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Abstract 

Stanislav Ulam asked if the sphere is the only object floating in neutral equilibrium in every orientation and 

negative answer was provided recently. Here, several related problems are discussed. The same question is 

asked for two-dimensional objects whose centroid is pinned and it is demonstrated that the answer is similar to 

the case of freely floating bodies. We also discuss the minimal number of equilibria of homogenous planar 

floating objects (either freely or with pinned centroid) representing duals of Ulam’s Floating Body Problem. The 

non-existence of shapes with less than four equilibria is proven in special cases including infinitesimal 

perturbations of a circle however the general question remains open. The paper is complemented with remarks 

on analogous problems in three dimensions; connections to the family of Four-Vertex theorems are also pointed 

out. 
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1. Introduction 

The equilibria of floating objects are among the most classical issues of physics, which 

provide many examples of non-intuitive behaviour. The basic principles of floating were first 

worked out in the famous book ‘On Floating Bodies’ of Archimedes [1]. Based on his 

geometric results on parabolas, Archimedes was also able to determine the resting points of 

floating paraboloid segments of revolution. He, and recent authors completing his work [2,3] 

found that such objects have 3 to 7 practically different equilibria depending on shape and 

density. Even simpler shapes, such as rods, cylinders or the arcimedean solids show 

unexpectedly complex floating behaviour [4-6]. For example, a homogenous cube may float 
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stably with a face or a vertex pointing down depending on its density and it also has an 

attractive set of non-isolated skew equilibria in certain ranges of the density. The surprisingly 

complex bifurcation diagrams of simple floating shapes explain the often observed sudden 

turnovers of slowly melting icebergs [2,7,8]. 

 

One of the most beautiful examples of their strange behaviour is pointed out by Stanislav 

Ulam in Problem 19 of the Scottish Book
3
 [9]:  

 

Floating Body Problem (FBP): are the spheres the only convex, homogenous bodies floating 

in equilibrium in arbitrary orientation?  

 

Despite the simplicity of the question, the FBP remains open. It is known that the sphere is 

the only one among centrally symmetric bodies of density ρ=1/2 relative to water [10,4], 

however a recent work [11] suggests that there are probably other neutral shapes in general. 

Even the two-dimensional analogue of the question  

 

Planar Floating Body Problem: if a long, convex, homogenous prism floats in equilibrium in 

arbitrary orientation (with horizontal axis), is its cross-section necessarily a circle?  

 

is far from trivial. Counterexamples with density 1/2 haven been known for a long time [12]. 

There are other special values of ρ at which appropriate infinitesimal perturbations of the 

round cross-section preserve the neutral behaviour of the prism in leading order [13,14], and 

F. Wegner [15,16] could also prove recently that these correspond to real counterexamples. 

The focus of this paper is on related questions in two dimensions. For simplicity, the above 

two-dimensional problem is referred to as FBP, and the term ‘cross-section of a prism’ is 

replaced by ‘planar object’. We remark that different problems called Floating Body Problem 

also exist in the literature.  

 

In Section 2, basic principles of ‘planar’ floating as well as some of the above cited results are 

recalled. Section 3 is devoted to a modified version of the FBP, which has received no 

attention before:  
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Problem 1: are there convex planar shapes other than the circle, which are in equilibrium in 

any orientation if partially immersed in water with the centre of gravity G pinned (allowing 

only rotations around G)?  

 

Pinned objects also show complex behaviour [5], in which the height d of G (above the water 

surface) plays the role of parameter ρ of free floating. Here we show that for infinitesimally 

perturbed circles, the behaviour of pinned objects is identical to freely floating ones (Theorem 

1), implying the existence of infinitesimal deformations of a pinned circle preserving its 

neutrality. Weather or not these correspond to finite neutral deformations is beyond the scope 

of the current paper, however the similarity to free floating and analogous results in the latter 

case [15,16] suggest that they probably do. As a further similarity, we show in Theorem 2 that 

there is a rich variety of neutral shapes in the case d=0 (being analogous to ρ=1/2). 

 

The FBP and Problem 1 refer to shapes with ‘maximal’ number of equilibria however the 

minimal number is also an interesting question. Obviously, every object has at least one stable 

and one unstable balance point corresponding to the global extrema of its potential energy. 

Nevertheless, one may ask the 

 

(Planar) Monostatic Floating Body Problem (MFBP): are there convex, homogenous planar 

shapes of relative density ρ,  which have only one stable equilibrium?  

 

as well as its analogue to pinned objects: 

 

Problem 2: are there convex, homogenous planar shapes with only one stable equilibrium, if 

their centre of gravity G is pinned at distance d above water surface? 

 

Monostatic objects (for an exact definition, see Section 3) return to their unique stable 

restpoint regardless of the initial position; the ability of spontaneous self-righting is important 

for many technical tools such as ships or spacecrafts, and also for some animals with rigid 

shells [17]. Previously, monostatic objects sitting on solid, horizontal surfaces have been 

widely investigated. One can easily construct such shapes with inhomogenous mass-

distribution similar to ‘weebles’; even a (non-regular) tetrahedron may be monostatic as 

proved but not published by John Conway, see [18]. Objects with homogenous mass-
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distribution may also be monostatic: the simplest such polyhedron is due to Conway & Guy 

[19]. There are even ‘mono-monostatic’ 3D shapes with only 1 stable and 1 unstable 

equilibrium [20,21]. In contrast, no convex, homogenous object has this property in two-

dimensions [22]; moreover, the latter is equivalent [20] of the Four-vertex theorem, stating 

that each plane curve has at least four vertices, i.e. local extrema of the curvature [23]. 

Resting on a solid surface corresponds to floating in the limit ρ→0 or ρ→1. Hence negative 

answer to the planar MFBP would also correspond to a novel physically inspired 

generalisation of the Four-vertex theorem, which is a classical result of differential geometry 

with countless existing, purely geometrical extensions.  

 

In Section 4, the nonexistence theorem of [22] is summarized with a modest generalisation to 

objects with inhomogenous density ρ(r) depending only on distance r from the object’s centre 

of gravity (Theorem 3). It is also shown that certain ρ(r) functions allow monostatic floating 

(Theorem 5) whereas others exclude it (Theorem 4). Nevertheless the case of our primary 

interest (ρ=constant) is not among these simple ones. 

 

The most straightforward connection between solutions of the neutral floating problems 

(FBP, Problem 1) and the monostatic ones (MFBP, Problem 2) is that infinitesimal 

perturbations of the former ones are potential examples of the latter. Such perturbations are 

the subject of Section 5. After solving the special cases ρ≈0, ρ≈1/2 and d≈0 (Theorems 6-8), 

further partial negative answer to the planar MFBP and Problem 3  for ρ≠1/2 and d≠0, 

respectively, are given by showing that infinitesimal perturbations of a circle are never 

monostatic (Theorems 9-10).  

 

The paper is closed by a short discussion. Despite the negative results of Section 5, we outline 

some promising ways to construct monostatic floating bodies. Preliminary results concerning 

spatial monostatic floating body problems, as well as some other related mechanical questions 

are also mentioned.  
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2. Basic principles of floating 

In this Section, we review simple results on ‘planar’ floating, i.e. on floating of long cylinders 

with horizontal axis. We also summarize some results concerning the FBP following [12], and 

[4]. 

 

According to Archimedes’ law, a planar object Ω of area A, and relative density ρ floats such 

that a portion of area AB=ρA is immersed in the water. Furthermore to float in equilibrium, the 

line joining the centre of gravity G of the object and that of the submerged part (centre of 

buoyancy, B) has to be vertical. The sizes of the gravitational and the buoyancy force are 

ρAg; assuming that the gravitational constant is g=1, the potential energy of Ω is  

( ) ( ) ( ) ( )αααρα ρρρ ShAhAU
def

B ==⋅=  (1) 

where angle α determines the direction of the water line relative to a reference axis x of the 

floating object (Figure 1), hρ(α) denotes the height difference between B and G, and thus S is 

the vertical component of the geometric ‘first order moment’ of the submerged part to G. 

Equilibria correspond to extrema of U, i.e. those of hρ(α). Neutral floating for arbitrary α 

occurs if hρ=constant, hence if B moves on a circle centred at G as α is varied. 

 

Let B
*
 denote the centroid of the portion above the water-line. Then, since this part is of area 

(1-ρ)A, B
*
 becomes the centroid of the submerged part at orientation α+π for density 1-ρ; 

according to the definition of centroids, the height difference between G and B
*
 (i.e. 

h1−ρ(α+π)) satisfies  

h1-ρ(α+π)=hρ(α)ρ/(1-ρ). (2) 

From (1) and (2), 

U1-ρ(α+π)=Uρ(α). (3) 

Thus, there is duality between the equilibria for densities ρ and 1-ρ, hence it is enough to 

discuss the ρ≤1/2 case as also noted by many authors previously. In particular, if ρ=1/2, the U 

function is π-periodic and an equilibrium at α implies the existence of another one of the 

same stability type at α+π.  
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Figure 1: planar floating object in coordinates fixed to the liquid. x is a reference axis of the 

object; B, B*, and G are centroids of the immersed part, the part above the liquid surface, and 

the total object, respectively. The object in the figure satisfies Archimedes’ law but it is not in 

equilibrium (BG is not vertical). 
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Figure 2: floating object in coordinate system fixed to itself. The two water lines w, w’ meet 

at angle dα. For further notations, see text. 

 

Consider now a pair of water lines w and w
’
 satisfying Archimedes’ law, and meeting at an 

infinitesimal angle dα (Figure 2). We assume that each water line crosses the perimeter of the 

object at 2 points, which is true for convex shapes and also for ‘not too concave’ ones. 

Similarly to previous works, we refer to this property as sufficient convexity. Since the 

portions of the objects cut by the two water lines are equal, the triangles CC’W and DD’W in 

Figure 2 are also of equal area; thus the crossing point W of the lines is within O(dα) of the 

midpoint of the waterlines; hence, as α is varied, the water line rotates around its current 

midpoint (combined with some shift parallel to itself). The set of midpoints for 0≤α<2π 

determines a curve e (more precisely a wavefront of total rotation 2π, which may contain cusp 

singularities) referred to as water envelope of the object (or ‘floating body of the object’ 

[24]); the water lines are tangents of the water envelope. For ρ=1/2, the waterlines at α and at 

α+π coincide, thus the water envelope reduces to a wavefront of total rotation π, which is 

twice circuited by W as α goes from 0 to 2π.  

 

Now let us assume that an object of density ρ floats neutrally! Then, B lies on a circle of some 

radius r around G for every α. For an infinitesimal perturbation dα of α, the displacement of 

B has to be constant rdα; it can also be expressed in terms of the half-length l of the waterline 

CD: the areas of triangles CC’W and DD’W are l
2
dα/2+O(dα2

) and the distance between their 

centroids is 4/3l+O(dα). Thus the displacement of the centre of buoyancy B is 

rdα=2l
3
dα/(3ρA) yielding 

l=(3ρAr/2)
1/3

=constant. (4) 



 8 

 This condition is necessary, and for ρ=1/2 also sufficient: if l satisfies (4), then B moves on a 

circle of radius r; the π-periodicity of the problem in α implies that the circle is invariant to 

rotation by π around G; thus it is centred at G. Hence, for ρ=1/2 one can take an arbitrary 

wavefront of total rotation π as water envelope, and choose an almost arbitrary l (the 

convexity requirement gives some lower bound on l). On each tangent w of the water 

envelope one considers the points C, and D of distance l from the point of tangency W. By 

walking around the water envelope once, the two points cover two halves of the perimeter of 

an object neutrally floating at ρ=1/2 (see e.g. Figure 3). For ρ≠1/2, the water envelope is of 

total rotation 2π, and both points cover the whole perimeter while the tangent goes around the 

water envelope once; however for an arbitrarily chosen initial water envelope, C, and D 

typically determine different contours, i.e. the above procedure does not work. Beyond that, 

notice that (4) is not sufficient since the circle on which B travels need not be centred at G. 

Thus, even if for some l and an initial water envelope the two points determine the same 

contour, the final object need not be neutral. For some consequences, see the last section. We 

remark that the only known non-trivial solutions of the FBP for ρ≠1/2 [15,16] have rotational 

symmetry, which ensures the coincidence of G with the centre of the circle on which B lies. 

3. Floating with pinned centroid 

Here we consider a homogenous, sufficiently convex (see definition in Section 2) planar 

object fixed at its centre of gravity G at height d above the water surface, but freely rotating 

around G. The boundary is given by the function R(φ) in a polar coordinate system centred at 

G. We assume that for arbitrary orientation, the object is partially submerged in the water (i.e. 

|d| is not bigger than the (minimal) distance minR(φ) of the perimeter from G.). If the object is 

completely under or above the liquid surface, its behaviour is trivially neutral. 

 

 



 9 

 

Figure 3: simple example of an object, 

which floats neutrally in arbitrary 

orientation if ρ=1/2. The triangle e can be 

considered as a wavefront of total rotation 

π; we choose it as water envelope; l is 

arbitrary. The emerging boundary consists 

of line and circle segments, the latter are 

centred at the triangle’s vertices. The 

boundary is not convex, yet it is just at the 

limit of being ‘sufficiently convex’ as 

defined in the text. CiDi are four water 

lines of length l, each one touching e at its 

midpoint.   

 

 

Figure 4: infinitesimally perturbed circle. 

The line w0 is at distance d from G, and it 

cuts off a piece of area ρA from the 

unperturbed circle, whereas w cuts of a 

piece of area ρA from the perturbed 

object. 

 

This situation shows much similarity to free floating: equilibria occur if and only if the 

centroid B of the submerged part is exactly under G. The potential energy is somewhat 

different of (1). The forces acting at G have zero displacement as α is varied, thus only the 

mechanical work of the buoyancy force is responsible for variations of the energy. The 

emerging formula of the potential energy is  

 

( ) ( ) ( ) ( )αααα w

def

dBd ShAU ==  (5) 

 

where AB(α) is the area of the submerged part and hd is the distance of B from the water line 

w0. Thus Sw is the geometric first moment of the submerged part to w0. Similar to the duality 

in parameter ρ of free floating (Section 2), here the existence of an equilibrium with d=d0 at α 
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imply the existence of another one with d=-d0 at α+π. Thus, it is enough to consider the d≥0 

case.  

 

One apparent similarity between floating and ‘pinned floating’ is that the equilibrium 

condition is the same in both cases: BG must be vertical. Hence a floating equilibrium with 

given ρ always corresponds to a ‘pinned’ equilibrium with some d. Even more can be stated 

in case of nearly round objects. 

 

Theorem 1: for arbitrary d<1, there is ρ such that the potential Ud(α) of an infinitesimally 

perturbed unit circle of density ρ whose centroid is pinned at height d above the water surface 

equals the potential Uρ(α) of the same shape floating freely in leading order (modulo a 

constant term). 

 

Proof: we consider a shape determined by  

 

R(φ)=1+εf(φ) (ε<<1) (6) 

 

(Figure 4). If the object is pinned, the water line w0 is at distance d from G, and the 

submerged part of the object’s perimeter corresponds to the interval (α-

acos(d)+O(ε),α+acos(d)+O(ε)) of the polar variable φ. We introduce θ=acos(d) and express 

the potential based on (5) as   

( )( ) )(coscos)()( 2

0 εφθαφφεα
θα

θα

OdfSU dd +−−+= ∫
+

−

 (7) 

where Sd0 is the first moment of the submerged part for unperturbed circle (f(φ)≡0).  

 

We now develop a similar formula for free floating. ρ is chosen such that the water line of a 

floating, unperturbed unit circle is w0. After perturbation, the area AB cut off by w0 is  

)()( 2εφφερ
θα

θα

OdfAAB ++= ∫
+

−

 (8) 

Since the immersed part of a freely floating object is constant ρA and the half-length of w0 is  

l=sin(θ)+O(ε), (9) 

the water line w of the floating perturbed circle is at distance  
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( )
)()(

sin22

2εφφ
θ

ε θα

θα

Odf
l

A
d B

w +== ∫
+

−

 (10) 

from w0. The potential energy of the object is  

( ) ( ) ( ))()()(cos)()( 2

0 εεεφαφφεα
θα

θα
ρρ OddOlOdfSU ww ++−+−+= ∫

+

−

 (11) 

(cf. (1)). Sρ0 denotes the potential energy of a circle. The second term represents the effect of 

the perturbation if the water line is fixed at w0, and the third one reflects the fact that a 

segment of size (lw+O(ε))dw ceases to be immersed due to the displacement of the water line. 

Equations (8),(11) and the definition θ=acos(d) yield 

( )

( )( ) )(coscos)(

)(cos)(
sin2

sin2cos)()(

2

0

2

0

εφθαφφε

εθφφ
θ

ε
θφαφφεα

θα

θα
ρ

θα

θα

θα

θα
ρρ

OdfS

OdfdfSU

+−−+=

=+−−+=

∫

∫∫
+

−

+

−

+

−
 (12) 

 The energies (12) and (7) are equal modulo constant and O(ε2
) terms.  

 

Due to Theorem 1, we immediately have 

 

Corollary 1: there is an everywhere dense set of values d in the interval 0≤d<1 for which an 

appropriate infinitesimal perturbation of a unit circle preserves its neutrality although for 

randomly chosen d, this is typically not the case.  

 

Proof: The corollary follows from an analogous statement for freely floating infinitesimally 

perturbed circles (first proved in [13], see also Section 5 of [14]), as well as from Theorem 1. 

We remark that the neutral perturbations are pure k
th

 harmonics where k≥4, and they exists if 

( ) ( )dkdk acostanacostan =⋅ . (13) 

  

 

In the FBP, a wide family of neutral shapes exist for ρ=1/2, due to the ‘self-duality’ shown in 

Section 2. The analogous property of d=0 enables us to construct a wide variety of neutrally 

behaving pinned shapes: 
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Theorem 2: a planar objects pinned at G and submerged in water such that d=0, floats 

neutrally in every orientation iff the polar equation of its boundary R(φ) in coordinate system 

centred at G is such that R
3
(φ) has only 0

th
 and 2k+1

th
 (k≥1, k∈N) order Fourier components  

 

Proof: if d=0, the submerged part is simply the union of all points, whose polar angle is in the 

interval (α-π/2,α+π/2). Thus, the potential energy can expressed as 

( ) ( ) ( )∫∫ −=−=
+

−

ππα

πα

φφαφφφαφα
2

0

3
2/

2/

3
0 )(

3

1
)cos(

3

1
dFRdRU  (14) 

where  

( ))cos(,0max)( xxF
def

=  (15) 

U0 is a convolution of the 2π-periodic functions R
3
 and F. According to the Convolution 

theorem, the coefficients of the Fourier series of U0 in φ are simply products of the 

corresponding coefficients of R
3
 and F. Neutral behaviour means that U0 is constant; i.e. that 

all its non-constant Fourier components are 0 apart from the arbitrary zero-order term. F has 

nonzero 1
st
, and 2k

th
 terms but vanishing 2k+1

th 
terms if k≥1; thus R

3
 may consist of arbitrary 

0
th

 and 2k+1
th

 term, and the rest have to vanish.  

 

We remark that the vanishing 1
st 

term in R
3
 guarantees that the centoid coincides with the 

origo of the coordinate system. Also notice that arbitrary (positive) function R gives rise to a 

sufficiently convex object if d=0. A nontrivial example is shown in Figure 5. 

 

4. Monostatic rolling and floating objects 

This section focuses on monostatic objects in two dimensions; this means that their potential 

energy versus orientation function U(α) is itself monostatic according to:  

 

Definition 4.1: A 2π-periodic, continuous, scalar function Ψ(x) is monostatic (weakly 

monostatic), if there exit x1, x2 such that f is increasing (nondecreasing) in the interval (x1,x2) 

and decreasing (nonincreasing) in (x2,x1+2π). 

 

We use a simple consequence of this property, to show the non-existence of monostatic 

objects in certain cases:  
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Observation 1: if Ψ (x) is monostatic (weakly monostatic), then there exists x0 such that 

( ) ( ) ( ) ( ) πππ +≤≤+Ψ
≥

>
+Ψ=Ψ

≥

>
Ψ 0000 for

)()(
xxxxxxx  (16) 

 

Notice that the weakly monostatic property includes neutral behaviour, indicating the close 

relation between the two types of questions of this paper. 

 

We now recall a former result on monostatic objects, resting on a solid surface [22]. This 

situation corresponds to a special limit of floating, since very light objects (relative to water) 

lie on top of the water surface with negligible immersion, and thus they behave as if placed on 

a solid surface. The statement is given here in slightly generalized form: 

 

Theorem 3: let r denote distance from an object’s centre of gravity. Then, a convex object of 

strictly positive density ρ(r) (depending only on r) on a solid, horizontal surface is not 

monostatic. 

 

The steps of the proof follow those for ρ=constant in [22]. The reason for summarizing this 

result is that similar arguments are used for floating bodies in Section 5. The somewhat 

artificial type of r-dependent inhomogenity is discussed to demonstrate the nontrivial 

connection between rolling and floating, see Theorems 4, 5 below.  

 

Figure 5: an object, which behaves 

neutrally if pinned with d=0. 

R(φ)=[1+0.4cos(3φ)+0.4sin(5φ)]
1/3

. 

 

 

 

Figure 6: object resting on a solid surface.
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Proof by contradiction: the potential energy of a body on a solid surface is U
*
=mgh where mg 

is the weight of the body and h is the height of its centre of gravity G above the surface. For 

objects given by R(φ) in polar coordinate system centred at G,  

( )
( )
( )

2

*

'
1

)(









+

⋅=

φ
φ

φ
α

R

R

R
mgU . 

(17) 

(Figure 6). Here, φ denotes the polar angle of the point in contact with the underlying ground, 

at orientation α (φ is usually close to α but they are not equal away from equilibria).  The 

critical points of U
*
(α) (i.e. balance points of the object) coincide with those of R(φ) [22]. 

Thus, if the object is monostatic, then R has the same property.  

 

The coincidence of the centre of gravity with the origin yields the constraint 

( ) 0sin
2

0

)(

0
=∫ ∫

π φ
φφρ

R

drdrr . (18) 

(as well as the same equation with cosφ instead of sinφ). Since sinφ=-sin(φ+π), (18) is 

equivalent of 

( ) 0sin
0

)(

)(
=∫ ∫ +

π φ

πφ
φρφ drdrr

R

R
. (19) 

The quantities sinφ, r and ρ(r) are positive, and R(φ)>R(φ+π) according to (16) in Observation 

1 for the monostatic function R() with x0=0 (The latter is assumed without loss of generality). 

Hence the left hand side should be positive leading to contradiction.    

 

The crucial argument in the proof is the following: the monostatic property implies the 

existence of a ‘thick’ and a ‘thin’ part on the two sides of the centre of gravity. At the same 

time, the special density-distribution constraints the position of the centre of gravity and these 

two facts contradict one another. Of course, it is easy to create monostatic objects in case of 

arbitrary inhomogenous mass distribution. A circle is for example always monostatic if G is 

not in the geometric centre. 

 

Similar arguments apply in case of the floating problems, and all the nonexistence theorems 

of Section 5 are based on finding contradiction between these two properties. The potential 

energy of a floating object is however not as simple as (17). In fact, as we show, there are 

certain functions ρ(r), for which Theorem 3 holds to floating objects as well (Theorem 4) and 
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others for which it does not (Theorem 5). The first statement is demonstrated only for pinned 

floating, while the second is proved for both the free and the pinned cases. 

 

Let  

2

2

1acos)(
r

d

r

d

r

d
r

def

−−






=∗ρ  (20) 

Then, 

 

 Theorem 4: a sufficiently convex object Ω of density 





>

≤
= ∗ )(min)(

)(min
)(

φρ
φ

ρ
Rrifr

Rrifarbitrary
r   (21) 

is not monostatic if partially submerged in water with pinned centroid.   

 

Proof by contradiction:  

As mentioned above, the statement is trivially true if |d|>minR(x). This is why the partial 

submersion (|d|≤minR(φ)) is assumed. Based on (5), the potential energy for pinned floating at 

orientation α can be expressed as an integral over the immersed part of Ω: 

( ) [ ]∫
≥−Ω

−−=
dr

d dAdrU
)cos(|

)cos(
φα

φαα  
 (22) 

where r and φ are the distance and orientation of points of Ω from G. The monostatic 

behaviour and Observation 1 imply the existence of α0 such that 

Ud(α)>Ud(α0)=Ud(π+α0)>Ud(α+π) for every α0<α<π+α0. Thus, with α0=0,   

( ) ( ) ( )( ) 0sinsin
0

2

0
>+−= ∫∫ ααπααααα

ππ
dUUdU ddd . (23) 

Substitution of (22) into the left side of (23) and changing the order of integration leads to 

[ ] [ ] 0sin)cos(sin)cos(
acos

acos-

2

0
)cos(|

>−−=−− ∫ ∫∫ ∫
Ω








+









≥−Ω

dAddrdAddr r

d

r

d

dr

ααφαααφα
φ

φ

π

φα

 (24) 

Notice that the constraints rcos(α-φ)≤d and α∈(φ-acos(d/r),φ+acos(d/r)) in (24) are 

equivalent (both restrict the integration to immersed points of Ω). The inner integral in (24) 

can be expressed in closed form, thereby we obtain 

( ) 0sin1acos
|

2

2

>













−−







⋅∫
≥Ω dr

dA
r

d
d

r

d
r φ . (25) 
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Due to (20), (25) simplifies to 

( ) 0sin)(
|

>∫
≥Ω

∗

dr

dArr φρ . 
(26) 

Notice that the above integral is zero over the annulus-shaped domain d≤r≤minR(φ) of Ω 

simply by its symmetry. We drop this part from (26) and we also add to it another integral 

over the disc 0≤r≤ minR(φ), which is also 0 by symmetry: 

( ) ( ) 0sin)(sin)(
)(min|)(min|

>+ ∫∫
≤Ω≥Ω

∗

φφ

φρφρ
RrRr

dArrdArr . 
(27) 

According to (21), this means 

( ) 0sin)( >∫
Ω

dArr φρ . (28) 

The left-hand side of (28) should be zero by the assumption that r is measured from the centre 

of gravity G. Hence, we found contradiction, and Ω cannot be monostatic.  

 

Theorem 5: there exist objects of strictly positive density ρ(r), which are monostatic if floating 

either freely or with pinned centroid. 

 

Proof: we outline the sketch of a simple construction without exact details. Consider a unit 

circle with two small dents of area εA1 (ε<<1) and a small hill of area εA2 arranged 

symmetrically (Figure 7, left), such that convexity is maintained by the perturbations. Let 

furthermore A2 be considerably smaller than A1. Then, if ρ is constant, the centre of gravity of 

the object is under the centre O of the circle. However one can choose ρ(r) such that ρ(r)=1 if 

r≤1 but it quickly increases in the range r>1. This way, the centre of gravity can be moved to 

O. Since the object in question is an infinitesimally perturbed circle, its potential energy 

function U is the same for free and fixed floating by Theorem 1. U can easily be constructed 

with help of equation (12). The unperturbed circle floats neutrally (U=constant), and the 3 

local perturbations correspond to 3 additive perturbations of U in leading order (Figure 7, 

right). If A2/A1 is sufficiently small, U is weakly monostatic, i.e. it contains a constant piece 

and a ‘valley’. A further minor modification of ρ(r) can move the centre of gravity slightly 

above O, which makes the potential energy function monostatic.  
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Figure 7, left: a monostatic perturbed circle with inhomogenous mass-distribution ρ(r) 

depending on distance r from the centroid. The infinitesimally small perturbations are 

enlarged. Right: the potential energy of the object. The circle has constant energy (dotted 

line), the three perturbations correspond to three perturbations of U (dashed lines) provided 

that G remains coincident with O. The energy function (continuous line) is obtained by 

superposition. U is weakly monostatic, the final step of making U monostatic is not shown.   

  

5. Nonexistence theorems of the monostatic floating body 

problem 

 

In Section 4, it was shown that bodies sitting on horizontal surfaces (analogous to floating if 

ρ→0) are never monostatic, however the generalisation of this statement to floating objects is 

far from trivial. Now we prove the non-existence of such shapes in special cases. Analogous 

results for floating with pinned centroid are also shown. In part 5.1, special values of the 

parameters ρ and d are considered, whereas part 5.2 deals with infinitesimally perturbed 

circles, i.e. special shapes. 

 

5.1. Special parameter values 

 

The connection between rolling and floating in the limit ρ→0 enables us to prove   

 

Theorem 6: given an arbitrary sufficiently convex, homogenous floating object Ω, there exists 

ε>0 such that it is not monostatic if its density satisfies ρ<ε. 
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At the same time, for ρ≈1/2 as well as d≈0 the self-duality of the problem shown in Sections 2 

and 3 simplifies the analysis.  In these cases we show 

 

Theorem 7: given an arbitrary sufficiently convex, homogenous floating object Ω, there exists 

ε>0 such that it is not monostatic if its density satisfies |ρ-1/2|<ε. 

 

Theorem 8: given an arbitrary sufficiently convex, homogenous, partially submerged object Ω 

with centroid pinned at height d, there exists ε>0 such that it is not monostatic if |d|<ε 

 

In each of the theorems, the following subcases are considered: 

A: Ω is not weakly monostatic in the limit of rolling (Thm. 6), if ρ=1/2 (Thm. 7) or if d=0 

(Thm. 8).   

B: Ω is weakly monostatic but not neutral under the same circumstances 

C: Ω is not a circle but floats neutrally under the same circumstances 

D: Ω is a circle  

Case d) is trivial, since a homogenous circle is not monostatic. So is case a), since an energy 

function that is not even weakly monostatic cannot become monostatic via infinitesimal 

perturbations due to continuity arguments. The remaining two cases are discussed below.  

 

Proof of Theorem 6: 

Case B 

This class is empty [22]. 

Case C 

This class is empty, since all wheels are round, i.e. the circle is the only shape rolling 

neutrally on a solid surface [25].  

 

Proof of Theorem 7:  

Case B 

We show by contradiction that this class is empty. Assume that the potential energy function 

U1/2(α) of Ω is weakly monostatic but not constant. Let 0≤α1,α2≤π satisfy 

U1/2(α1)=minU1/2(α), U1/2(α2)=maxU1/2(α); α1 and α2 then correspond to equilibria. U1/2 is 

weakly monostatic, thus according to Observation 1, there is an α0 such that U1/2(α)≥U1/2(α0) 



 19 

if α∈(α0,α0+π), and U1/2(α)≤U1/2(α0) if α∈(α0-π,α0). If α1 is in one of these intervals (mod 

2π), then α1+π is contained by the other one. This fact and the π-periodicity of U(α) (shown 

in Section 2) imply U1/2(α1)=U(α0). The same argument also yields U1/2(α2)=U(α0), but then 

U1/2(α1)= U1/2(α2), which contradicts the assumption that U1/2(α) is not constant. 

 

Case C 

Let d(α) denote the signed height difference between G and the water line w if the orientation 

of the floating object is α and its density is ρ=1/2. Since w cuts Ω to two halves of equal area,   

d(α)=-d(α+π). (29) 

If ρ is decreased by δ, a narrow band of area δA and height O(δ) next to w ceases to be 

immersed and according to (1), the potential energy becomes   

( ) ( ) ( )( ) )()(constant)( 2
2/12/1 δαδδδαααδ OdAAOdUU +⋅⋅−=⋅⋅+−=−  (30) 

If Ω is monostatic for small δ, then d(α) must be at least weakly monostatic. The symmetry 

(29) of d(α) and Observation 1 imply the existence of α0 such that d(α0)=d(α0+π)=0, d(α) is 

nonnegative in the interval (α0,α0+π) and nonpositive in (α0+π,α0+2π). Without loss of 

generality, α0=0 is assumed. We reformulate our statement to a problem of floating with 

pinned centroid, as follows.  For every α, let the water line w be shifted to its parallel copy w0 

going through G≡O. This theoretical shift w increases the immersed area if α∈(0,π) and 

decreases it if α∈(π,2π). Thus, the resultant immersed area satisfies AB(α)≥A/2, and 

AB(α)≤A/2 in the two respective cases. To provide contradiction and to complete the proof 

thereby, it is enough to show that  

 

Lemma 1: if AB(α)≥A/2, and AB(α)≤A/2 in α∈(0,π), and α∈(π,2π) respectively, then Ω is 

centrally symmetric. 

 

because the potential energy of a centrally symmetric object is π-periodic, excluding 

monostatic behaviour for any ρ (cf. the proof of case B). 
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Figure 8: illustration to the proof of Lemma 1. Grey arrow shows the initial step of 

rearranging Ω. 

 

Proof of Lemma 1: 

 The submerged part is the union of all points, whose polar angle is in the interval (α-

π/2,α+π/2), hence we have  

( ) ( ) παφφφφα
π

π

πα

πα

≤≤=≥= ∫∫
−

+

−

0if
2

1
2/

2

1
)(

2/

2/

2
2/

2/

2 dRAdRAB  (31) 

immediately yielding the following two inequalities 

 

( ) ( ) παφπφφφ
απ

π

απ

π

≤≤+≥ ∫∫
++

0if

2/

2/

2
2/

2/

2 dRdR  

(32) 

 

( ) ( ) παφπφφφ
π

απ

π

απ

≤≤+≥ ∫∫
−−

0if

2/

2/

2
2/

2/

2 dRdR  (33) 

We now show via a geometric rearrangement of some parts of Ω that it must be centrally 

symmetric 

 

We assume that R’(-π/2)=0, i.e. that the tangent of the boundary curve right above O is 

horizontal. If Ω does not meet this requirement, the following affine transformation 





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















−








−
−

2

2
'

,),(
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π

R

R

xyxyx a  (34) 

makes the job without changing the position of the centre of gravity or any other important 

property of Ω.  
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Let Ω
*
 be the central reflection of Ω to O! The equation of the boundary of Ω

*
 is R(φ+π), see 

the dashed line in Figure 8. We now consider the interval φ∈(π/2,π); we gradually remove 

infinitesimally small radial segments from the ‘excess area’ Ω\Ω
* 

(inside the curve R(φ) but 

outside R(φ+π)) starting from φ=π/2; the removed area is used to fill up the ‘missing area’ 

Ω
*
\Ω again from π/2 towards π. We proceed until the missing area vanishes from the quadrant 

φ∈(π/2,π). The following simple observations together imply that each piece of rearranged 

area moves upwards:  

- Due to (32), the polar angle associated with the position of the rearranged pieces 

always increases (and the procedure is finished before the excess area completely 

disappears).  

- The dashed curve has horizontal tangent at φ=π/2, and due to its convexity, the y 

coordinate montonically decreases along the curve if φ is increased in the interval 

φ∈(π/2,π). 

- each rearranged segment moves from below the dashed curve to above it.  

The same rearrangement procedure can be done in the interval (0,π/2), and the rearranged 

pieces again move upwards. As a result, the centroid of the rearranged object Ω
**

 is above or 

at the same height as initially: 

yG**≤0 (35) 

At the same time the new boundary curve R
**

(φ) satisfies R
**

(φ)≥R
**

(φ+π) for every φ∈(0,π), 

thus the y coordinate of its centroid is   

0
3

sin)()(sin)(
3

1

0

3**3**
2

0

3**

** ≥









+−

==
∫∫

A

dRR

A

dR

yG

φφπφφφφφ
ππ

 

(36) 

 (35), and (36) imply yG**=0. Equality in (36) and (35) occur if R
**

(φ)≡R
**

(φ+π) and if no 

arrangement is needed to eliminate the ‘missing part’, respectively. Hence, R(φ)≡R(φ+π) i.e. 

the object is centrally symmetric.  

 

Proof of Theorem 8:  

Case B 

The proof relies on the π-periodicity of the potential energy function just as in case B of 

Theorem 7.  
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Case C 

If d=δ is small but positive, the potential energy of the pinned object is 

( ) ( ) )()(constant)()( 22
0 δαδδαδααδ OAOAUU BB +−=+−=  (37) 

where AB(α) is the area of the immersed part with d=0. Hence if Ω is monostatic for small δ, 

then AB(α) must be at least weakly monostatic. The identity AB(α)+AB(α+π)≡A and 

Observation 1 imply the existence of α0 such that AB(α)≥A/2 if α∈(α0,α0+π) and  AB(α)≤A/2 

if α∈(α0+π,α0+2π). We assume α0=0 without loss of generality and we use Lemma 1 to 

conclude that the object is centrally symmetric and thus not monostatic.  

 

5.2. Almost round shapes 

The problem appears to be difficult for arbitrary shapes and arbitrary values of ρ and d; 

however the case of nearly round objects is still tractable. Since the circle is neutral (i.e. 

weakly monostatic), an infinitesimally perturbed circle is a potential candidate for monostatic 

behaviour. Nevertheless, we show the following two theorems by linearising the effect of the 

perturbation: 

 

Theorem 9: a floating infinitesimally perturbed circle is not monostatic. 

 

Theorem 10: an infinitesimally perturbed circle floating with pinned centroid is not 

monostatic. 

 

Proof of Theorem 9: the main arguments of the proof follow those of Theorem 3. We consider 

a perturbed circle in polar coordinate system, cf. (6). We assume that the centre of gravity 

coincides with the origin implying 

( )∫ =+
π

εε
2

0

2 0)(sin Oxdxxf  (38) 

Assume now that the object (that is: Ud(α)) is monostatic. We apply Observation 1 to Ψ≡Ud 

and assume that x0=0, implying the following inequality: 
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( ) ( )( ) ( )∫∫ =+−<
ππ

αααααπαα
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00

sinsin0 dUdUU  (39) 

 

Next, the expression (12) of U is substituted into (39) and a zero term is removed:  
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Replacing the variable x by y=x-α, and changing the order of integration yield 

( )
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We now replace α by β=α+y, exploit the 2π periodicity of the integrated functions, change 

the order again and express the inner integral in closed form: 
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(42) 

The result of the last step contradicts (38) unless the O(ε) term is 0 and only the O(ε2
) term is 

negative. This case means that the perturbation preserves neutral floating in leading order, 

which is possible (see Corollary 1 and the references there). However the only infinitesimal 

perturbations of this type have rotational symmetries, thus they cannot be monostatic.  
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Proof of Theorem 10: Thm. 1 implies that this statement is equivalent of Thm. 9.  

 

6. Discussion  

 

In this paper, we demonstrated that pinned and partially submerged planar objects show 

complex behaviour similarly to freely floating ones. Analogously to Ulam’s famous floating 

body problem, shapes other than circles may float neutrally if their pinned centroids are at the 

level of liquid surface (d=0), and such shapes probably also exist if d≠0. The duals of these 

two problems were also considered, and the non-existence of planar homogenous floating 

bodies (freely or with pinned centroid) with less than four equilibria was proved in special 

cases. Nevertheless, the dual problems were not solved in full generality and there are some 

indications that such shapes might perhaps exist in case of free floating.  

 

One of these is an interesting connection between floating bodies and ‘bicycle curves’ 

[26,27]. The latter are those curves, which may represent the front-wheel track of an idealised 

bicycle moving in either direction with identical rear tracks in the two cases. We showed in 

Section 2 that  

(i) the water lines of a neutrally floating object are chords of constant length 2l and  

(ii) they are tangential at their midpoints to the water envelope e.  

(i) and (ii) are exactly the properties characterizing bicycle curves (where the bicycle is of 

length l and the rear-wheel track corresponds to the water envelope). However, as also 

pointed out in Section 2, (i) and (ii) imply only that the centre of buoyancy moves on a circle 

and not necessarily that this circle is centred at G. If G is off-centre, the floating body 

corresponding to the closed bicycle curve is monostatic instead of neutral. We remark that the 

problem of closed bicycle curves and the FBP are often claimed in the literature to be 

equivalent, which goes back to an unproved statement of [12] corrected in a footnote. In fact, 

all known, closed bicycle curves correspond to the ρ=1/2 case or they have some rotational 

symmetry, each of which in itself precludes monostatic floating. Bicycle curves without 

higher order symmetries nevertheless seem to be strong candidates for affirmative solutions of 

the MFBP if they exist. Another promising possibility is to consider infinitesimal 

perturbations of nontrivial solutions of the Floating Body Problem. Although the perturbation 

of circles is not appropriate (cf. Section 5.2), nevertheless the author was unable to prove this 
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for other neutrally floating shapes. Similar techniques may also help solving Problem 2. In 

any case, the final answers to the questions about monostatic objects would either result in 

new, physically inspired Four vertex-type theorems or in the discovery of a new type of 

counterintuitive behavior among floating objects. 

 

All questions discussed in this paper naturally extend to three dimensions. The FBP appears 

to be quite difficult in 3D, and it has not been solved (see however partial negative [11] and 

positive [10,4] answers). The MFBP is somewhat different. Convex, homogenous 3D objects 

may have only two equilibria if resting on a solid, horizontal surface [20,21]. In contrast to 

neutral behaviour, the monostatic property is preserved by small perturbations. Hence, the 

same shapes are also monostatic for floating if their density ρ is sufficiently small. 

Nevertheless this is not true for arbitrary density: if ρ=1/2, arguments similar to the two 

dimensional case, imply that every object has at least six equilibria (usually: ≥2 minima, ≥2 

maxima and ≥2 saddle points of the potential energy). The author’s guess is that monostatic 

objects exist for arbitrary ρ≠1/2, yet this has not been proved so far.  

 

Finally, we would like to remark that there are countless other situations, in which the 

possibility of monostatic or neutral behaviour are relevant questions. Let three examples stay 

here: 

Q1. A light, convex, thin-walled, hollow box lies on a solid, horizontal surface and it is 

partially filled with liquid. Can it behave neutrally if it is not round?  Can it be 

monostatic?  

Q2. The same type of box is pinned at its centroid. The questions are the same as in Q1.  

Q3. If the surface of a convex, homogenous, solid planet is everywhere ‘horizontal’ (i.e. the 

surface tangent is perpendicular to the planet’s gravitational field), then is it necessarily 

round? Is it possible that there is only one hilltop and/or one basin on a planet’s surface? 

It is easy to show that Q2 is equivalent of the problems of free floating. At the same time, Q1 

and Q3 appear to be unsolved apart from the following special limits: in Q1, a box fully filled 

with liquid behaves like a solid, homogenous object; if however only infinitesimal amount of 

liquid is placed to the box, then neutral behaviour corresponds to constant Gaussian curvature 

on its surface, implying roundness according to Liebmann’s century-old theorem [28]. As 

shown by this example, problems like the above ones may not only uncover exciting physical 

phenomena, but they may provide natural links to classical problems in geometry. 
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