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The origin of the shapes of stones and other particles formed by water or wind has always attracted the attention 

of geologists and mathematicians. A classical model of abrasion due to W. J. Firey leads to a geometric partial 

differential equation representing the continuum limit of the process. This model predicts convergence to spheres 

from an arbitrary initial form; analogously, the two-dimensional version of the model predicts convergence to 

circles. The shapes of real stones are, however, not always round. Most notably, coastal pebbles tend to be 

smooth but somewhat flat, and ventifacts (e.g. pyramidal dreikanters) often have completely different shapes 

with sharp edges. Inspired by Firey’s results, a new PDE is derived in this paper, which not only appears to be a 

natural mathematical generalization of the PDE, but also represents the continuum limit of a generalised abrasion 

model based on recurrent loss of material due to collisions of nearby pebbles. Preliminary results suggest that 

our model is capable to predict a broad range of limit shapes: polygonal shapes with sharp edges develop due to 

sand blasting (big stone surrounded by infinitesimally small particles), round stones emerge due to collisions 

with relatively big stones, and flat shapes are the typical outcome in the intermediate case. The results show nice 

agreement with real data despite the model's simplicity. 
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1. Introduction 

One of the best-known quantitative models of the abrasion process of pebbles has been 

proposed by Firey (1974). He considered pebbles losing small portions of their volumes via 

successive collisions with a plane representing the underlying ground. If the orientation of the 

colliding pebbles is assumed to be random with uniform distribution, the continuous limit of 

this process is surface wear with speed proportional to curvature (in 3D: Gaussian curvature; 

in 2D: scalar curvature, see Section 2) provided that the initial shape is convex. Not 

surprisingly, this process quickly abrades sharp vertices with high curvature, and arbitrary 

initial shapes become spheres in 3D (Andrews, 1999) or circles in 2D (Gage, 1984, Gage & 

Hamilton, 1986) as they gradually contract to points.  

While real pebbles typically do get smooth, they are usually not perfect spheres. Some 

deviation follows from the discreteness of abrasion (Durian et al, 2006) nevertheless the fact 

that coastal pebbles tend to be flat (Rayleigh, 1944, Wald, 1990, Lorang & Komar, 1990) 
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calls for a different explanation. Dobkins & Folk (1970) found that pebbles on Tahiti are 

sometimes assorted by the wave current and flat ones accumulate on the beach. In some other 

cases, the flatness reflects the stratified microstructure of the material. According to an 

alternative explanation, initially flat pebbles collide with the waterbed with non-uniformly 

distributed orientations which probably helps maintaining/increasing their flatness. It was also 

proposed by Dobkins & Folk (1970) that the presence of sand plays important role in 

flattening pebbles. Probably all these factors contribute to the formation of observed pebble 

shapes. The inclusion of some factors is beyond the scope of a simple PDE, nevertheless the 

effect of ‘sand blasting’ is easy to approximate in the spirit of Firey’s classical model. In 

Section 3 we generalize Firey’s 2D model by considering collisions with nearby pebbles 

instead of planes. Our general model includes both Firey’s model and also abrasion by 

infinitesimally small sand particles as special cases. The continuous limit of the new model 

boils down to another PDE: contraction with speed pρ+1 where ρ is curvature, and p is a 

constant. In particular, sand blasting corresponds to p=0, Firey’s model to p→∞. Some 

predictions of the model and their physical relevance are discussed in Section 4.  

2. Firey’s model  

The 2D version of the abrasion model of Firey (1974) assumes that a convex stone 

represented by a closed, convex plane curve S repeatedly collides with a straight line S*. 

During each collision, a small fracture of the stone gets lost at the point of contact. We 

consider the process in a coordinate system fixed to S, see reference axis x and reference point 

O in Fig. 1 (left). Each collision is parameterized by β denoting the angle of the normal vector 

of S* relative to x. We assume that β is a uniform random variable on [0,2π], i.e collisions 

with orientation  β0<β<β0+∆β happen with mean frequency f∆β (f is a constant). The average 

area δ lost by the pebble S is assumed to be independent of the location of the collision. 

We consider an infinitesimal piece of length ∆s on which the angle φ of the inward pointing 

normal unit vector nφ of S to axis x is φ∈(α-∆α/2,α+∆α/2). In a collision, ∆s is hit by the 

plane S* if α-∆α/2≤β≤α+∆α/2 (modulo 2π). The mean frequency of such collisions is f∆α, 

hence the mean area loss per unit time is δf∆α. The mean speed of wear is then δf∆α/∆s 

=δfρ(α) where ρ(α) is the curvature of the curve. Thus, in the continuum limit, the abrasion 

process leads to the geometric PDE 

ααρδ nv ⋅= )(f&  (1) 
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where v is the position vector of a point on the perimeter with (time-dependent) normal 

direction α; dot denotes derivative with respect to time t. Hence, abrasion speed is 

proportional to curvature. The only possible limit shape of the curve (after scaling) is a circle, 

as already pointed out in Section 1. The same arguments in 3D lead to surface contraction 

proportional to Gaussian curvature and convergence to spheres. 

 

Fig. 1: The abrasion models. Left: Firey’s model. Line S* is shown while colliding to an endpoint of interval ∆s 

(i.e. β=α+∆α/2). S* colliding to the other endpoint (β=α-∆α/2) is also shown in dashed line. Right: the 

generalised model. Curve S* is shown while colliding to both endpoints of interval ∆s (one copy in continuous 

line, the other one in dashed line). Arrows show the direction of motion of S*. 

3. The generalized model 

Here we derive a natural, physical generalization of Firey’s model, where the straight line S* 

is replaced by a convex curve (Fig. 1, right). Let x, x*, O, O* denote reference axes and 

reference points of the two respective curves.  We keep the notations of Section 2; in addition, 

ρ*(φ) denotes the curvature of S*. S* is assumed to be subject to straight motion relative to S; 

a collision of the two curves is parameterized by 3 random parameters: β determines the angle 

between x and x*; angle γ denotes the direction of motion of S* relative to x; finally d denotes 

the distance of the straight orbit of  O* from O. ∆s* is the interval on S* where the angle of the 

outward-pointing normal of the curve is φ∈(β+α-∆α/2,β+α+∆α/2) to x* (Fig. 1, right). 

As in Section 2, it is assumed that d, β, γ are uniformly distributed: collisions with γ, β, d 

lying in given intervals of sizes ∆β, ∆γ and ∆d, respectively occur with mean frequency 
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f∆β∆γ∆d. The pebble S gets hit at ∆s if the parameters fall in appropriate ranges: S* needs to 

be between the two extreme positions shown in Fig. 1 (right) at the instant of the collision. 

One of these copies of S* can be transformed to the other by shifting it by distance 
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in direction perpendicular to nα. For fixed β and γ, this displacement corresponds to an 

interval in parameter d of size  
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 The mean frequency of collisions hitting ∆s is obtained via the following integral, which is 

simplified after substitution of (3) (computational details omitted): 
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Here P* denotes the length of the perimeter of S*.  The resultant contraction PDE is  
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where c is a constant. Notice that the first (constant) term dominates in (5) if P*<<1 (collisions 

with infinitesimal particles, i.e. sand-blasting), whereas the second one dominates if P*>>1. 

The latter limit provides Firey’s original model. In case of real pebbles, P* should be 

considered as average size of particles in the examined pebble’s environment. For further 

analysis, (5) is non-dimensionalized: 
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Here P is the length of the perimeter of S. The scale-free parameter p =P*/P denotes the 

relative size of nearby stones; )(αρ =Pρ(α)/(2π) is scale-free curvature, which depends only 

on shape but not on size and its ‘average’ value is 1 for every curve. 

We remark that a similar model can be derived in 3 dimensions. The result is a PDE 

consisting of 3 abrasion terms: a constant term, a term proportional to mean curvature, and 

another one proportional to Gaussian curvature. One of the 3 terms dominates in the following 

cases respectively: collisions to infinitesimal particles, lines, and planes.
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Fig. 2: Invariant shapes of the abrasion model (6) determined 

numerically by a nonlinear boundary value problem solver 

(Domokos &  Szeberényi, 2004).  Horizontal and vertical axes show 

parameter p , and the ratio of maximal and minimal distances of the 

obtained solutions measured from the centroid (Rmax/Rmin), 

respectively. Points with grey background are attracting, the rest are 

repelling. Circle shapes (Rmax/Rmin=1) are attracting if p >1/2 and 

repelling otherwise. The branches of solutions with n-fold rotation 

symmetry are n-1 times unstable; the n=2 branch lies on a separatrix 

between shapes evolving to circles and ‘needles’ if p is slightly 

above 1/2. 

 

 

Fig. 3: Typical outcomes of 

contraction by constant speed 

( p =0): triangle (top) and ‘needle’ 

shape with flatness growing to 

infinity (bottom). The latter occurs 

usually for elongated initial shapes 

and the former one for ‘compact’ 

initial shapes. More precise 

classification can be given using 

the maximal inscribed circle of the 

initial contour (not shown here).  

4. Discussion 

Based on (6), the following question arises: what is the (typical) outcome of the wearing 

process at given p ? Analytical results of Andrews (2003) on a similar PDE (namely 

contraction proportional to p)(αρ ) imply that circles are locally attracting if p ∈(1/2,∞) and 

repelling if p ∈(0,1/2). Numerical simulations suggest that they are globally attracting for big 

p  and the length/width ratio of typical initial shape blows up (it becomes ‘needle-like’), i.e. 

there is no well-defined limit shape for small p . Furthermore, there is an interval of p above 

1/2, where the final outcome depends on the initial shape (Fig. 2). The two attracting limits 

predicted by the model agree with real pebble shapes: these are sometimes spheres and flat 

(although not infinitely flat) shapes in other cases. 
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The case p =0 is especially interesting, not only physically (sand blasting) but also 

mathematically. The PDE becomes hyperbolic: instead of smoothing, typical initial curves 

develop cusps, beyond which the stones’ shapes are ‘weak solutions’ of the PDE. In our case, 

‘needles’, as well as arbitrary triangles with sharp edges are attracting solutions (Fig. 3); a rich 

variety of unstable invariant shapes also exists (Pegden, in preparation). Similar shapes (so-

called ventifacts) can be created by wind abrasion. Ventifacts shaped by wind-driven sand 

most often look like polyhedra; the most characteristic ones are tetrahedral dreikanters. Thus, 

our model offers a new and fairly simple explanation for dreikanter generation, while it also 

embraces the classical pebble wear process. 
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