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Abstract. We study chains of relaxation-type neural oscillators with local excitatory coupling. Phase reduc-
tions suggest that such networks typically exhibit traveling waves, but relaxation oscillators often
synchronize. We examine these behaviors using the phase response and fast threshold modulation
(FTM) theories, which respectively describe network behavior for infinitesimally weak and moderate
coupling. Surprisingly, the two different approximations yield quantitatively consistent predictions
for chains with one-way coupling. Specifically, approaching the relaxation limit, such chains can
exhibit waves with vanishing phase differences (i.e., synchrony) propagating in the coupling direc-
tion, or waves with persistent phase differences traveling against the coupling direction. These
results provide novel support for the finding that caudo-rostral coupling dominates in the lamprey
central pattern generator (CPG), and they suggest that recent models may underestimate the role
of network effects in burst generation.
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1. Introduction. Phase reduction theory, originally developed by Malkin [30, 31] and
independently rediscovered by Winfree [43] (cf. [14]), provides a method for the simplification
and analysis of networks of coupled oscillators, including those composed of spontaneously
oscillatory spiking or bursting neurons. Augmented by the averaging theorem [15] for weakly
coupled systems, it allows one to reduce N sets of M ordinary differential equations (ODEs),
each set describing an oscillator having a hyperbolic (attracting) limit cycle, to a system of N
ODEs approximating the phases of each oscillator along its limit cycle. See [18] and [19] for
more recent statements of Malkin’s theorem. Phase reduction always applies for sufficiently
weak coupling, but it often extends to stronger coupling [11].

According to this theory, chains of oscillators with local coupling generically exhibit trav-
eling waves, except for symmetrical bidirectional coupling or special types of interactions such
as coupling of neural oscillators via gap junctions [7, 22, 23]. However, the interaction of
relaxation oscillators seems to be exceptional: they phase-lock with zero phase-difference,
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(i.e., they synchronize) in cases where one would expect traveling waves [35, 36]. This syn-
chrony is robust against perturbations: while phase oscillators compensate for perturbations
by changing their phase relations, relaxation oscillators typically compensate via changes in
waveforms.

There are at least two explanations for this behavior. Phase reduction neglects the effects
of nonlinearities in coupling: it requires that orbits perturbed by coupling remain sufficiently
close to unperturbed limit cycles at all times, which holds for sufficiently weak coupling ε � 1.
Relaxation oscillators combine fast and slow dynamics (i.e., two characteristic time-scales with
ratio μ � 1), and in this case phase reduction requires extremely weak coupling: ε � μ [19].
In relevant ranges of μ, the oscillators’ interactions are typically dominated by higher order
effects that are not captured by phase theory. Fast threshold modulation (FTM) theory
[35, 36] was introduced to explain this behavior. Motivated by synaptic coupling of neural
oscillators, it applies to moderate or strong coupling: μ � ε.

Despite the apparent contrast between relaxation and phase oscillators, and the limited
applicability of phase reduction to the former, phase theory can also account for synchroniza-
tion of relaxation oscillators [19], and its predictions agree qualitatively with those of FTM
theory. The reason for this unexpected behavior is that the function H(ψ) describing the
effect of coupling between two oscillators is discontinuous at certain points with respect to
their phase difference ψ.

In this paper we apply phase reduction for weak coupling (ε � μ � 1) and a combination
of FTM and phase theory for relaxation-type oscillators (μ � ε � 1). We ask if a given
system exhibits traveling waves or synchrony and compare predictions of the two methods,
thereby shedding light on behaviors expected under variations in coupling strength ε. Both
approaches are required to obtain a global picture of the behavior of coupled chains, and we
show that their predictions are quantitatively similar in chains with one-way coupling, despite
the different mechanisms. In section 2 we analyze a pair of oscillators with one-way coupling
in the phase reduction limit and outline a generalization to unidirectionally coupled oscillator
chains, and section 3 is an analogous study of the FTM limit. In these sections we describe
an interesting property of traveling wave solutions: in the limit μ → 0 waves propagating in
the coupling direction approach synchronous dynamics, but counterpropagating waves persist
(Theorems 2.1 and 3.1). These results provide quantitative conditions for traveling waves
versus synchrony in arrays of unidirectionally coupled relaxation oscillators. The behavior of
bidirectionally coupled chains is also briefly discussed at the end of each section. In section 4
we demonstrate that most, but not all, simple oscillators exhibit the first behavior: synchrony
is more common in the relaxation limit than traveling waves, and we provide a sufficient
condition for this in Theorem 4.1. Section 5 contains illustrative examples of both behaviors.

In section 6, we apply these results to the neural central pattern generator (CPG) of the
lamprey. Recent lamprey CPG models [39, 27, 26] are double chains of relaxation-type bursters
in which the burst frequency is adjusted by neuro-modulators that tune the slow time-scale μ
so that the relaxation limit is approached as swimming speed decreases. Simulations indicate
that these models exhibit synchrony in the relaxation limit and that phase lags between
neighboring units depend strongly on swimming frequency, being small at low frequency and
larger at high frequency. In contrast, the animal exhibits quasi–frequency-independent phase
patterns. As we will show, this shortcoming could be eliminated if the model’s parameters
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were adjusted to generate traveling waves in the relaxation limit. The paper concludes with
section 7. We relegate many technical details in the proofs of Theorems 2.1 and 3.1 to a
series of appendices. Background on CPGs can be found in [8], and background on phase and
relaxation oscillator models can be found in [21, 23].

2. Relaxation oscillators in the phase limit. We consider a pair of identical relaxation
oscillators O1,O2, each with one slow variable xj and one fast one yj . The time-scale ratio
is set by the parameter 0 < μ � 1, and μ → 0 is the relaxation limit. If O1 receives weak
coupling (ε � μ) from O2 in the fast variable, the ODEs for O1 are

ẋ1 = f(x1, y1),(2.1)

ẏ1 =
1

μ
[g(x1, y1) + εh(x1, y1, x2, y2)] ,(2.2)

while those of O2 are the same, but without the coupling term h. Henceforth we assume
that the fast equation (2.2) has a cubic-shaped nullcline or slow manifold g = 0, and that
for ε = 0 a stable hyperbolic limit cycle Γ of period T exists, on which xj slowly decreases
(resp., increases) near the lower (resp., upper) branch of g = 0; see Figure 1. Henceforth, in
describing a single oscillator, we typically drop the subscripts.

In section 2.1 we summarize the results of Izhikevich [19] and prepare for section 2.2.
There we prove our first theorem, extending the leading order phase response curve (PRC)
expressions of [19] to the next order and providing explicit estimates of the width and height
of PRC peaks in terms of fractional powers of μ (Figure 5).
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Figure 1. Schematic phase portrait of a 2D relaxation oscillator with cubic-shaped nullcline (thin curve).
Arrows show directions of the vectorfield; φ denotes the phase along the limit cycle (thick curve); φ = 0, D
denote phase values at the instantaneous jumps; and x(0), y(0), y(0+), etc. denote the coordinates of the
corresponding points in phase space. Oscillators are assumed to be active on the upper branch φ ∈ (0, D) and
silent on the lower branch φ ∈ (D, 0).

2.1. Phase reduction and previous results. Like any ODE with a stable hyperbolic limit
cycle, (2.1)–(2.2) can be reduced to a phase description [18]. We define the phase φ = φ(x, y)

along Γ such that the periodic solution satisfies φ̇ = 2π/T
def
= ω, and we let x(φ), y(φ),

etc. denote coordinates of points on Γ. The system of four coupled ODEs may then be
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reduced to the phase equations

(2.3) φ̇1 = ω +
ε

μ
h̃(φ1, φ2)z(φ1) + O(ε2), φ̇2 = ω,

where h̃(φ1, φ2) = h(x1(φ1), y1(φ2), x2(φ2), y2(φ2)) denotes the coupling function evaluated on
Γ. Here the PRC z(φ) represents the sensitivity of O1 to perturbations from O2, and z(φ) > 0
(resp., z(φ) < 0) means that an excitatory signal (h > 0) received at (x(φ), y(φ)) speeds up
(resp., slows down) O1. In deriving the PRC one expands about Γ in a Taylor series, thereby
neglecting nonlinear (O(ε2)) coupling effects. See [10, 3] for recent examples of explicit PRC
computations.

After introducing the phase difference ψ = φ1 − φ2, (2.3) can be averaged over the period
T and subtracted to yield

(2.4) ψ̇ =
ε

2πμ

∫ 2π

0
h̃(ϕ + ψ,ϕ)z(ϕ + ψ) dϕ + O(ε2)

def
= H(ψ) + O(ε2).

Zeros of H correspond to phase differences at which the oscillators phase-lock (ψ = const),
and stable phase-locking occurs if H(ψ) = 0 and dH(ψ)/dψ < 0. For details, see [18, 17].

While in general PRCs must be computed numerically, in [19, section 2] analytical for-

mulae were derived for (2.1)–(2.2) in the limit μ → 0, as follows. Let z∗(φ)
def
= z(φ)/μ;

subscripts x and y denote partial derivatives, φ(1) = 0 and φ(2) = D denote phase values
at the jumps, y(φ(j)) = y(0), y(D) denote the value of y immediately before a jump, and
y(φ(j)+) = y(0+), y(D+) denotes its value immediately after it (Figure 1). If φ �= φ(j),
j ∈ {1, 2}, then

(2.5) z∗(φ) = − ωfy(x(φ), y(φ))

f(x(φ), y(φ))gy(x(φ), y(φ))
,

and near the jumps φ = φ(j),

(2.6) z∗(φ) =
δ(φ− φ(j))ω2

gx(x(φ(j)), y(φ(j)))

[
1

f(x(φ(j)), y(φ(j)))
− 1

f(x(φ(j)), y(φ(j)+))

]
.

Equation (2.5) follows from linearization in the neighborhood of the slow parts of Γ on the
upper and lower branches of the g = 0 nullcline, and it may be derived from the adjoint
formulation of the PRC [18], as in [19, (2.9)]. Equation (2.6) is found by considering the
jumps from y(0) to y(0+) and y(D) to y(D+) (Figure 1; cf. [19, (2.4)]). The delta functions
at φ(j) play a central role in explaining the behavior of coupled relaxation oscillators; see
Figure 2.

To formulate our results, we supplement (2.5)–(2.6) with the following conditions:
(i) The coupling term h ≡ 1 while O2 is near the upper branch of its g = 0 nullcline

(for μ → 0 this implies φ ∈ (0, D)), and h ≡ 0 near the lower branch. During jumps,
0 ≤ h ≤ 1.

(ii) ∂f(x, y)/∂y > 0 at arbitrary points (x(φ), y(φ)) along the limit cycle.
(iii) The duty cycle D/(2π) ≤ 0.5 (time spent on the upper (active) branch is not more

than that spent on the lower branch).
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Figure 2. Schematic PRC for a relaxation oscillator in the limit μ → 0 as derived in [19]. The function
has singularities and delta functions (thick dashed lines) at φ = 0, D. The sign of the delta functions is always
as shown. The sign of the continuous parts is as shown if condition (ii) holds.

Condition (i) simplifies the notion that oscillators have active (e.g., bursting) and silent
(e.g., refractory) states; it has been used by other authors (e.g., [35, 36, 19]). Condition (ii)
requires that f(x, y) is strictly monotonic in y, which is true for most oscillator models, and
it implies that the sign of z∗ is as shown in Figure 2, due to the following facts:

(1) On the limit cycle of Figure 1, f(x(0), y(0)) < 0, f(x(0), y(0+)) > 0, and gx(x(0), y(0))
< 0, so (2.6) implies that the peak in z∗ at φ = 0 is positive. Similarly, the peak at
φ = D is negative.

(2) Attractivity of the upper and lower branches of the g = 0 nullcline implies that gy < 0;
f > 0 on the upper branches and f < 0 on the lower branches, and fy > 0, by
condition (ii). Thus (2.5) gives positive and negative PRC values during the active
and silent parts of the limit cycle, respectively.

Under condition (i), (2.4) simplifies to

(2.7) H(ψ) =
ε

2π

∫ D+ψ

ψ
z∗(φ) dφ;

the resulting function H(ψ) is shown in Figure 3, in which its key properties are also summa-
rized. In particular, H is discontinuous: when φ(i) enters or leaves the interval of integration
[ψ,D + ψ] in (2.7), the delta functions in (2.6) introduce step changes. If the decreasing step
at ψ = 0 passes through 0, then H(ψ) has a root at 0, corresponding to synchronization,
which is robust against perturbations such as adding a constant to H. This fact was advanced
in [19] to explain why weakly coupled relaxation oscillators tend to synchronize.

Note that the properties of H(ψ) shown in Figure 3 require condition (iii); for D > π, H
may have arbitrarily many roots or possibly none at all. Condition (iii) holds for the majority
of important relaxation oscillators, and it appears elsewhere in the literature [24]. We also
remark that, since limφ→φ(i) gy = 0 and gy � (φ(i) − φ)1/2, the rescaled PRC z∗(φ) in (2.5)

has integrable singularities at φ = φ(j).
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Figure 3. Schematic coupling function H(ψ) for a relaxation oscillator with weak one-way coupling in the
limit ε � μ → 0, as derived in [19]. If conditions (i)–(iii) hold, the qualitative form of H and the directions of
the steps are as shown.

2.2. Phase-locking and synchrony. While the discontinuity of H at ψ = 0 often yields
synchronization, this is not the only possibility: if sign(H(0+)) = sign(H(0−)), the oscillators
do not synchronize, although phase-locking can occur at ψ �= 0 if H has nonzero roots. This
latter case corresponds to traveling waves in a chain (see section 2.3). Here we state a result
that shows that phase-locked solutions with ψ = Δ(μ) ≤ 0 behave differently from those with
Δ(μ) > 0, thereby distinguishing the two behaviors.

Theorem 2.1. Let Hμ(ψ) denote the averaged coupling function at a given value of μ, and
let (x, y) = (ξ, υ(ξ)) denote the equation of the active branch of the slow manifold. Assume
that the phase-shift Δ(μ) satisfies dHμ(ψ)/dψ|Δ(μ) < 0 = Hμ(Δ(μ)).

(a) If conditions (i)–(iii) hold and

−
∫ x(D)

x(0)

fy(ξ, υ(ξ))

f2(ξ, υ(ξ))gy(ξ, υ(ξ))
dξ

+
1

gx(x(D), y(D))

[
1

f(x(D), y(D))
− 1

f(x(D), y(D+))

]
> 0,(2.8)

then 0 < limμ→0 Δ(μ) < π; i.e., O1 leads O2.
(b) If conditions (i)–(iii) hold and (2.8) is false, then Δ(μ) � −μ2/3 for small μ and

limμ→0 Δ(μ) = 0; i.e., the oscillators synchronize.
Proof. We extend the results of [19] to the case 0 < μ � 1. The limit cycle consists of

three parts, known in singular perturbed and boundary layer theory as the outer, inner, and
intermediate limits [2]; see Figure 4.

1. Evolution along slow manifolds: These episodes occupy time O(1), and the PRCs are
well approximated by (2.5); thus z∗(φ) = O(1).

2. Transition from slow motion to jumps at the knees of the g = 0 nullcline: These take
time O(μ2/3) [2], and, as shown below, the phase response converges to (2.6) in the
relaxation limit; thus z∗(φ) = O(μ−2/3).

3. Fast jumps of duration O(μ) between slow manifolds: Here z∗(φ) = O(1), as in case 1.
These statements follow from the arguments of [19], summarized in section 2.1, with the

crucial additional fact, shown in Appendix A, that the delta function in (2.6) derives from
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Figure 4. Characteristic segments of the limit cycle of a relaxation oscillator: Slow motion along nullclines,
fast jumps, and transition. Coupling h is assumed constant (≡ 0 or 1) near the slow nullclines, shown shaded.

perturbations during transition and not during the fast jump. Intuitively, perturbations can
advance the jump as solutions approach the fold, but perturbations in the fast variable have
little effect during the jump (z � O(μ), i.e., z∗ � O(1)), due to the O(μ−1) speed of the
dynamics. The resulting PRC is shown in Figure 5.
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Figure 5. A: PRCs for relaxation oscillators with 0 �= μ � 1. Grey denotes the active part of the period
h ≡ 1, white the silent part h ≡ 0, and striped, far from the nullclines, h not defined by condition (i). For
synchrony, H(0) is the integral of z∗ over the grey interval. B: For small ψ > 0, H(ψ) is the integral over a
domain shifted rightward compared to the case ψ = 0. C: For small ψ < 0, the integration domain is shifted
leftward and includes the peaks of z∗.

If the two oscillators are in synchrony (ψ = 0), O1 receives a coupling signal during both
the slow and transitional parts near the upper nullcline according to condition (i); there is
no input during slow and transition parts near the lower nullcline. Condition (i) does not
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determine h during the fast jumps, since the state is far from both nullclines. However, the
integral of z∗ during these episodes is only O(μ) (∼ the jump duration), so its contribution to
H vanishes as μ → 0; cf. (2.7). Thus, if μ is sufficiently close to 0, Hμ(0) is well approximated
by the integral of z∗ over the slow and transition parts on the upper branch, and using (2.5)–
(2.7), we obtain

Hμ(0) =
εω2

2π

[∫ D

0

−fy(x(φ), y(φ))

ωf(x(φ), y(φ))gy(x(φ), y(φ))
dφ

+
1

gx(x(D), y(D))

(
1

f(x(D), y(D))
− 1

f(x(D), y(D+))

)]
+ O(μ);(2.9)

see also Figure 5(A).
Due to (2.1) and (2.3), we have dφ = dx · ω/f ; hence (2.9) is equal to the left-hand

side of (2.8) modulo the O(μ) term and the εω2/2π factor. Thus, case (a) of Theorem 2.1
corresponds to limμ→0 Hμ(0) > 0. If ψ = 0 at t = 0, ψ increases according to (2.4), and
the limits of integration in (2.7) must be moved rightward to locate a zero of H(ψ), as in
Figure 5(B). At that point the limits do not intersect the peaks of the PRC, implying that
H has finite slope just above ψ = 0. The conclusion of part (a) follows from this fact.

On the other hand, if H(0) < 0, the domain of integration must be shifted to the left and
will intersect the PRC’s peaks; see Figure 5(C). A negative peak of width O(μ2/3) and slope
O(μ−2/3), which shrinks to a vertical step in the relaxation limit of Figure 2, lies just below
ψ = 0. Δ(μ) cannot lie elsewhere than at this steep part, since conditions (i)–(iii) imply that
at all other points H(ψ) is either negative or increasing; see Figure 3.

We remark that if only condition (i) holds, we still have limμ→0 Δ(μ) �= 0 in case (a). In
case (b), conditions (i)–(ii) without (iii) imply the existence of the synchronous solution but
do not imply its uniqueness. Condition (i) without (ii)–(iii) means that the oscillators often
but not always synchronize.

2.3. Oscillator chains in the phase reduction limit. The behavior of coupled pairs of
phase oscillators generalizes to that of chains. Here we review basic results based on [22, 25]
and outline some consequences of Theorem 2.1.

Consider a chain of n identical oscillators. For one-way nearest-neighbor coupling and if
H(ψ) crosses 0, phase differences between adjacent oscillators are equal to those between a
coupled pair, being determined by the stable zeros of H. For two-way coupling (H1(ψ) and
H2(ψ)) in a long chain (n >> 1), one direction is typically dominant and phase relations
are unaffected by connections in the other, except near boundaries. In special cases (e.g.,
H1 ≈ H2) neither direction dominates and phase differences may be nonuniform. If the cou-
pling is translation-symmetric and close but not necessarily adjacent oscillators are coupled,
then the chain mimics the behavior of a reduced network with nearest-neighbor connections.

Thus, our analysis of a pair of units also explains the behavior of a wide class of chains.
Case (a) of Theorem 2.1 (0 < limμ→0 Δ(μ) < π) means that the unit that receives coupling is
advanced in phase compared to the other. Analogously, a chain exhibits traveling waves prop-
agating against the coupling direction (against the dominant direction for two-way coupling),
and, according to the theorem, such traveling waves persist in the relaxation limit μ → 0.
In contrast, case (b) corresponds to a phase lag of the unit receiving coupling that vanishes
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in the relaxation limit. The corresponding phenomenon in chains is a traveling wave that
propagates in the (dominant) coupling direction and approaches synchrony in the relaxation
limit.

3. Relaxation oscillators in the FTM limit. We again consider the system (2.1)–(2.2),
but now under the assumption μ � ε � 1. FTM theory describes the interaction of relaxation
oscillators that exhibit sufficiently fast jumps simultaneously (μ � ε). It neglects interactions
during the periods of slow dynamics, so most FTM results have been qualitative in nature.
Here we augment these results by combining FTM with phase reduction theory, assuming
ε � 1 so that the latter applies except near jumps. We retain the notation of section 2 with
phase φ along the unperturbed limit cycle Γ and (x(φ), y(φ)) denoting points in the phase
plane.

3.1. FTM theory. FTM theory and the synchronization of relaxation oscillators are de-
scribed in detail in [35] via the example of a mutually coupled pair. (Chains and other networks
are considered in [36].) Here we perform a similar analysis of a pair with one-way coupling.

Since ε is large compared to μ, we consider an unperturbed limit cycle (h ≡ 0) and a
separate, perturbed limit cycle for h ≡ 1; see Figure 6(A). Since O2 receives no coupling
signal it follows the former. Input to O1 is either 1 or 0, depending on the state of O2, so
O1 intermittently switches between the two cycles. Jumps are assumed to be instantaneous.
(In phase reduction, one considers only the unperturbed limit cycle, but “jumps” are not
instantaneous.)
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Figure 6. A: Unperturbed (solid) and perturbed (dashed) nullclines. Πi and τi represent Poincaré sections
and times required to pass certain trajectories, respectively, as used in Appendix B. B: An example of FTM
interaction: O2 (solid) slightly leads O1 (dashed); when O2 jumps up, O1 switches to the perturbed nullcline,
leading to a synchronous jump.

To illustrate FTM interaction, assume that the oscillators are almost synchronized and
moving on the silent branch with O1 slightly lagging behind O2. When O2 reaches the knee
and jumps, it sends O1 to the perturbed limit cycle, thereby causing a synchronous jump, after
which O1 takes the lead. See Figure 6(B). Similarly, synchronous jumps occur if O1 slightly
leads O2 prior to jumping down. This typically results in rapid and robust synchronization.
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The example shows that oscillators with FTM interaction can compensate for deviations from
perfect synchrony by keeping fast jumps synchronous and modulating their locations. How-
ever, while FTM interactions at jumps act to synchronize the units, accumulating interactions
during slow phases may shift them apart. The relative strength of the two effects determines
whether synchronization occurs.

The fact that the phase equation (2.3) is not applicable near jumps is illustrated by
the following example. Consider two impulsive perturbations, each of strength and duration
O(ε), delivered when O1 is on the orbit segment of length ετ1 in Figure 6(A). Either one
alone immediately moves the state to the upper branch, causing an O(ε) phase change, large
compared to its size of O(ε2) (strength×duration). However, if the impulses act successively,
the second has an effect of only O(ε2). The implicit assumption of phase reduction theory,
that successive perturbations are additive, is violated.

3.2. Phase-locking and synchrony. Examples like those above show that the notion of
phase difference is unclear, so we introduce the following definitions to categorize different
types of T -periodic interactions of pairs of oscillators under FTM:

(a) Oscillator Oj leads Oi if Oi is silent when Oj jumps up and Oi is active when Oj

jumps down.
(b) The oscillators alternate if when either jumps up or down, the other is silent, or,

alternatively, if when either jumps up or down, the other is active. Only the first case
is possible under condition (iii).

(c) The oscillators synchronize if the time intervals that Oi spends in its active state are
a subset of those spent by Oj in its active state or vice versa. This includes the case
when jumps up and/or down are synchronous.

We can now state an analogue of Theorem 2.1.

Theorem 3.1. Assume that two oscillators in the FTM limit (ε → 0, μ/ε → 0) each have
stable T -periodic solutions. Then

(a) if conditions (i)–(iii) and inequality (2.8) hold, O1 leads O2; and
(b) if conditions (i)–(iii) hold but inequality (2.8) does not, the oscillators synchronize.

Proof. The lengthy proof is given in Appendix B. It relies primarily on defining a function
HFTM , analogous to H of section 2, which predicts the relative dynamics, and showing that
HFTM has the same shape in the limit ε → 0, μ/ε → 0 as H does in the limit μ → 0,
ε/μ → 0.

In case (b) of Theorem 3.1 synchrony implies either that the jump in O2 initiates an
immediate jump in O1 or that one of the oscillators jumps up earlier and jumps down later
than the other. If there are synchronous jumps, it is intuitively clear that for small but nonzero
μ this results in a small lag of the driven oscillator. Thus cases (b) of Theorems 2.1 and 3.1 are
closely related. In contrast, if there is synchrony as defined above but no synchronous jumps,
relations between the two theorems are less clear. However, in Appendix C we illustrate that
the latter scenario is nongeneric for ε → 0.

There are some differences between the phase and FTM limits. For phase oscillators,
Δ � μ2/3, as shown in Theorem 2.1(b). In the FTM case the O(μ) duration of fast jumps
implies that Δ � μ. We illustrate this by a numerical example in section 5.
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3.3. Oscillator chains in the FTM case. As in phase response theory, the behavior of
a unidirectionally coupled pair has implications for chains with one-way, nearest-neighbor
coupling; i.e., in cases (a) and (b), chains typically exhibit traveling waves against and in
the coupling direction, respectively, and in the relaxation limit synchrony results in case (b)
but not in case (a). We suspect that more diffuse localized couplings can be reduced to the
nearest-neighbor case, although we are unaware of specific studies of this type.

The behavior of chains FTM-coupled in both directions is less transparent than in case
of phase-coupling. Oscillator pairs and arrays with symmetrical bidirectional FTM-coupling
typically exhibit synchrony, and in contrast to phase-interaction, this is robust against per-
turbations of the coupling symmetry [35, 36]. These results indicate that asymmetrically
coupled arrays (significantly stronger in one direction than in the other) are probably more
likely to synchronize than those with unidirectional connections. Quantitative conditions for
synchrony versus traveling waves for two-way coupling appear to be unknown. As we show
in section 4, traveling wave behavior is much rarer than synchrony in one-way arrays. The
above facts suggest that it is even rarer when connections in both directions are present.

4. Why do most oscillators synchronize? It was shown in sections 2 and 3 that oscillators
can, but need not, synchronize in the relaxation limit μ → 0. As described in this section,
we examined several simple two-dimensional relaxation oscillator models of neural oscillators
and found that all exhibited synchrony. This suggests that inequality (2.8) of Theorem 2.1
is false for many examples. The following theorem provides a sufficient condition for this
and hence for synchronization. Two oscillators satisfying conditions (i)–(iii) above and (iv)
and (v) below always synchronize in the relaxation limit by Theorems 2.1 and 3.1.

Theorem 4.1. Suppose that (2.1)–(2.2) satisfy condition (ii), and additionally, at all points
(x, y) on the “active” branch of the slow manifold g = 0, the following conditions hold.

• Condition (iv): fx(x, y) ≤ 0.
• Condition (v): gx(x, y) ≤ gx(x(D), y(D)).

Then inequality (2.8) is false.
Proof (by contradiction). The integral in (2.8) (or (2.9)) is evaluated along g = 0, on which

an infinitesimal displacement (dξ, dυ) satisfies

(4.1) gx(ξ, υ) dξ + gy(ξ, υ) dυ = 0 or dξ = −gy(ξ, υ) dυ

gx(ξ, υ)
.

We use (4.1) to change the variable of integration in (2.8) from ξ to υ, replacing (ξ, υ(ξ)) by
(ξ(υ), υ), where ξ(υ) denotes the inverse of υ(ξ). Since gx < 0 on the active nullcline, due
to gx(x(D), y(D)) < 0 and condition (v), this inverse is well defined in the case of interest.
Inequality (2.8) becomes

−
∫ y(0+)

y(D)

fy(ξ(υ), υ)

f2(ξ(υ), υ)gx(ξ(υ), υ)
dυ

+
1

gx(x(D), y(D))

[
1

f(x(D), y(D))
− 1

f(x(D), y(D+))

]
> 0.(4.2)

To show that (4.2) is false we first replace gx(x, y) in the integrand by the constant term
gx(x(D), y(D)), using the facts that gx(x, y) ≤ gx(x(D), y(D)) < 0 and fy < 0 (condition (ii)),
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which together imply that

∫ y(0+)

y(D)

fy(ξ(υ), υ)

f2(ξ(υ), υ)gx(ξ(υ), υ)
dυ ≤

∫ y(0+)

y(D)

fy(ξ(υ), υ)

f2(ξ(υ), υ)gx(x(D), y(D))
dυ.

We then multiply the resulting expression by the strictly positive quantity −gx(x(D), y(D))
to deduce that, if (4.2) holds, then also

∫ y(0+)

y(D)

fy(ξ(υ), υ)

f2(ξ(υ), υ)
dυ − 1

f(x(D), y(D))
+

1

f(x(D), y(D+))
> 0,

which in turn implies that

(4.3)

∫ y(0+)

y(D)

fy(ξ(υ), υ)

f2(ξ(υ), υ)
dυ − 1

f(x(D), y(D))
> 0,

where we use 1/f(x(D), y(D+)) < 0, since f < 0 on the “silent” branch of the slow manifold.

Next, using the chain rule and appealing to condition (iv) and the fact that ξ(υ) is a
decreasing function, we have

(4.4)
df(ξ(υ), υ)

dυ
= fy + fx

dξ(υ)

dυ
≥ fy.

Equation (4.4) allows us to replace the partial derivative in the integrand of (4.3) by the total
derivative and further to express it as an exact differential,

(4.5)

∫ y(0+)

y(D)

df(ξ(υ), υ)/dy

f2(ξ(υ), υ)
dυ = −f−1(xa(υ), υ)

∣∣y(0+)

y(D)
,

where xa(υ) denotes points on the active branch and we use the fact that (f−1)′ = −f ′/f2.
Our inequality now reads

(4.6) −f−1(xa(υ), υ)
∣∣y(0+)

y(D)
− 1

f(x(D), y(D))
=

−1

f(x(0), y(0+))
> 0.

But this is false, since f(x, y) > 0 on the active branch, providing our contradiction.

Theorem 4.1 applies to many oscillator models with unidirectional coupling that satisfies
condition (i). We analyzed the van der Pol oscillator [37] and neuron models of FitzHugh–
Nagumo [12, 33], Hindmarsh–Rose [16], Morris–Lecar [32], and Rinzel [34], as well as a two-
dimensional spike-rate description of the bursting half-center in the lamprey from [42, p. 209],
obtaining the results summarized in Table 1. We also checked inequality (2.8) (in some
cases numerically) and found that it was false in every case, in four of which Theorem 4.1
applies. This suggests that it is not easy to find relaxation oscillators that do not synchronize.
Nonetheless, in the next section we provide an example of this apparently rare behavior.
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Table 1
Evaluation of the applicability of conditions (ii)–(v) and Theorem 4.1 for some simple oscillators. The *

means yes for low values of input current, and no for high values.

Model ODE (ii) (iii) (iv) (v) Thm. 4.1 Thm. 2.1
applies? predicts

synchrony?

van der Pol yes yes yes yes yes yes

FitzHugh–Nagumo yes * yes yes * yes

Hindmarsh–Rose yes yes yes yes yes yes

Morris–Lecar yes yes yes yes yes yes

Rinzel yes yes yes no no yes

lamprey halfcenter yes yes yes no no yes

5. A numerical example. To demonstrate the above results, we now analyze a pair of
van der Pol oscillators in Lienard variables [28, Chap. XI], [29], with one-way excitatory
coupling. At the end of the section simulation results of chains are also shown. The uncoupled
units include a parameter p that can be varied to produce two characteristic behaviors. p = 0
corresponds to the classical van der Pol oscillator. Oscillator 1 is described by

ẋ1 = f(x1, y1) = y1,(5.1)

μẏ1 = g(x1, y1) + εh(y2)

=
(
y1 − y3

1/3 − x1

)
·
(
1 + (p · x1)

4
)

+ ε

{
1 if y2 > 0
0 if y2 ≤ 0

}
,(5.2)

and the equations of oscillator 2 are the same but lack the coupling term ε{. . .}. The coupling
obeys condition (i) and the uncoupled oscillators satisfy conditions (ii), (iii), and (iv) since
fy ≡ 1, the duty cycle is exactly 1/2 due to the symmetry of the vectorfield, and fx ≡ 0. For
p = 0, they also satisfy (v), because gx ≡ −1. Thus they synchronize in the relaxation limit
μ → 0 with extremely weak coupling (by Theorems 2.1 and 4.1) as well as with moderate
coupling (by Theorems 3.1 and 4.1).

If p �= 0, the S-shaped fast nullclines of (5.2) remain the same, but g(x, y) becomes steeper
as |xj | increases so that condition (v) does not hold and Theorem 4.1 cannot be applied.
Numerical evaluations show that inequality (2.8) fails for p < pcr ≈ 2.36 but holds for p ≥ pcr.
In the latter case, Theorems 2.1 and 3.1 predict persistent phase-shifts as μ → 0.

The oscillator pair was simulated with ε = 0.5 and various values of μ and p. In every case,
the system converged to a stable periodic orbit with period T equal to that of an uncoupled
unit. The jth increasing zero-crossing of y1(t) and y2(t) (i.e., times tij when yi(tij) = 0,
ẏitij > 0) were detected and the phase-shift Δ was determined according to

(5.3) Δ = lim
j→∞

t2j − t1j
T

.

For weakly coupled relaxation oscillators (ε, μ → 0), the respective meanings of π > Δ > 0,
Δ = 0, and −π < Δ < 0 are that the driven oscillator leads, is synchronous with, and
lags behind the driver. Here ε is not very small, so Δ ≈ 0, but �= 0 might also correspond
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Figure 7. Dependence of phase-shift between the coupled pair of oscillators Δ on μ. From bottom to top,
p = 0, 0.5, 1, . . . , 5. For small p, the shift is negative (the driven oscillator lags) and vanishes at the relaxation
limit μ → 0; for large p the shift is positive and persists in the relaxation limit. Note that p = 2 is small in this
regard, although it shows different behavior from the p < 2 cases for larger μ (fifth curve from the bottom).

to synchrony (cf. the definition of synchrony in section 3.2). Nevertheless Δ is still a good
indicator of the phase difference.

Figure 7 illustrates the dependence of Δ on μ for different values of p, showing that Δ(μ)
curves below 0, for small μ converge to 0 as μ → 0. Curves above 0, however, converge to a
strictly positive limit. This corresponds to one of our main findings: if the driven oscillator
leads the driver, the phase difference persists in the relaxation limit, but if the driver leads,
the difference vanishes.
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Figure 8. A: Phase-shift Δ as function of p for μ = 10−3, ε = 0.5 (squares), and a fitted quadratic
curve Δ̄(p) (solid line). B: Dependence of Δ on μ for p = 0 plotted on logarithmic scales for ε = 1 and at
ε = 0.1 (squares). Linear regression in the range μ = 10−4 . . . 10−3 reveals ln(−Δ) ≈ 0.98 ln(μ) + 0.04 and
ln(−Δ) ≈ 0.90 ln(μ) + 0.67, respectively (solid lines).

Figure 8(A) shows the numerically derived function Δ(p) for μ = 10−3 and ε = 0.5. A
quadratic fit for Δ > 0 yields Δ̄(p) = −1.646p2 + 8.382p− 10.572, whose root at p̄cr ≈ 2.301
lies within 3% of pcr ≈ 2.36 predicted by inequality (2.8). The difference is primarily due to
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t

i
i

��

t

Figure 9. Dynamics of a chain of 10 oscillators at p = 0 (left) and 3 (right). Each oscillator i is driven by
its neighbor i−1; t denotes time normalized by the period of an uncoupled unit. Δ denotes the phase difference
between units i and 1. Other parameter values: ε = 0.5, μ = 2 · 10−3.

the relatively strong coupling.

We also determine numerically how Δ scales with μ for small p to examine limμ→0 Δ = 0.
The predictions of sections 2.2 and 3.2 are Δ � μ2/3 for phase-oscillator interactions and
Δ � μ1 for FTM interactions. According to simulations with p = 0, the exponent is approxi-
mately 0.97 in the range μ = 10−4 . . . 10−3 if ε = 1 and 0.90 if ε = 0.1 (Figure 8(B)). These
results reflect the fact that our parameter values are appropriate for FTM (μ << ε << 1);
but they also show that the exponent decreases as ε decreases, moving toward the phase-
approximation value, which holds for ε << μ << 1.

We close this section by illustrating the two types of behavior for chains. The two panels of
Figure 9 show the spatio-temporal dynamics of phase-shifts along a chain of 10 unidirectionally
coupled units. For p = 0 (left panel), the network rapidly synchronizes, while for p = 3 uniform
phase-shifts develop on a longer time-scale. The final states agree with the predictions of
Theorem 2.1. (The reason for the radically different decay times of transients is explained
in [35].)

6. Applications to the lamprey CPG. The central pattern generator (CPG) of the lam-
prey has been a focus of research for over thirty years. Fictive swimming experiments [9] show
that the CPG without muscles or afferent (feedback) inputs produces rhythms similar to real
swimming: traveling waves of activation (motoneuron bursts) propagate from head to tail on
both sides in antiphase. The wavelength remains approximately constant and equal to body
length over a considerable speed range.

The components of the CPG and their interconnectivities have been partially deter-
mined [5], and a reduced network with three classes of neurons, representing one or a few
segments of the animals’ CPG, has been proposed; see Figure 10(A). Each segment has
bilateral symmetry, with mutual inhibition between hemisegments. The entire CPG is mod-
eled as a chain of such units [21, 23], intersegmental connections being of the same type
as intrasegmental ones, but with strengths decreasing rapidly with distance. For simplicity
here we assume only nearest-neighbor connections, but our results can be extended to more
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Figure 10. A: Simplified structure of a segmental unit of the lamprey CPG first proposed by [6]. E, L,
and C represent small groups of excitatory, crossed inhibitory, and lateral inhibitory neurons, respectively, and
arrows and circles denote excitatory and inhibitory synapses. Bilaterally symmetric halves of the network are
coupled by inhibition. The dashed self-excitatory connection occurs in some but not all models. B: A simplified
network with E cells alone approximates the dynamics of cell-based rhythm generation (cf. [38]); two segmental
units are shown.

widespread connections, provided that they are short relative to the size of the full network.

Several models have implemented the network architecture of Figure 10(A), and two dif-
ferent pattern-generating mechanisms have been proposed [13]: rhythms being generated by
network connections, or by small groups of bursting cells. Simple network-based models [4, 40]
were able to reproduce the constant wavelength-swimming speed behavior, albeit over a lim-
ited frequency range. The cell-based mechanism inspired a series of detailed model studies
[26, 39, 27] which encompass a wider frequency range, but with frequency-dependent wave-
lengths (small at low frequencies, large at high frequencies).

The core of the cell-based networks is a double chain of relaxation-type oscillators (Fig-
ure 10(B); see also [38]), each representing a small group of intrinsic bursters. The fast and
the slow variables represent average activity (firing rate) and spike-rate adaptation due to
slow calcium currents, respectively. In these models, swimming frequency is adjusted through
serotonin concentration determining the speed of the slow dynamics, i.e., μ. (Other, less
important, parameters also change with frequency, but we ignore these effects.) Thus, when
swimming speed decreases, the speeds of the slow and the fast dynamics separate, approach-
ing a relaxation limit. The tendency of chains of relaxation oscillators to synchronize offers
a straightforward explanation for the wavelength-frequency behavior of these networks, and,
as we now show, the results of sections 2–4 yield more precise predictions on cell-based CPG
models.

The double chains of Figure 10 differ from the single chains studied in sections 2.3 and 3.3,
but their behavior can be predicted in a similar manner by considering a pair of segments
comprising four oscillators, as in Figure 10(B). Specifically, we assume condition (i) above,
that the hemisegments remain out of phase, and we denote the strengths of intersegmen-
tal excitatory and inhibitory connections by εe and εi, respectively. Phase response theory
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then yields the averaged coupling function Hμ pair governing intersegmental phase differences
(cf. (2.4)) at given values of μ by superposing the contributions of the excitatory and inhibitory

connections. In the relaxation limit limμ→0 Hμ pair
def
= H0 pair we obtain

(6.1) lim
μ→0

Hμ pair
def
= H0 pair(ψ) =

1

2π

[
εe

∫ D+ψ

ψ
z∗(φ) dφ− εi

∫ D+ψ+π

ψ+π
z∗(φ) dφ

]
.

Equation (6.1) is the analogue of (2.7) with a second term −εi
∫
. . . due to inhibition between

the segments. Its consequence is a somewhat weaker and (in part (a)) more technical analogue
of Theorem 2.1.

Theorem 6.1. Let (x, y) = (ξ, υ(ξ)) and (x, y) = (ξ, ζ(ξ)), respectively, denote points on the
active and silent branches of the ẏ = 0 nullcline. Assume that Δ(μ) satisfies dHμ pair(ψ)/dψ|Δ(μ)

< 0 = Hμ pair(Δ(μ)).
(a) If conditions (i)–(iii) hold, and

−εe

∫ x(D)

x(0)

fy(ξ, υ(ξ))

f2(ξ, υ(ξ))gy(ξ, υ(ξ))
dξ

+ εi

∫ x(π+D)

x(π)

fy(ξ, ζ(ξ))

f2(ξ, ζ(ξ))gy(ξ, ζ(ξ))
dξ(6.2)

+ εe
1

gx(x(D), y(D))

[
1

f(x(D), y(D))
− 1

f(x(D), y(D+))

]
> 0,

then for a coupling function of the form H0 pair(φ) = Ξ(φ)+c (where Ξ is an arbitrary
2π periodic function and c is an arbitrary constant), there exists δ > 0 independent of
c such that if |Δ(0)| < δ, then Δ(0) > 0.

(b) If conditions (i)–(iii) hold, Δ is unique modulo 2π, and inequality (6.2) is false, then
Δ(μ) � −μ2/3 for small μ, and Δ(0) = 0; i.e., the driven segment lags the driver and
the segments synchronize in the relaxation limit.

Proof (sketch). The proof of Theorem 6.1 is similar to that of Theorem 2.1, so we outline
only the main points and differences between them.

Referring to (6.1) and the proof of Theorem 2.1, and noting that (6.2) has no “boundary”
term due to inhibitory connections εi, since for duty cycle D/(2π) < 0.5 and φij ≈ 0 the
driven oscillator jumps when the inhibitory driver is inactive, we see that the left-hand side
of inequality (6.2) is equal to H0 pair(0). Hence, cases (a) and (b) of the theorem respectively
correspond to H0 pair(0) > 0 and ≤ 0. The first term εe

∫
. . . in (6.1) has a jump at φ = 0,

at the top of which it is positive, and this term is continuous on the left side of the jump
provided that −D < φ < 0 (see the proof of Theorem 2.1). The second term −εi

∫
. . . is

positive and continuous in φ if |φ| < (π − D) because z∗ is negative and integrable in the
interval D < φ < 2π; cf. Figure 3. Hence, H0 pair(φ) itself has a jump at 0, is positive at the
top of the jump (H0 pair(0

−) > 0), and is continuous in the interval (−min{D,π −D}, 0).
In case (b), at the bottom of the jump H0 pair(0

+) is negative as in Theorem 2.1, so
it has a stable root at 0, and because of uniqueness, Δ(0) = 0. For μ small but positive,
Δ(μ) � −μ2/3 for the same reason as in Theorem 2.1. In case (a) at the bottom of the jump
H0 pair(0

+) is already positive, and thus H0 pair(0
−) > s > 0, where s denotes the magnitude
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of the jump, which is independent of the constant c in the definition of H0 pair. On the
negative side of 0, there is an interval in which H0 pair(φ) is continuous (see above). Thus by
definition there exists δ (again independent of c) such that for arbitrary 0 < 0 − φ < δ, we
have |H0 pair(0

−) −H0 pair(φ)| < s, yielding H0 pair(φ) > 0. Thus if |Δ(0)| < δ, Δ(0) must be
positive.

The implication of part (a) is that if |Δ(0)| << 1, then Δ(0) > 0; the driven segment leads
the driver. Hence the statement in part (a) is similar to, and more specific than, part (a)
of Theorem 2.1. Theorem 6.1 has two restrictions in addition to those of Theorem 2.1—
the uniqueness of Δ in part (b) and its closeness to zero in part (a)—but neither affects
its applicability to lamprey CPGs. Uniqueness means that the CPG has a unique stable
traveling wave solution in agreement with the observation that the lamprey exhibits a single
robust pattern of motion. It is also reasonable that |Δ(0)| << 1 since the lamprey’s notocord
has O(100) segments, so intersegmental phase differences must be O(0.01× 2π) if wavelength
is to equal body length.

Phase response theory does not always apply to the lamprey CPG, because intersegmental
coupling is not necessarily weak, so FTM interactions may be more appropriate. Much as
Theorem 2.1 has an analogous statement in Theorem 3.1, an analogue of Theorem 6.1 holds
under the assumption of FTM interactions. Here we give an informative but inexact version,
without proof.

Theorem 6.2. Assume that two pairs of oscillators in the FTM limit (εe,i → 0, μ/εe,i → 0)
each have stable T -periodic solutions. Let ΔFTM denote the time difference between activation
of the ipsilateral driven and driver oscillators (positive if the driven activates first). Then,

(a) if conditions (i)–(iii) and inequality (6.2) hold and |ΔFTM | << 1, then the driven
oscillators lead the drivers; and

(b) if conditions (i)–(iii) hold but inequality (6.2) fails and the network has only one stable
T -periodic solution, then the oscillators synchronize (away from the relaxation limit,
the driven segment lags the driver).

Provided that the CPG has unidirectional intersegmental coupling, the consequences of
Theorems 6.1–6.2 for the lamprey are as follows.

1. If inequality (6.2) fails, neighboring segments display a negative phase difference that
vanishes in the relaxation limit. A chain will therefore exhibit waves that propagate in the
direction of the intersegmental coupling, with wavelength approaching zero in the relaxation
limit. Hence, in such models the wavelength is usually an increasing function of μ, instead of
a constant with frequency. This behavior was seen in previous numerical simulations.

2. If inequality (6.2) holds, segments have positive phase differences that persist in the
relaxation limit and traveling waves will propagate against the coupling direction, with ap-
proximately constant wavelength as μ is varied. Hence, intersegmental connections must be
directed from tail to head to obtain head-to-tail traveling waves.

Our first important finding is that, if (6.2) holds, a double chain of oscillators can combine
the advantages of previous cell- and network-based CPG models, namely, wide frequency-
range and constant wavelengths. Theorem 4.1 implies that single chains rarely satisfy the
analogous inequality (2.8), but the presence of an additional positive term εi

∫
. . . in (6.2),

due to cross-inhibitory connections, provides more flexibility. On the other hand, as shown
in section 3.3, the bidirectional coupling in the real network promotes synchrony under the
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assumption of FTM interactions. Hence finding “well-behaved” models is difficult, but prob-
ably not hopeless, since the high number of ad hoc parameters in such models allows wide
freedom for improvement. The failure of such an attempt would suggest that the cell-based
mechanism is an oversimplification and that more sophisticated models, perhaps combining
both rhythm-generating mechanisms, are required.

It is also worth noting that caudo-rostral (tail-to-head) coupling is required to produce
waves that travel from head to tail. This confirms previous studies [41, 20] that used com-
pletely different arguments to show that ascending is stronger than descending coupling in
the lamprey notocord.

7. Conclusions. This paper concerns coupled sets of planar relaxation oscillators. We
focus on pairs of oscillators with unidirectional coupling but draw conclusions for two-way
coupling and linear chains of oscillators. Our main theorems, Theorems 2.1 and 3.1, provide
sufficient conditions for persistent phase lags and for synchrony in the limits of weak coupling
and of large time-scale separation, using phase response theory and FTM theory, respectively.
The key step involves estimation of an inequality (2.8) arising from the averaged coupling
function.

Theorem 4.1 provides a sufficient condition for synchrony, and in section 4 we show that
several models of bursting neurons satisfy this condition, which we conjecture to be the typ-
ical case. However, counterexamples can be found, as demonstrated in section 5. Finally,
in section 6 we extend these results to the double chains featured in models of CPGs for
swimming in lamprey, providing analogues of Theorems 2.1 and 3.1 in Theorems 6.1 and 6.2.
These results partially explain why cell-based models of relaxation type approach synchrony
as swimming speed decreases, violating the experimental observation of near-constant phase
lags over a wide speed range, but they also offer hope that parameterizations that permit the
observed behavior may be found.

More generally, the results in this paper reveal interesting relations between phase response
and FTM theory, which apply in the distinctly different limits of weak coupling (1 � μ �
ε → 0) and strong time-scale separation (1 � ε � μ → 0). In particular, we construct
a composed Poincaré return map in the latter relaxation limit that is the analogue of the
averaged coupling function in the former limit. This map is used to demonstrate that the
tendency of unidirectionally coupled pairs or arrays of oscillators to synchronize is unaffected
by extreme changes of the ratio ε/μ despite evident differences between the resultant coupling
mechanisms. However, we also find that the rates of convergence to synchrony scale differently
as perfect time-scale separation (μ → 0) is approached. In case of FTM interaction, our study
raises further questions regarding the behavior of bidirectionally but asymmetrically coupled
arrays as well as that of arrays with multiple (non–nearest-neighbor) coupling. A similar
approach to the present one may be helpful in studying synchronization properties of such
networks.

Appendix A. Theorem 2.1: The PRC at jumps. Here we locally approximate the PRC
near jumps, showing that relaxation oscillators have large phase response values during tran-
sition, shortly before (but not during) jumps. This fact is central in the proof of Theorem 2.1.

We assume small but nonzero μ, in which case the stable limit cycle Γ of the ODEs (2.1)–
(2.2) is close to but not exactly the same as that shown in Figure 1. Since notation like x(φ)
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Figure 11. A: An orbit in the neighborhood of a downward jump. B: The PRC near the jump.

has been used to denote coordinates on Γ as μ → 0, we now use different notation ξ and η for
the slow and the fast variables, respectively. We define time t and phase φ such that t = 0
and φ = D when ξ = x(D); see Figure 11(A).

Leading order terms in the PRC near jumps at nondegenerate (quadratic) turning points
are determined by the local approximation

ẋ ≈ f(x(D), y(D)),(A.1)

μẏ ≈ gx(x(D), y(D)) [x− x(D)] +
gyy(x(D), y(D))

2
[y − y(D)]2 .(A.2)

These ODEs have an explicit solution in terms of Airy functions and their derivatives [1],
denoted below by Ai, Bi, Ai′, and Bi′:

ξ(t) = x(D) + ft,(A.3)

η(ξ) = y(D) + μ1/3

(
4fgx
g2
yy

)1/3 Ai′(ζ) + a ·Bi′(ζ)

Ai(ζ) + a ·Bi(ζ)
,(A.4)

where a is an arbitrary constant, the arguments (x(D), y(D)) have been suppressed (i.e.,
f = f(x(D), y(D)), etc.), and ζ is a rescaled version of ξ,

(A.5) ζ = −μ−2/3

(
gxgyy
2f2

)1/3

(ξ − x(D)).

The parameter a is determined by the asymptotic boundary condition that for ξ → −∞
the orbit follows the upper branch of the g = 0 nullcline, implying that η(ξ) > y(D); see
Figure 11(A). We note that ξ → −∞ corresponds to ζ → ∞ by (A.5), the limiting values of
Ai(ζ), Ai′(ζ), Bi(ζ), and Bi′(ζ) are +0, −0, +∞, and +∞, respectively, and, from the nullcline
geometry, f > 0 > gx. Using these facts in (A.4), limξ→−∞ η(ξ) > y(D) implies that a = 0.
The orbit gradually leaves the nullcline and η goes to minus infinity at ζ = A ≈ −2.3381,
which is a zero of the function Ai. The term μ1/3 in (A.4) implies that, for small μ, η remains
close to zero for most values of ζ and suddenly grows just before ζ reaches its critical value.
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By definition, the PRC represents the (linear) advancing or retarding effect of a small,
instantaneous perturbation Δη in the fast variable. Such a perturbation results in a switch to
another trajectory with a ≈ Δη · da/dη. The η-coordinate of the perturbed trajectory goes to
infinity at ζ = ζend(a). We assume that ζend(a) corresponds, via (A.5), to the rescaled slow
coordinate ξend when the jump is finished and slow motion begins on the lower branch of the
nullcline; as already noted, ζend(0) = A. The perturbation changes this by

(A.6) Δξend = Δη
da

dη

dζend
da

dξ

dζ
+ O(Δη2).

To compute the effect of the perturbation, note that during the jump the slow
variable evolves according to ξ̇ ≈ f(x(D), y(D)), so that the jump duration increases by
Δξend/f(x(D), y(D)). After the jump, the orbit reverses direction in ξ: ξ̇ ≈ f(x(D), y(D+)) <
0. Thus positive Δξ has a further retarding effect of duration Δξend/f(x(D), y(D+)). The
sum of these two terms represents the “time-response” to the perturbation, and a final scaling
factor dφ/dt = ω yields the local PRC

Δφ = −Δη
da

dη

dζend
da

dξ

dζ
ω
[
f−1(x(D), y(D)) − f−1(x(D), y(D+))

]
+ O(Δμ2),(A.7)

where the minus sign implies that positive values correspond to shortening of the period.
We compute the components of the product in (A.7) one by one. First, dξ/dζ comes

directly from (A.5):

(A.8)
dξ

dζ
= −μ2/3

(
2f2

gxgyy

)1/3

.

We find da/dη = (dη/da)−1 using (A.4):

da

dη
=

[(
4μfgx
g2
yy

)1/3 Bi′(ζ)(Ai(ζ) + aBi(ζ)) −Bi(ζ)(Ai′(ζ) + aBi′(ζ))

(Ai(ζ) + aBi(ζ))2

∣∣∣∣
a=0

]−1

=

[(
4μfgx
g2
yy

)1/3 Bi′(ζ)Ai(ζ) −Bi(ζ)Ai′(ζ)

Ai(ζ)2

]−1

.(A.9)

The term Bi′(ζ)Ai(ζ)−Bi(ζ)Ai′(ζ) is constant. The fact that its derivative is 0 follows from
the definition of Airy functions: v Ai(v) = Ai′′(v), v Bi(v) = Bi′′(v). This straightforward
calculation is omitted. Hence we may replace ζ by the constant A ≈ −2.3381 defined above
and use Ai(A) = 0 to obtain

(A.10)
da

dη
= −

[(
4μfgx
g2
yy

)1/3 Bi(A)Ai′(A)

Ai(ζ)2

]−1

.

Finally, we determine dζend/da. ζend(a) denotes the location of the singularity in (A.4): it is
the solution of

(A.11) Ai(ζ) + aBi(ζ) = 0.
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Thus we have

dζend
da

=

[
da

dζend

]−1

=

[
−d [Ai(ζ)/Bi(ζ)]

dζ

∣∣∣∣
ζ=A

]−1

=
Bi2(A)

Ai(A)Bi′(A) −Ai′(A)Bi(A)
= −Bi(A)

Ai′(A)
.(A.12)

Substituting (A.3), (A.5), (A.8), (A.10), and (A.12) into (A.7), we obtain the PRC in
terms of t:

Δφ

Δη
≈

[
μf(x(D), y(D))gyy(x(D), y(D))

2g2
x(x(D), y(D))

]1/3

Ai′−2(A)

×Ai2

(
−μ−2/3

(
gx(x(D), y(D))gyy(x(D), y(D))f(x(D), y(D))

2

)1/3

t

)

× ω

[
1

f(x(D), y(D))
− 1

f(x(D), y(D+))

]
.(A.13)

Finally, replacing t by φ = φ0+ωt, we obtain the approximate PRC z(φ) during the transition
and jump. Note that in spite of its apparent complexity, the formula (A.13) contains only
constants and a scaled Ai2 function, so that we may write

(A.14) z∗(φ) =
z(φ)

μ
≈ Bμ−2/3 Ai2

(
Cμ−2/3(φ− φ0)

)
,

where B,C are O(1) constants. See also Figure 11(B).
This formula demonstrates that large PRC values occur during transition, while the oscil-

lator state is near the upper nullcline. (These correspond to the delta function in the relaxation
limit; see (2.6).) The analogous result for the upward jump can be derived in the same way. In
that case, the large values occur during transition at the lower nullcline. We remark, without
explicit computations, that the integral of this approximation of the phase-response function
from −∞ to the end of the jump is equal to the coefficient of the delta function in (2.6).

Appendix B. Proof of Theorem 3.1. The proof is divided into five parts. In the first,
notation and concepts are introduced; these include four mappings Hi representing the inter-
actions of the oscillators during the four segments of their limit cycles (slow motions on the
upper and lower nullcline branches, and jumps). In the second part we analyze the functions
Hi. These results are used in the third part to demonstrate that the only possible forms of
T -periodic interactions are synchrony or O1 leading O2. The fourth part contains the proof
that if O1 leads, then inequality (2.8) holds, and in the last part we show the converse in the
case of synchrony.

B.1. Notation. Let t
(1)
j , . . . , t

(5)
j denote the times at which the state of Oj successively

crosses the Poincaré sections Π1,Π2, . . . ,Π5 = Π1 defined in Figure 6(A). We shall construct
a return map

(B.1) εHFTM (t
(1)
2 − t

(1)
1 ) =

[
t
(5)
2 − t

(5)
1

]
−

[
t
(1)
2 − t

(1)
1

]
,
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which describes the time-shift during one cycle due to coupling, normalized by the coupling
strength ε. Phase-locked solutions correspond to zeros of HFTM , and their stability requires
0 ≤ ε dHFTM (t)/dt ≤ 2. Thus, HFTM is a similar predictor of dynamics to the coupling
function H(ψ) in the phase limit, although the stability condition differs. We assemble the
maps Hi, i = 1, 2, 3, 4,

(B.2) εHi(t
(i)
2 − t

(i)
1 ) =

[
t
(i+1)
2 − t

(i+1)
1

]
−

[
t
(i)
2 − t

(i)
1

]
,

the composition of which defines

HFTM (t) = H1(t) + H2(t + εH1(t))

+ H3(t + εH2(t + εH1(t)))

+ H4(t + εH3(t + εH2(t + εH1(t)))).(B.3)

In Figure 6(A), we introduce notation for the times required to travel along certain trajectories
in the phase space. We use these to express the functions Hi for small ε in the next subsection.
The notation reflects the scaling of these lengths; e.g., εΔτ2 in Figure 6(A) is O(ε) because it
represents the effect of a perturbation of strength O(ε) and duration O(1).

B.2. The functions Hi. We shall use condition (iii), which implies that τ4 > τ2 if ε is
sufficiently small. We also note that the functions Hi are invariant under translation by the
period of the unperturbed limit cycle: T = ε(τ1 + τ ′1) + τ2 + τ4.

To construct H1(t) we exploit the nature of FTM interactions. For ετ ′1 ≤ t ≤ τ4, O1

receives no input between Π1 and Π2, so it travels on its unperturbed limit cycle, yielding
H1(t) ≡ 0. At t = 0, H1(0) = εΔτ ′1. If −ετ1 − τ2 ≤ t ≤ −ετ1, O1 follows the perturbed limit
cycle, so H1(t) ≡ (τ1 + τ ′1). For −ετ1 ≤ t ≤ 0, O1 switches to the perturbed limit cycle from
the curve of length ετ1, as shown in Figure 6(B). On the intervals (−ετ1, 0) and (0, ετ ′1), H1(t)
is approximately linear (for ε � 1). See Figure 12(A). The mapping H3(t) is generated in
much the same way (Figure 12(C)).

To approximate H2(t) we use condition (ii), which implies that orbits move faster on
the upper branch of the perturbed nullcline than on the unperturbed one: Δτ2 is positive.
Thus for t = 0, O1 receives input along the upper nullcline and arrives at Π3 before O2, so
H2(0) = Δτ2. The same argument holds if t is slightly negative, but if t is further decreased,
the coupling signal turns off before O1 reaches Π3, until at t = −τ2 O1 reaches Π3 entirely on
the unperturbed limit cycle. Thus H2(t) ≡ 0 for t < −τ2, and it increases monotonically for
−τ2 < t. See Figure 12(B).

O1 receives input while traveling between Π2 and Π3, if t ∈ (0, ετ ′1), so H2(t) ≡ Δτ2 in
this interval. If, however, t is increased further, O1 has no input when crossing Π2, and it
first follows the unperturbed nullcline and jumps to the perturbed one if t ∈ (ετ ′1, ετ

′
1 + τ2);

the bigger t is, the later this jump occurs. Thus H2 decreases in this interval. If t > ετ ′1 + τ2,
again H2(t) ≡ 0.

Similar arguments lead to H4(t) (Figure 12(D)). H4(t) ≡ 0 for t ∈ (−ετ1, 0), because
O1 travels on the unperturbed nullcline. Because of condition (ii), traveling on the per-
turbed nullcline is always slower; thus H4(t) is nonpositive. It is monotonically decreasing
in (0, τ2 + ετ ′1), at which point O1 starts on the perturbed limit cycle but switches along the
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Figure 12. The maps Hi. A: O2 active/silent implies that O2 is active/silent when O1 jumps up; syn-
chronous jump means that the upward jump of O2 initiates an immediate jump in O1. B: O2 active/silent ap-
plies for the time interval in which O1 travels from Π2 to Π3; O2 switches on/off means that O2 is silent/active
when O1 crosses Π2 but switches on/off before O1 reaches Π3. Analogous notation is used in C and D.

way. The bigger t is, the longer it travels before switching to the unperturbed nullcline. H4

has another, increasing part, corresponding to traveling on the unperturbed nullcline initially
and switching to the perturbed one at some point (the bigger t, the later this happens), and a
fourth region, marked “negative” in Figure 12(D), corresponding to starting and arriving on
the unperturbed nullcline and spending an interval of length τ2 + ετ ′1 on the other nullcline in
between.

B.3. Possible forms of T -periodic dynamics. Here we show that on any stable T -periodic
solution of the coupled oscillator pair, either O1 and O2 are in synchrony or O1 leads O2. We
thereby exclude alternating dynamics or leading by O2.

First assume that the oscillators alternate, so that, while O2 is active, O1 moves between
Π3 and Π4. Thus, t + εH3(t + εH2(t + εH1(t))) ∈ (τ2 + O(ε), τ4 + O(ε)): the interval marked
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negative in Figure 12(D). This implies that

(B.4) t ∈ (τ2 + O(ε), τ4 + O(ε)),

and while (B.4) holds, we can deduce the following.

1. From (B.4) and the fact that O2 is silent when O1 jumps up, H1(t) ≡ 0 for sufficiently
small ε.

2. Because O2 is silent when O1 is on its upper nullcline, H2(t + εH1(t)) ≡ 0.
3. Because O2 is silent when O1 jumps down, H3(t + εH2(t + εH1(t))) ≡ 0.
4. From (B.4), H4(t + εH3(t + εH2(t + εH1(t)))) < 0.

Thus, HFTM < 0 by (B.3). Since T -periodic solutions require HFTM (t) = 0, this is a contra-
diction.

Assume now that O2 leads O1. In this case, the following hold:

1. O2 is active when O1 jumps up, corresponding to the H1(t) = const > 0 part of H1.
2. O2 turns off before O1 reaches Π3, corresponding to the increasing part of H2.
3. O2 is silent when O1 is between Π3 and Π4, implying that H3(t+εH2(t+εH1(t))) ≡ 0.
4. O2 turns on before O1 reaches Π1, corresponding to the increasing part of H4.

In the interval of t that satisfies these requirements, all four functions are constant or in-
creasing, implying that HFTM (t) itself is constant or increasing and hence that T -periodic
solutions, if any exist, are unstable, from section B.1. This is again a contradiction.

Thus, we have proven that the only possible stable T -periodic solutions are synchrony or
leading of O1. In the next two subsections, we show that, if ε is sufficiently small, inequality
(2.8) determines which case occurs.

B.4. If O1 leads, then inequality (2.8) holds. Assume now that HFTM (t) = 0 and O1

leads. In this case O2 is silent when O1 is between Π1 and Π2, so that H1(t) < εΔτ ′1;
see Figure 12(A). Similarly, O2 is active when O1 lies between Π3 and Π4, implying that
H3(t + εH2(t + εH1(t))) < −(τ3 + τ ′3) + εΔτ ′3; see Figure 12(C). Combining these with the
global inequalities H2 ≤ Δτ2 and H4 ≤ 0, (B.3) yields

(B.5) 0 = HFTM (t) < εΔτ ′1 − (τ3 + τ ′3) + εΔτ ′3 + Δτ2.

The O(ε) terms vanish as ε → 0; limiting values of the O(1) terms are found below.

For ε � 1 (weak coupling) εΔτ2 is equal to the (appropriately scaled) linear phase-response
to continuous ε perturbation during slow motion on the upper branch (0 < φ < D); i.e., as
shown in section 2,

(B.6) lim
ε→0

Δτ2 =

∫ x(D)

x(0)

fy(χ, ya(χ))

f2(χ, ya(χ))gy(χ, ya(χ))
dχ.

We obtain (τ3 + τ ′3) in the ε → 0 limit by approximating the ODEs defining O1 at the
upper right knee [x(D), y(D)] by (A.1)–(A.2), derived in Appendix A. Substituting h = 1
and solving

(B.7) g(x, y) + ε · 1 = 0 and gy(x, y) = 0
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shows that the perturbation εh shifts the knee to the right by ε/gx(x(D), y(D)). Thus,

ετ3 ≈ − ε

f(x(D), y(D))gx(x(D), y(D))
,(B.8)

and ετ ′3 ≈ ε

f(x(D), y(D+))gx(x(D), y(D))
,(B.9)

yielding

(B.10) τ3 + τ ′3 ≈ 1

gx(x(D), y(D))

[
1

f(x(D), y(D))
− 1

f(x(D), y(D+))

]
.

Substituting (B.6) and (B.10) into (B.5), we find that (2.8) holds in the ε → 0 limit.
Note that (B.10) represents the effect of FTM interactions but that it also agrees with

predictions of phase reduction theory; cf. (2.6). This is the main reason that condition (2.6)
holds in both the phase and the FTM limits.

B.5. Inequality (2.8) is false in case of synchrony. First we substitute the inequalities
H1 ≥ 0 and H3 ≥ −(τ3 + τ ′3) (cf. Figures 12(A,C)) into (B.3) to obtain

(B.11) 0 = HFTM (t) ≥ H2(t + εH1(t)) − (τ3 + τ ′3) + H4(t + εH3(t + εH2(t + εH1(t)))).

H2(t + H1(t)) is estimated by noting that, in case of synchrony, at least one of the following
holds:

1. Upward jumps are synchronous.
2. Downward jumps are synchronous.
3. O1 jumps up earlier and jumps down later than O2.
4. O2 jumps up earlier and jumps down later than O1.

The first case yields |t| ≤ ετ1; cf. Figure 12(A). Since |H1| ≤ τ1+τ ′1, we also have |t+εH1(t)| ≤
ε(τ1 + 2τ ′1); i.e., for arbitrary δ1 > 0, sufficiently small ε guarantees |t + εH1(t)| ≤ δ1. In
the limit ε → 0, H2 is determined exactly by phase theory. Moreover, H2 is continuous
because it describes interactions that occur only during slow dynamics and not during jumps.
Appealing to continuity, we see that for arbitrary δ2 > 0, we may pick δ1 sufficiently small
that |H2(v) −H2(0)| ≤ δ2 for all |v| ≤ δ1. Thus, for ε sufficiently small, we conclude that

(B.12) H2(t + εH1(t)) ≥ Δτ2 − δ2.

Analogous arguments can be applied in the other three cases, and one can show in the
same way that for sufficiently small ε, |H4(t + εH3(t + εH2(t + εH1(t)))) −H4(0)| ≤ δ2 also
holds, implying that

(B.13) H4(t + εH3(t + εH2(t + εH1(t)))) ≥ −δ2.

Substituting inequalities (B.12)–(B.13) into (B.11), we obtain

(B.14) 0 = HFTM (t) ≥ Δτ2 − (τ3 + τ ′3) − 2δ2,

which holds for arbitrarily small δ2 and so yields

(B.15) 0 ≥ Δτ2 − (τ3 + τ ′3).

Finally, using (B.6) and (B.10) in (B.15), we conclude that (2.8) cannot hold.
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t

H tFTM( )

O( )�

O 1( )

O 1( )

O( )�

O( )�

O( )�

upward jumps synchronous

downward jumps
synchronous

Figure 13. An example of the composed map HFTM . The proof of Theorem 3.1 relies on the fact that
for ε → 0, the shape of HFTM is similar to that of H in Figure 3. HFTM has one or two steep, decreasing
steps (two are shown here), inherited from H1 and H3. If there are two, they are separated by a plateau of
width O(ε). A root of HFTM in either steep part means that at least one jump is synchronous; a root in the
plateau corresponds to synchronous activity in which neither jump is synchronous (cf. section 3.2). The latter
is atypical in the limit ε → 0, as shown in Appendix C.

Appendix C. Synchrony under weak coupling. The mappings H2 and H4 introduced
in Appendix B have finite steepness, but H1 and H3 have O(ε−1)-steep decreasing steps,
corresponding to synchronous jumps of the two oscillators. The exact shape of the mapping
HFTM is model-specific, but in all cases it will also have one or two inherent steep parts due
to (B.3), as shown in the example of Figure 13. According to the definition of section 3.2, the
T -periodic orbits of the two oscillators are synchronous if one or both jumps coincide, or if
one oscillator jumps up earlier but jumps down later than the other. These cases respectively
correspond to two steep segments of HFTM and the small plateau between them (if such a
plateau exists). The width and height of the plateau is O(ε), and it vanishes in the limit
ε → 0. Thus, synchronous activity typically means that either upward or downward jumps
are synchronous.
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794 PÉTER L. VÁRKONYI AND PHILIP HOLMES

[34] J. Rinzel, Excitation dynamics: Insights from simplified membrane models, Federation Proc., 44 (1985),
pp. 2944–2946.

[35] D. Somers and N. Kopell, Rapid synchronization through fast threshold modulation, Biol. Cybernet.,
68 (1993), pp. 393–407.

[36] D. Somers and N. Kopell, Waves and synchrony in networks of oscillators of relaxation and non-
relaxation type, Phys. D, 89 (1995), pp. 169–183.

[37] B. van der Pol, On “relaxation-oscillations,” The London, Edinburgh, and Dublin Phil. Magazine and
J. of Sci., 7 (1926), pp. 978–992.

[38] P. L. Varkonyi, T. Kiemel, K. Hoffman, A. H. Cohen, and P. Holmes, On the derivation and
tuning of phase oscillator models for lamprey central pattern generators, J. Comput. Neurosci., in
press.

[39] T. Wadden, J. Hellgren, A. Lansner, and S. Grillner, Intersegmental coordination in the lamprey:
Simulations using a network model without segmental boundaries, Biol. Cybernet., 76 (1997), pp. 1–9.

[40] T. L. Williams, Phase coupling by synaptic spread in chains of coupled neuronal oscillators, Science,
258 (1992), pp. 662–665.

[41] T. L. Williams and K. A. Sigvardt, Intersegmental phase lags in the lamprey spinal cord: Experimental
confirmation of the existence of a boundary region, J. Comput. Neurosci., 1 (1994), pp. 61–67.

[42] H. Wilson, Spikes, Decisions and Actions: The Dynamical Foundations of Neuroscience, Oxford Uni-
versity Press, Oxford, UK, 1999.

[43] A. T. Winfree, The Geometry of Biological Time, 2nd ed., Springer-Verlag, New York, 2001.


