coupled units, each of
which can produce periodic bursts in isolation. As we
have noted, a functional unit may not coincide with a
single segment of the spinal cord, but we shall loosely
identify units with segments.

The intrasegmental architecture of Fig. 1 was pro-
posed in Buchanan and Grillner (1987), and slightly
different versions of this network have been used else-
where. There is now evidence that more neurons par-
ticipate in the basic unit (Parker 2006), but Fig. 1 is
a good place-holder for the detailed network. In this
model, inhibitory connections between the two sides
are considered important for the oscillations. Initial ex-
periments to determine whether isolated hemisegments
can oscillate produced inconclusive results (e.g. Harris-
Warrick and Cohen 1985; Buchanan 1999). However,
more recent results provide much greater support

E E

L L

C C

Fig. 1 The structure of the segmental oscillator proposed in
(Buchanan and Grillner 1987). E, C and L denote excitatory,
crossed inhibitory, and lateral inhibitory cells respectively. Ar-
rows and filled circles denote excitatory and inhibitory connec-
tions respectively. C cells inhibit all units on the opposite side.
E–E connections (dashed arrows) are excluded in some models.
In this study, we compare cell-based models with E–E connec-
tions to network-based ones without them
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Table 1 Parameters of the network-based model

Name Meaning Value in Sections 3-4 Value in Section 5

eE Tonic drive to E,L,C cells 0.005 − 0.07 except in Fig. 7(right) 0.01 − 0.075
eL 0.01 except in Fig. 7(right) 0.01
eC 0.1 except in Fig. 7(right) 0.1
τi Time constant of dynamics 10 10
wij Strength of intrasegmental connection from cell type i to j 1 for all i, j, except for the tuned model in Section 5
Aa Basic value of ascending/ Variable, see Section 4.1 0.02 or 0.4
Ad descending intersegmental connection strength in chains Variable, see Section 4.1 0.005 or 0.1
λa Space constant for decay of ascending/descending interseg- ln(2)−1 ≈ 1.44 Variable
λd mental connection strength with distance in chains ln(2)−1 ≈ 1.44 Variable
la Maximal length of ascending/ 5 10
ld descending intersegmental connections in chains 5 10

for the oscillatory capability of the hemi-segment
(Cangiano and Grillner 2003). For purposes of the
current analysis, we shall compare and analyze sim-
plified models of both network-based segmental and
cell-based hemisegmental oscillators, and explore their
similarities and differences. In Section 4 we consider
chains built of both types of units in order to study
intersegmental coordination. We shall also discuss the
limits of applicability of phase reduction methods.

3.1 A network-based segmental oscillator

Our network-based model is due to (Buchanan 1992;
Williams 1992) and has the same architecture as that
of (Buchanan and Grillner 1987). Six ODEs describe
the two sets of three cell types. Each type is charac-
terized by an activity variable a = a(t), representing a
population of cells with average firing rate f (a):

f (a) = [a]+
def=

{
f (a) = a if a ≥ 0
f (a) = 0 i f a < 0

}
, (7)

and the dynamics of the ith population is governed by
the dimensionless equation

ȧi = ei(vie − ai) − τ−1
i ai +

∑

j

wij f (a j)(vij − ai) , (8)

where ei and vie are the strength and reversal potential
of the tonic drive to population i, f (a j) is the firing
rate of population j, and wij and vij are the strength
and reversal potential of the coupling from j and i.
As in (Williams 1992) the following parameters were
used: τi = 10, vie = 1, vij = +1 and −1 for excitatory
and inhibitory connections respectively, and wij = 1 for
all intrasegmental coupling strengths. Excitatory E-E
feedback, shown dashed in Fig. 1, was not included.
Tonic drives were eL = 0.01, eC = 0.1 for L and C
cells, and were varied from eE = 0.005 to 0.07 for E

cells, allowing oscillation frequency to span a three-fold
range. For reference, all parameter values for this and
for the cell-based model are given in Tables 1 and 2.

As noted in Williams (1992), the essential units are L
and C cells. Contralateral inhibitory connections from
C cells ensure that one hemisegment is silent while
the other is active, and L cells terminate the activity
of ipsilateral C cells, resulting in antiphase left-right
activity. As this suggests, on each side C cells activate
first, followed by L and E cells, as illustrated in the
upper panels of Fig. 2, and the hemisegments burst in
antiphase as in fictive swimming (Buchanan 2001).

We computed PRCs via a numerical realization of
the direct method (Hoppensteadt and Izhikevich 1997):
see Fig. 2 (lower panels). Due to bilateral symmetry,
PRCs are only shown for one hemisegment, although
for this network-based oscillator, the limit cycle must be
viewed in the full six-dimensional space. These PRCs
will be used in Section 4 to determine coupling func-
tions between segments along the chain.

3.2 A pair of cell-based segmental oscillators

Our cell-based model is inspired by the detailed
biophysical models of (Wallen et al. 1992; Hellgren
et al. 1992; Lansner 1997; Kotaleski et al. 1999b)
and the simplified versions of (Ekeberg 1993; Wilson

Table 2 Parameters of the cell-based model

Name Meaning Value

e Tonic drive to all cell types 0.05 − 0.15
wij Strength of intrasegmental ±1 for all i, j

connection from cell type i to j
g Parameters of the Naka- 1.2
s Rushton function (11) 0.1
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Fig. 2 Time series (top)
and PRCs (bottom) for the
network-based model
of (Williams 1992) at
eE = 0.01 (left) and 0.07
(right). Outputs of E, L, and
C cells in one hemisegment
are shown solid, dotted and
dashed respectively; those
of the opposite hemisegment
are identical in form but π

out of phase
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E
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C
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L
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φ φ
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1999). In simulations reported in (Wallen et al. 1992;
Hellgren et al. 1992; Lansner 1997; Kotaleski et al.
1999b) the units E,L and C of Fig. 1 are each repre-
sented by a multi-compartment Hodgkin-Huxley type
neuron with 3 or 4 ion channels governed by 10-12 cou-
pled ODEs (Wallen et al. 1992), or by a population of
such cells (Hellgren et al. 1992). In these papers the role
of slow after-hyperpolarizing (AHP) currents acting
through Ca2+ dependent K+ channels is emphasized.
The E cells are assumed to be self-excitatory and para-
meters are chosen so that they exhibit bursts terminated
by slow accumulation of the AHP current [although in
some models contralateral inhibition is also required
for burst termination (Kotaleski et al. 1999a)]. Thus,
the core of these models is a group of bursting cells
in each hemisegment with mutual inhibition causing
alternating activity. Distinguishing between E and C
cells is not essential, although it increases the stability of
the oscillations (Hellgren et al. 1992), and L cells, which
are of primary importance in the network-based model,
play little role in the cell-based simulations. Indeed,
in Lansner (1997) L cells were completely excluded
from the network, thereby increasing its frequency
range. However, see Parker (2006) for a critique of this
reduction.

Bursting frequency in cell-based models can be
changed by varying the tonic drive, presumably via a va-
riety of mechanisms. For example, frequency would be
increased by raising the concentration of glutamate ei-

ther from descending inputs or other excitatory sources
such as neuromodulatory inputs that prolong plateau
potentials. Frequency would be decreased by increas-
ing the serotonin concentration either from intrinsic
serotonergic neurons or by descending or sensory sero-
tonergic inputs (Schotland and Grillner 1993) (but also
see Parker 2006). Other mechanisms will certainly be
identified.

In place of such biophysically-detailed spiking mod-
els, here we introduce a minimal spike-rate model in-
spired by Ekeberg (1993) and Wilson (1999). Each unit
is described by dimensionless activation and recovery
variables ai and ri respectively, the latter accounting for
spike rate adaptation due to AHP currents:

ȧi = −ai + e +
∑

j

wijN(a j, r j) , (9)

τi(e)ṙi = N(ai, ri) − ri . (10)

Here e is the common tonic drive to each cell and wij are
signed coupling strengths, positive for excitatory and
negative for inhibitory connections. In this model, firing
rates are described by a Naka-Rushton function:

N(a j, r j) = [a j − gr j]2+
s2 + [a j − gr j]2+

, (11)

which, unlike the piecewise-linear function of Eq. (7),
sets an upper bound on neural activity. The parameters
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Fig. 3 The Naka-Rushton
function N(a, r): a represents
excitation level of cells and r
is the level of spike-rate
adaptation due to slow AHP
currents. Parameter values
are s = 0.1, g = 1.2

1

0.5

gr

N( )a,r

s
a

g and s determine firing onset and the steepness with
which it rises: see Fig. 3.

Serotonin modulation (Schotland and Grillner 1993)
is included by allowing e to change the time scale of the
recovery dynamics, as in Wilson (1999):

τi(e) = 40

1 + (20e)2
. (12)

From (11), high values of r correspond to reduced
excitability, and (10) implies that ri slowly increases
during bursting and decreases during silent periods for
all cell types. However, the oscillatory properties are
primarily determined by E cells; thus we first consider
these alone. Limit cycles and PRCs for an isolated
E cell are shown in Fig. 4. Within each hemisegment

E, L, and C cells all share common tonic drive e
and excitation from the E cells, and although C cells
are additionally inhibited by L’s, all cell types exhibit
similar dynamics. Indeed, with appropriately balanced
connection strengths, e.g. wEE = wEL = 1; wLC = −1,
wEC = 2, the hemisegment exhibits identical dynamics
in all three units (modulo transients due to initial con-
ditions). Parameter values for the Naka-Rushton firing
rate function were s = 0.1, g = 1.2, and the tonic drive
e was varied from 0.05 to 0.15: see Table 2.

In this cell-based model, each hemisegment produces
a limit cycle oscillation, and derivation of PRCs for a
hemisegment is straightforward if those of individual
E cells are known (Fig. 4). Since there is no feedback
to E from L or C cells, perturbing the latter yields no
net phase shift after transients have decayed: hence the
PRCs for L and C cells are identically zero. This sug-
gests that the hemisegmental network can be reduced
by removing all external inputs to L and C cells (due to
their zero PRCs), and reassigning their outgoing con-
nections to the E cells (due to the identical dynamics),
thereby effectively eliminating L and C cells. It also
explains why L cells were found to have little role in
simulations and have been eliminated in recent cell-
based models (Kotaleski et al. 1999a).

Fig. 4 Time series of
activation and recovery
variables and firing rate
f (top), and PRCs (bottom)
of bursting E cells with
self-excitation in the reduced
cell-based oscillator for input
levels e = 0.05 (left) and
e = 0.15 (right). Periods are
T = 74.03 and T = 17.26
respectively

Ee=0.05 e=0.15

a( )φ

z( )φ z( )φ

φ

φ

φ

φ φ

a( )φ

r ( )

r( )φ

f( )φ f( )φ
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Fig. 5 The coupling function
of a pair of reduced
cell-based oscillators with
unidirectional excitatory
coupling (H̄e, left panel),
and with symmetric mutual
inhibition (Gii, right panel).
Roots of Gii with negative
derivatives correspond
to stable phase-locked
solutions. Here the antiphase
solution (ψ12 = π) is the
unique stable one

ψ12 ψ12

Gii( )ψ12He(ψ12)

11 22

e=0.05
e=0.05

e=0.15

e=0.15

EE EE

We shall use the reduced E cell hemisegment of
Fig. 4 as a building block for the segmental CPG in
Section 4.2, below. We prepare for this by examining
the behavior of two coupled hemisegments, which is
done in two steps. We first compute the averaged cou-
pling function H̄e(ψ12) of a hemisegment that receives
weak excitation from a similar unit, obtaining the left
panel of Fig. 5. This shows that H̄e(ψ12) has a stable
fixed point close to ψ12 = 0, implying that the driven
cell 1 bursts almost in phase with the driver 2, with a
phase lag that increases with tonic drive amplitude e.

In the weak coupling limit under phase reduction,
inhibitory connections are obtained from excitatory
ones by a simple change of sign. The averaged coupling
function for symmetric inhibition is therefore

Gii(ψ12) = −H̄e(ψ12) + H̄e(−ψ12) (13)

(cf. Eq. (6)). As noted in Section 2, there are fixed
points at ψ12 = 0 and π , and the right panel of Fig. 5
reveals that the former is always unstable and the latter
stable, but that its stability becomes very weak at low
tonic drives. Indeed, Gii(ψ12) is almost zero in a neigh-
borhood of ψ12 = π for e = 0.05. This follows from the
shape of the PRC, which is almost identically zero over
much of its range for small e: see Fig. 4(bottom left).

4 Coupling and phase lags along the cord

As noted in Section 1, two mechanisms have been
proposed to account for travelling waves with con-
stant intersegmental phase lags: frequency gradients
(Cohen et al. 1982), and asymmetrical coupling
strengths (Ermentrout and Kopell 1984). The first per-
mits backward swimming, which lampreys do exhibit

in certain circumstances; moreover, increased excita-
tion at the caudal end of the cord has been seen
to reverse the sign of phase lags (Matsushima and
Grillner 1992). However, lack of consistent frequency
gradients in dissected cords, and evidence for asymme-
try in ascending/descending coupling (Buchanan 2001;
Williams et al. 1990) generally support the second
mechanism. We therefore adopt it here.

In spite of extensive experiments, knowledge of
intersegmental connectivity remains fragmentary. Be-
cause of the apparent lack of segmentation in neural
structure other than in ventral and dorsal roots, it is
typically assumed that inter- and intrasegmental con-
nections are similar and that the former are local, either
via nearest neighbors (Williams 1992), or in case of
multiple segments, with strengths that decrease with
intersegmental distance. Both schemes produce similar
behaviors (Kopell 1990). However, it is also known that
there are special interneurons in the CPG having long
axonal projections (Buchanan 2001); cf. (Wadden et al.
1997), although little is known about their function.

In this section we assume that intersegmental con-
nections from cell type k in segment j to type l in
segment i are of the form α j−iwkl = ±α j−i, implying
that all coupling strengths between two given segments
j and i are equal for arbitrary j − i. Strengths α j−i

are specified in Section 4.1. Drawing on the theory of
Section 2, we may therefore refine the general form of
the phase model (1), after averaging, to read

ψ̇i =
∑

j∈N (i)

α j−i H̄(ψij) , i = 1, 2, . . . , n , (14)

where ψij denotes the phase difference between the
ith and jth segments, coupling functions are summed
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Fig. 6 Left: coupling functions for a pair of segments in
the network-based model with unidirectional intersegmental
coupling and eE = 0.005, 0.0075, 0.01, 0.02, 0.04, 0.06, 0.07, cor-
responding to a frequency range of 0.015, . . . , 0.052. Intraseg-

mental coupling strengths are equal (wij = 1) as in Section 3.1.
Center: the segmental network. Right: detail of coupling function
near ψ12 = 0

over the connectivity neighborhood N (i) of the ith seg-
ment, and we assume constant frequency along the cord
(ωi ≡ ω0).

4.1 The network-based model

In a sufficiently long chain with bi-directional nearest-
neighbor intersegmental coupling that is significantly
stronger in one direction than in the other, both be-
ing much weaker than connections within a segment,
intersegmental phase lags between adjacent segments
are determined primarily by the dominant direction
(Kopell et al. 1991), and they are equal to that of a pair
of oscillators with one-way coupling. (Connections in
the weaker direction may nonetheless cause boundary
effects.) Fig. 6 shows numerically-evaluated coupling
functions H̄net for a pair of unidirectionally coupled
units over a range of tonic drives (cf. Williams and
Bowtell 1997, Fig. 3, but note that there and in Williams
1992) the sign convention differs from ours. The ze-
roes near ψ12 = 0 correspond to stable fixed points,
and the resulting phase lags ψ12 = �net > 0, shown in
Fig. 7(left), agree well with simulations of Williams
(1992) in which ascending intersegmental coupling was

assumed to be 2.5 times stronger than descending, and
both were significantly weaker (≈ 1%) than intraseg-
mental connection strengths. Phase lags remain ap-
proximately constant over a threefold frequency range,
approximating that seen in fictive swimming, but nar-
rower than that of a live swimmer (Williams 1992).
Since both segmental models are dimensionless, the
frequency scales in Figs. 6, 7 and 9 and 11 (below) are
arbitrary.

The phase lag vs frequency relation is not especially
robust, and behaviors of ostensibly similar models may
therefore differ. Even for the present model, parameter
changes can disrupt the approximately constant phase
lags, as shown in Fig. 7(right), for which the tonic
drives were changed to eL = eE, eC = 5eE and eE was
varied from 0.001 to 0.1, in place of the values given in
Section 3.1.

The applicability of phase reduction and averaging
is questionable for the lamprey CPG, which exhibits
relatively strong coupling. We therefore compare a
more realistic version of the model of (Williams 1992)
to phase reduction-based predictions. We allow bidi-
rectional intersegmental coupling and assume that its
strength αk decays exponentially with distance k, where

Fig. 7 Average
intersegmental phase lags vs.
oscillator frequency for stable
zeroes in the network-based
model with weak
unidirectional coupling;
�net > 0 implies that the
postsynaptic segment leads.
Left: tonic drive parameters
of Section 3.1. Right: modified
tonic drives can significantly
change phase lags. See text
for further discussion
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k > 0 and k < 0 denote ascending and descending con-
nections respectively, see Fig. 8:

αk =
⎧
⎨

⎩

Ad exp(−|k|/λd), if −ld ≤ k ≤ −1,
Aa exp(−|k|/λa), if 1 ≤ k ≤ la,
0, otherwise.

(15)

We set Ad = 0.2, Aa = 1, λd = λa = 1/ln2 and la = ld =
5, so that ascending connections are 5 times stronger
than descending ones, all strengths decay by a factor
of 2 as distance increases by 1, and all connections
extend over 5 segments. Various experimental results
have been used to argue that ascending coupling is
stronger than descending coupling (Williams et al. 1990;
Williams and Sigvardt 1994; Kiemel et al. 2003), but
the ratio Aa/Ad is not known. Chains of 30 such seg-
ments were simulated and the resulting average phase
lags are plotted against frequency in Fig. 9. Simulation
results for moderate intersegmental strengths are also
presented (Ad = 0.02, Aa = 0.1; other parameters un-
changed).

The phase-model-based predictions ignore the
weaker descending connections, and the coupling
function H̄net(ψij) is linearised at ψij = �net, so
that H̄net(ψij) ≈ H̄′

net(�net) (ψij − �net). From (14) the
necessary and sufficient condition for a phase locked
solution ψ̇i = 0 with uniform phase lag ψij = � per
segment is

0 =
5∑

j=1

α j H̄net( j�) ≈ H̄′
net(�net)

5∑

j=1

α j( j� − �net) ,

(16)

αk
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0.2

0.3

0.4

0.5

k
Fig. 8 Intersegmental coupling strengths used in the strong cou-
pling simulations, relative to intrasegmental coupling strength.
Abcissa shows connection length in segments, positive for
rostrally- and negative for caudally-projecting connections.
(Compare with Fig. 14(c) below)
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Fig. 9 Average phase lags in the network-based model with bidi-
rectional distributed coupling. Filled circles: the strong coupling
of Fig. 8. Open circles: strong ascending and zero descending
coupling. Filled and empty triangles: coupling with 10% of strong
values. Filled squares: predictions of phase reduction theory with
the coupling strengths of Fig. 8

where α j = Aa exp(−| j|/λa) denotes the strength of
length j connections in the dominant (ascending) direc-
tion. From (16), and using the strengths shown in Fig. 8,
we derive

� = �net

∑5
j=1 α j

∑5
j=1 jα j

≈ 0.54 �net . (17)

This prediction is also shown in Fig. 9, where we see
that strong connectivity can modify the weak coupling
limit. Specifically, strong ascending and relatively weak
descending coupling leads to smaller phase lags (solid
circles), but further weakening the descending con-
nections can increase the phase lags (open circles).
Nonetheless, the qualitative predictions of phase reduc-
tion are preserved and the conclusion that the network-
based model can produce near-constant phase lags over
a broad frequency range still holds.

4.2 The cell-based model

The cell based model can be analyzed in a similar
manner. In Section 3 we showed that contralateral
hemisegments oscillate in antiphase. We now con-
sider two segments with one-way coupling. Assum-
ing that ipsi- and contralateral connection strengths
are equal (wEE = 1, and wEE′ = −1, respectively), we
computed averaged coupling functions (Fig. 10) and
their stable zero-crossings (Fig. 11) for a hemiseg-
ment that receives excitation from another ipsilateral
hemisegment with phase difference ψ12, and inhibition
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from a contralateral hemisegment with phase shift
ψ12 + π . The function plotted in Fig. 10 is therefore
H̄cell(ψ12) = H̄e(ψ12) − H̄e(ψ12 + π), where H̄e is the
excitatory coupling function of Fig. 5(left). Intraseg-
mental cross-inhibition was not included because this
connection uniformly affects every hemisegment in
the chain, and therefore does not influence interphase
relations.

The most striking result is that the phase lag �cell <

0, corresponding to a phase lead of the segment that
sends the coupling. This suggests that to obtain rostro-
caudal phase lags in a cell-based chain, descending
connections must be stronger than ascending ones, in
contrast to the claims of (Williams et al. 1990; Williams
and Sigvardt 1994; Kiemel et al. 2003), and to the con-
dition for the network-based model. We were unable
to obtain �cell > 0 by parameter tuning, but have no
explanation for this finding. This does not necessarily
imply that the cell-based model is incorrect; indeed,
other studies find that descending connections may be
stronger (Hagevik and McClellan 1994; McClellan and
Hagevik 1999), although they use larval lampreys, and
all the experimental studies make modeling assump-
tions. It is perhaps best to think of the network- and
cell-based models as extreme cases in a continuum of
CPG architectures. In this sense neither model would
be expected to be entirely correct.

However, Fig. 11 shows that phase differences vary
significantly with frequency, and parameter tuning did
not affect this either. In similar but more detailed
models (Wadden et al. 1997; Kotaleski et al. 1999a,
b), phase differences were also found to increase with
frequency, even when explicit time delays (e.g. synap-
tic delays) were excluded. This undesirable frequency-
dependence of phase seems to be robust in CPGs built
of cell-based segmental oscillators, and it is partially
understood. Specifically, as noted in Section 3.2, the
dominant effect of tonic drive in such models is to
change the time constant of the slow AHP dynamics.

ψ12

Hcell(ψ12)

e=0.05

1

2e=0.15 E

E

E

E

Fig. 10 Coupling functions H̄cell(ψ12) for a pair of cell-based seg-
mental oscillators with unidirectional coupling and tonic drives
e = 0.05, 0.07, 0.09, 0.11, 0.13, 0.15

Fig. 11 Phase lags of stable
solutions of the cell-based
oscillator with unidirectional
coupling. In contrast with the
network-based model,
�cell < 0 (the presynaptic
unit leads) and �cell strongly
depends on frequency

e=0.05

e=0.15

Δ
/2

π
ce

ll

frequency

Equation (12) implies that, as e decreases, τi(e) in-
creases, so that the oscillators approach their relaxation
limit with decreasing frequency. Somers and Kopell
(1993) showed that chains of relaxation oscillators with
equal ascending and descending coupling rapidly and
robustly synchronize. Moreover, chains with asymmet-
rical coupling, such as lamprey CPG, often exhibit
synchrony in spite of the asymmetry (Somers and
Kopell 1995), although travelling waves can also occur.
Izhikevich (2000) demonstrated that phase reduction
techniques yield similar results.

5 Phase reduction for individual connection types
in the network-based model

The studies of deterministic intersegmental coupling
described in Section 4 assume homogeneity and unifor-
mity along the cord, and, as emphasized, our phase os-
cillator based results are guaranteed only in the limit of
weak coupling. Nonetheless, we have shown that phase
oscillator predictions give a good indication of phase
lags for a particular case of strong localized coupling
(Fig. 8). Here we further investigate the influence of
intersegmental connections among different cell types
for the network-based model.

In Section 4 we focused on the constancy of adjacent
intersegmental phase differences �net and �cell with
swimming frequency. We now examine variations in
the phase lag along the cord. Phase models with short
connections reproduce the near-constant phase lag ob-
served in fictive swimming, but if connection lengths
are comparable to that of the chain, significant varia-
tions in phase differences between adjacent segments
can appear, as illustrated in Fig. 12. Here the maxi-
mal connection length is only 1/6 of the total length;
however, axons spanning over half the spinal cord
length have been identified in lamprey, suggesting that
locally-coupled oscillator models are insufficient to ex-
plain the data.

Long connections can disrupt phase relations but
they also may preserve them if appropriately cho-
sen. Inspired by known differences in the characteris-
tic lengths of different connection types in the spinal
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Fig. 12 Phase lags ψk,k+1 between adjacent segments as a func-
tion of segment number k for the coupling scheme of Fig. 8,
with uni- and bidirectional coupling (open and filled circles
respectively)

cord (Buchanan 2001), we therefore now attempt to
tune connection strengths in a manner dependent on
their lengths. We use phase reduction to derive sepa-
rate coupling functions for each connection type. These
are then summed to produce the net length-dependent,
segment-to-segment coupling. The resulting model al-
lows us to tune coupling with length to produce a
uniform traveling wave and, subsequently, to study
randomized connections.

5.1 Tuning connections with length

To describe tuning (Mellen et al. 1995), we first con-
sider the phase model

ψ̇i =
n∑

j=1

α j−i H̄ j−i(ψij), i = 1, . . . , n, (18)

which is more general than (14) since both the strength
(α) and form (H̄) of intersegmental connections may
depend on distance ( j − i). Let �net,k be a stable zero of
H̄k (H̄k(�net,k) = 0 and H̄′

k(�net,k) < 0). To tune (18),
we choose the H̄k so that �net,k = k�, where � is the
desired phase lag per segment. The tuned model then
has a uniform traveling wave: ψij = ( j − i)� and the
coupling strengths αk can be varied without affecting
phase lags (although stability types may change).

To tune the phase reduction of the network-based
neural model (7–8), we choose the H̄k to have the form

H̄k(ψ) =
∑

c∈S

wk,c H̄c(ψ), (19)

where wk,c ≥ 0 are weights, S = {EL, EC, LC, CE,

CL, CC} is the set of connection types, and H̄c is the
coupling function for connection type c.

The averaged coupling functions H̄c for default
model parameters are shown in Fig. 13. PRCs leading
to these functions were computed numerically using
the direct method (Hoppensteadt and Izhikevich 1997).
Curiously, all six individual functions are rather de-
generate, being almost tangent to the horizontal axis
near ψ = 0. (This is not necessarily true for other
parameter values.) The H̄EL, H̄LC and H̄CC coupling
functions are positive, indicating that these three con-
nection types always speed up the postsynaptic oscilla-
tor. In contrast, the H̄EC and H̄CL coupling functions
are negative, indicating that these two connection types
slow down the postsynaptic oscillator. The H̄CE cou-
pling function has zeros, but primarily slows down the
postsynaptic oscillator.

For consistency with Section 4.1, we normalize
by setting

∑
c wk,c = 6 for all lengths k. In particu-

lar, the coupling function H̄net of Fig. 6 is a spe-
cial case of H̄k in which all connection strengths
are weighted equally (wk,c ≡ 1). Here we denote this
coupling function as H̄(ψ) = ∑

c H̄c(ψ). Another spe-
cial case of H̄k results from weighting only con-
nection type c: H̄k = 6H̄c. Figure 14(a) shows the
summed coupling functions H̄, 6H̄CE and 6H̄EL. H̄(ψ)

has a stable zero at ψ = 0.024 (cf. Fig. 7, (left)), which
moves rightward as wk,EL increases (thin solid lines in
Fig. 14(a) between H̄ and 6H̄EL). Similarly, increasing
wk,CE moves it leftward. In this way, we can adjust H̄k

to have stable zeros in an interval between the zero
of H̄CE and the near-tangency of H̄EL. Such combined
couplings replace the structurally unstable zero cross-
ings of Fig. 13 with a nondegenerate zero.

To determine the potential range of these stable
zeros, for each �net we adjust the weights wk,c to mini-
mize H̄′

k(�net) subject to the constraint H̄k(�net) = 0.
If the minimum is negative, then �net is a potential
stable zero and the magnitude |H̄′

k(�net)| indicates the
functional strength of H̄k. Adjusting the weights of all
connection types, we find that a wide range of �net

values are potential stable zeros (Fig. 14(b), thin black
line), although functional strength is low for some of
them. Restricting to the types of H̄k shown in Fig. 14(a),
only values of �net from -0.12 to 0.18 are possible: see
Fig. 14(b), thick black and grey lines.

We now consider a particular example of a tuned
model, restricting our study to the types of H̄k shown
in Fig. 14(a), for simplicity. We adjust the weights
wk,c so that the H̄k are tuned with �/2π = 0.01
for −ld ≤ k ≤ la, where ld and la are the maximum
lengths of descending (caudally-projecting) and ascend-
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Fig. 13 Coupling functions
for each type of connection
defined in Section 5.1. Note
differences in vertical scales.
Tonic drive eE = 0.025
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ing (rostrally-projecting) connections, respectively, cf.
Eq. (15).

The strength αk,c of a connection of length k and
type c is given by αk,c = αkwk,c, as shown in Fig. 14(c)
for an example with weak coupling. For ascending con-
nections of length |k| > 2, αk,c is largest for connections
from E to L and is equal for all other types. For ascend-
ing connections of lengths 1 and 2 and all descending
connections, αk,c is greatest for connection type C to E
and is equal for all other types.

Figure 14(d) (open circles) shows the resulting equi-
librium phase lags for the phase model with the connec-
tion strengths of Fig. 14(c). By construction, the phase
lags are exactly 1% per segment. Using the same tuned
connection strengths, the neural model with weak cou-
pling (filled squares) closely matches the phase model.
Increasing all strengths by a factor of 20 causes a sub-
stantial reduction in phase lags of the neural model
(filled upward triangles). (Lags predicted by the phase
model do not change with strength.) However, even for
this level of coupling strength, the model exhibits an
approximately uniform traveling wave. In contrast, the
neural model with strong untuned connections (H̄k ≡
H̄) fails to exhibit a traveling wave and instead has
intersegmental phase lags near zero (filled downward
triangles). The phase lags for this untuned model are
smaller than for the untuned models shown of Fig. 9,
because the present example has longer connections
(compare Figs. 8 and 14(c)). The wider the range of
connection lengths, the greater the effect that tuning
has on phase lags.

As previously noted in Section 4.1, the robustness
of phase lags in the network-based model to frequency
changes does not necessarily persist when model para-
meters are changed. Just as modifying tonic drives can
reduce robustness (Fig. 7), so can tuning of connections.
However, the presence of long connections can at least
partially restore robust phase lags, as illustrated in
Fig. 15. When tuned connection strengths decay rapidly
with distance (small λd and λa), phase lags show strong
dependence on frequency, but as longer connections
become more prominent (increasing λd and λa), fre-
quency dependence weakens. This suggests that adding
longer connections might be a general mechanism to
make phase lags more uniform over a wide frequency
range (see Section 6).

5.2 A chain with random connections

In common with all complex organisms, lampreys ex-
hibit considerable individual variety with respect to
connectivity. To address this, we now modify the exam-
ples of Section 5.1, replacing the prescribed determinis-
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Fig. 15 Effect of connection lengths on robustness of phase
lags. Mean phase lag between adjacent oscillators is plotted as
a function of frequency. Changes in frequency are produced by
varying the tonic drive eE from 0.010 (low frequency) to 0.075
(high frequency) for four different values of λd describing the
decay of coupling strength with length. In each case, Aa = 0.4,
Ad = 0.1, la = ld = 10, λa = 0.3λd, and connections were tuned
with �/2π = 0.01 based on the coupling functions for eE = 0.025
(Fig. 13). Filled circle corresponds to the strong tuned neural
model of Fig. 14(d)

tic connections by random intersegmental connections.
Although intra-segmental connections could also be
chosen randomly, for simplicity we only randomize the
intersegmental connections.

In contrast to the deterministic coupling of Section
5.1, all connections in the random model are given
equal strength, but some are assigned a higher proba-
bility of being chosen more than once, thus effectively
producing a range of strengths between each pair of
segments. Each connection is chosen randomly based
on a Poisson distribution, with probability proportional
to connection lengths and strengths in the tuned deter-
ministic model (see Fig. 14(c)). Stronger connections
in the deterministic model thus induce higher proba-
bilities of choosing those connections in the random
model. In this way, different connection strengths are
reflected in the number of times that a given connec-
tion from i to j is chosen. Since the strength of each
connection is inversely proportional to the mean of
the distribution, as the number of connections becomes
large, the random model approaches the deterministic
model.

As in Fig. 14(d), Fig. 16 illustrates the phase lag rel-
ative to the first segment, but for random connections.
Two particular simulations are shown in Fig. 16 for both
the randomly-connected neural and the phase models,
with weak coupling above and strong coupling below.
In both panels the average number of connections is
200. Dotted and dashed lines show the phases of the
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deterministic phase and neural models respectively.
Squares and circles denote results from two different
simulations (see key on panels).

In contrast, Fig. 17 illustrates convergence of the
random models to the deterministic models in terms of
mean phase lag, as the average number of connections
per segment grows. The mean phase lag per segment
is computed by first finding the mean phase lag over
the thirty oscillators, then computing the mean and
standard deviation over the fifty simulations. It also
corresponds to the slope of linear fits to the data in
Fig. 16. Figure 17 shows that both the strongly and
weakly coupled neural models, indicated by triangles
and squares, converge to the mean phase of the deter-
ministic neural models, indicated by the dotted lines.
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Fig. 16 Phase lags for the randomly-coupled model. Each panel
shows two examples of the phase lag relative to the first segment
plotted as a function of segment number for weak (top) and
strong (bottom) connections. The dotted line is the phase lag
with respect to the first oscillator for the deterministic phase
model and the dashed line is the mean phase lag for the tuned
deterministic neural model. The average number of connections
for these examples is 200
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Fig. 17 Mean and standard deviation of the phase lag per seg-
ment are shown for increasing mean number of connections for
both the neural model with strong and weak connections and the
phase model (data are identical for strong and weak connections,
so only one line is shown), as indicated in the legend. Note
that the mean phase lag of models with randomly generated
connections approaches the mean phase lag per segment of the
deterministic models, as the average number of connections gets
larger

The random phase model is represented by the solid
line that converges to the mean phase of the determin-
istic phase model, shown by the dashed line. Standard
deviations (error bars) decrease as the average number
of connections per segment increases. An average of
100 connections per segment seems to be the point at
which the oscillators are almost certainly phase locked.
Below 100, the chances of the oscillators not achiev-
ing phase locking increases significantly. This figure
is consistent with typical cell and axonal densities in
lamprey spinal cord. Although there is no direct exper-
imental evidence regarding the number of connections
per segment, with about 1000 neurons per segment, it
is reasonable to expect at least 100 connections per
segment.

6 Summary and discussion

In this paper we have used phase response and aver-
aging theory (Sections 2–3) to compute intersegmental
coupling functions for network- and cell-based models
of lamprey central pattern generators (Section 4). We
find that, while the coupling functions thus derived are
qualitatively similar to the sinusoids assumed in early
phase models, they differ sufficiently from them and
from each other that their traveling wave solutions,
characteristic of fictive swimming in vitro, behave in
qualitatively distinct manners as swimming frequency
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varies. In particular, while ascending and descending
couplings in the network-based model can be tuned in
a biologically-reasonable manner to produce a near-
constant phase lag of ≈ 1% per segment over the ap-
propriate frequency range (Fig. 7(left)), the cell-based
model is less robust in that its phase lags tend to
decrease with frequency, and can even change sign as
frequency increases (Fig. 11).

The results of Section 4 also show that phase models,
derived under the assumption of weak coupling, can
nonetheless give results indicative of traveling wave
behavior for oscillator chains with coupling strengths
more realistic for lamprey. In Section 5 we exploit this,
using phase response theory to probe the contributions
of connections among specific cell types in the network-
based model, to intersegmental coupling and to phase
lags in the resulting traveling waves. We find that, while
individual coupling functions tend toward structural
instability (Guckenheimer and Holmes 1983) (Fig. 13),
linear superpositions of them can be tuned to produce
stable traveling waves over a reasonable frequency
range (Fig. 14), and moreover that random connections
drawn from probability distributions of strengths and
lengths characteristic of lamprey data also produce ro-
bust traveling waves (Fig. 16).

We end by discussing two aspects of this work of par-
ticular relevance to modeling CPGs of lamprey CPG
and of anguilliform swimmers in general.

6.1 Robustness of constant phase lag vs. frequency

We propose three possible mechanisms to explain the
fact that approximately-constant ≈ 1% per segment
lags are observed over the animal’s range of swimming
speeds, but that phase lags can be disrupted by per-
turbations in coupling strength, even for the network-
based model (Fig 7(right)).

1. Descending input from the brainstem preserves
phase lags as frequency changes The necessary con-
straint in the network-based model of (Buchanan
1992; Williams 1992) is that tonic drives to the
crossed inhibitory (C) and lateral interneurons (L)
should remain constant as the drive eE to the ex-
citatory interneurons (E) is varied. However, this
particular constraint is due to the specific parame-
terization in (Williams 1992) that was also adopted
here (Section 3.1). In general, given a parameter-
ization of the CPG model, all three tonic drives
would have to be changed in a coordinated way
to preserve the desired phase lags. There is also
the possibility that changes in tonic drives vary

systematically along the length of the spinal cord
(not examined here).

2. Due to long distance connections, phase lags depend
only weakly on spinal cord activation In general, as
longer connections become more prominent, phase
lags become less sensitive to changes in activation
(Fig. 15). This mechanism does not require a spe-
cific activation pattern, consistent with the fact that
activation of the spinal cord by bath application of
drugs in vitro with brain and brainstem removed
produces phase lags that approximate those seen
in swimming in vivo. A special case would be to
have 50-segment-long connections impose phase
differences of π (Cohen et al. 1982; Ermentrout and
Kopell 1994a). However, although such long “anti-
phase” connections can potentially produce very
robust lags, they are not thought to be the primary
mechanism for phase regulation in the lamprey
CPG, since pieces of spinal cord as short as 20
segments exhibit phase lags characteristic of intact
animals (Williams and Sigvardt 1994).

3. Phase lags are tuned by a self-regulating mechanism
Ermentrout and Kopell (1994b) studied a CPG
network model in which phase lags are led toward
constancy by a higher-order “teaching” network.
Such mechanisms have not been identified in lam-
prey, but neural plasticity can facilitate network
regulation, and it is present in the lamprey although
its role is unclear (Parker 2006). Identification of a
self-regulating effect could resolve the conflict be-
tween the robustness of the biological network and
the sensitivity of current computational models.

In the intact animal, proprioceptive neural feedback
(e.g., from edge cells) and mechanical connectivity af-
forded by muscles and body tissues may provide sub-
stantial additional constraints and help establish and
stabilize traveling waves. However, in vitro studies with
muscles and sensory inputs removed show that these
components are not necessary.

6.2 Does intersegmental coupling vary systematically
with length?

In Section 5.1 we showed how a phase model can
be used to tune coupling in a neural model so that
it exhibits an approximately uniform traveling wave.
Tuning involves varying the relative strengths of differ-
ent connection types systematically with length. Such
variations do exist in the lamprey CPG. For example,
only lateral interneurons are known to project to dis-
tances as long as 50 segments (Rovainen 1974), so the
relative strength of L to C connections compared to
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other connection types would be expected to increase
with distance. What is not known is whether the vari-
ation of relative strength with length in the lamprey
CPG follows the pattern of tuning. For example, if
connections are tuned and only L to C connections exist
at length 50, then this connection type should have a
stable relative phase of around π , since phase lags are
about 1% per segment. This is not true for the network-
based model with our default parameters (Fig. 13).
However, it may be a limitation of the model, which
was originally developed with only nearest-neighbor
connections (Williams et al. 1990; Williams and Bowtell
1997).

From Fig. 14(b), we see that the model is most
effective in stabilizing phases of less than 0.2. However,
connections of lengths greater than 20 provide substan-
tial coupling (Rovainen 1985; Miller and Sigvardt 2000;
Kiemel et al. 2003). This suggests that the model should
be modified to increase the effectiveness of long con-
nections. The two options are to change model para-
meters or to fundamentally change the structure of the
model. In terms of the second option, it may be useful
to explore the idea that the cell types that mediate long
distance coupling, such as laternal interneurons, are not
required to produce oscillation (Parker 2006).

Laternal interneurons are essential for oscillation
in the network-based model, since they provide the
only inhibition within a hemisegment. Introducing ad-
ditional cell types or cellular properties to assume
the oscillatory role of the LINs and/or combining
the network-effect with cell-based oscillators may pro-
vide sufficient freedom to develop a model in which
these cells are able to provide effective long distance
coupling.
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