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Abstract  

By relying on existing results about touching probabilities of convex objects, we derive a PDE 
for general abrasion processes based on collision sequences. Our model shows that collisions 
with generic abrading objects can be modeled as a linear combination of collisions with three 
special abrading objects. One of these corresponds to bouncing on a plane, and the Gauss 
curvature flow, one to abrasion by sand blasting and the uniform normal flow while the third 
one to abrasion by random impacts of sticks, and the mean curvature flow. Our model lends 
itself to a natural discretization scheme where the three special collisions correspond to three 
random events. We discuss some applications to natural processes. 

1. Introduction 

Ever since the classical paper by Firey (1974) the fundamental mathematical model for the 
study of pebble abrasion have been geometric PDEs describing shrinking surfaces. In natural 
abrasion processes, the speed of abrasion in the direction of the surface normal n is dictated 
by the abrading environment and the latter may greatly vary. In Firey’s model, the speed is 
proportional to the Gaussian curvature ρg, and all convex surfaces converge to the sphere 
(Firey 1974, Andrews,1999) or to the circle in 2D (Gage, 1984, Gage & Hamilton, 1986). 
Similar results can be obtained for speed proportional to the mean curvature ρm (Brakke, 
1978,  Huisken 1984). While these results are of fundamental importance and can explain the 
abrasion of rolling stones, a serious shortcoming of both models is that they do not contain 
free parameters to account for the large variety of physical abrading environments. Also, they 
cannot explain the observation that abrasion may lead to flat rather than spherical shapes as in 
the case of coastal pebbles (Rayleigh, 1944, Wald, 1990, Lorang & Komar, 1990, Domokos et 
al., 2009b). The former shortcoming sparked the study of many other, more general cases 
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where convex hypersurfaces move with speeds given by homogeneous degree one, concave or 
convex monotone symmetric functions of the principal curvatures. Chow (1985) for example 
considered flows by the kth root of the k-dimensional Gaussian curvature, and the square root 
of the scalar curvature (Chow, 1987), and Andrews (1994) considered a more general class of 
such evolution equations. A comprehensive survey of this literature is provided by Andrews 
(1999, 2003). The main goal of these studies was to investigate limiting geometries (including 
the sphere) and other, non-spherical homothetic solutions. The existence of the latter would 
account for the presence of non-spherical pebbles. 

While these generalized shrinkage models certainly admit many free parameters, it is not 
apparent how these parameters (e.g. the power of the curvature) are related to the physical 
environment; most notably, it is not clear how many free parameters are necessary to describe 
a general abrasion process. 

 
Here we take a different approach. The correct interpretation of the probabilistic results of 
Schneider and Weil (2008) leads to a deterministic PDE directly based on the geometry of 
individual collisions. This PDE appears to be a natural generalization of previous models 
since it is a linear combination of the Gauss curvature flow (Firey, 1974), the mean curvature 
flow (Huisken 1984) and the uniform normal flow. After rescaling, our PDE contains two free 
parameters; the speed of abrasion can be written as 1++ mg qp ρρ , in which mg ρρ ,  are scale-

free measures of the Gaussian, and mean curvature. The parameters p and q can be directly 
related to the type of abrading environment. In particular, we point out that in case of 
collisions with relatively large impactors the Gaussian term dominates (p>>q>>1), in case of 
very thin impactors the mean curvature term (p<<1<<q) and in case of small impactors 
(p<<q<<1) the uniform term.  One can identify natural processes where some of these special 
cases are realized with high accuracy. Stones are sometimes eroded by wind-driven sand. 
From the point of view of sand grains (small objects) this is a Gaussian abrasion process 
(Firey’s model) while the stones themselves deform under the uniform normal flow. On larger 
scale, the same can be observed on asteroids which are bombarded by small meteorites 
(Domokos et al. 2009a). We remark that the Gaussian process is also a good approximation of 
abrasion by rolling.  
 
While it is beyond the scope of this paper to find all homothetic solutions of this equation, we 
will identify numerically homothetic solutions among shapes of revolution. We also discuss 
the local stability analysis of the sphere (which is a trivial homothetic solution for any 
parameter value). It is worth noticing that the 2D version of the same PDE contains only one 
free parameter and here homothetic solutions are easily identified numerically (Domokos et 
al., 2009b). Our model captures the essential features of all collision-based abrasion processes 
while other aspects, e.g. abrasion by friction are not included in these equations. In Section 2, 
we derive the general PDE, in Section 3, we discuss homothetic solutions. In Section 4, we 
outline applications as well as a natural discretizations scheme. 
 
2. DERIVATION OF THE EQUATION 

Abrasion is often the result of many individual collisions in which small pieces are removed 
from an object’s surface. The (time and space) averaged effect of these collisions can be 
readily formulated as a partial differential equation (PDE),  
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where )(Ax& is the abrasion speed at a given point A of the surface of the abraded object K in 
the direction of the unit surface normal nA; δ is the mean volume removed in one collision 
event, and ∆f/∆S is the mean intensity of impacts per unit surface area around A. How the 
latter varies on a surface, depends both on its geometry and on the type of the abrasion 
process. Alternatively, ∆f/∆S depends both on the geometry of the abraded object and the 
geometry of the impactors. The classical abrasion model of Firey (1974) is based on the 
assumption that the abraded object K collides many times to a plane. The orientation of K 
(relative to the impacting plane) is assumed to be a uniform random variable, which implies 
that the intensity of collisions is proportional to the Gaussian-curvature ρg of K (provided that 
K is convex). For a concave surface, this is only true for those points which span the convex 
hull of K, other points are never hit by the plane, hence their speed of abrasion is 0. The 
emerging PDE 
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 makes initially concave surfaces convex. Furthermore, K shrinks, regardless of the initial 
shape, to a point in finite time (which does not necessarily correspond to finite physical time), 
and while shrinking, the shape of K converges to a sphere.   
 
The impacting plane can be considered as an idealized model of the ground in case of 
pebbles; alternatively, it can be thought of as an infinitely large impactor. Real stones and 
other abrading objects however most often occur in the form of granular sets, thus, they are 
hit by other finite impactors (rather than the ground), which affects the distribution of impacts 
on their surfaces, and thus the emerging shape dynamics. Based on results summarized in a 
textbook of stochastic geometry by Schneider and Weil (2008), we derive a PDE that captures 
the essence of this more general process. Similar to Firey’s model, it is demonstrated that the 
impact intensity depends only on the local shape of the abraded surface if we restrict 
ourselves to interactions of convex objects. Concave shapes are discussed later. For a self-
contained derivation of the two-dimensional analogue of this equation, see Domokos et al. 
(2009b). 
 
If two objects K, and M hit each other in a random fashion, it is straightforward two ask how 
likely it is that the impact points belong to some given portions A, and B of their respective 
surfaces. The touching probabilities described in Schneider & Weil (2008) provide the answer 
to this question in case of convex objects. This work does not concern abrasion, nor are any 
applications outlined in it. We use their formulas, and our equation (1) to obtain the 
generalized PDE for abrasion processes (as long as they result from collisions). Next, we 
recall the most relevant theorem of Schneider & Weil (2008), subsequently we will interpret 
and translate it into the above outlined context of shape dynamics. 
 
Theorem 1 ( Thm. 8.5.2 of Schneider and Weil (2008)): Let K, M be convex bodies in R

d
, and 

let A,B Borel sets on their respective boundaries. Let furthermore g denote an arbitrary rigid-

body transformation in R
d
. Then the natural touching probability of A, and B is 
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In (3), ck,d are constants; bdK denotes the whole boundary of K, and the denominator of the 
right side of is just a normalization factor. Φk(K,A) means the kth curvature measure of bdK on 
A; for smooth bodies, this is the integral of the (d-1-k)th normalized elementary symmetric 
function (ρd-1-k) of the principal curvatures (κi) of bdK over A:  
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Hence, in case of 3-dimensional objects, Φ0, Φ1, and Φ2 are the surface area, the integral of 
the mean curvature, and the integral of the Gaussian curvature over A, respectively.  
 

The natural touching probability in the theorem is originally defined in a highly technical 
way. We use the following equivalent definition of a ‘natural’ random touching event: 

- one of the two objects (say K) is kept fixed, the other one moves along an oriented 
straight line without rotation until it touches K for the first time. 

- The motion should satisfy the ‘touching condition’, i.e. M is required to hit K while 
moving along its trajectory. 

- the parameters of this process are all uniform random variables drawn from the finite-
sized domain of the parameter space that satisfies the touching condition. These 
parameters are a uniform random rotation (defining the orientation of M), and a 
uniform, random, oriented line (defining the trajectory of its centroid). 

Hence, the theorem is suitable to obtain distributions of impacts in random collisions. 
 For the purpose of the current paper, let K be the convex, 3-dimensional object whose 
abrasion is considered, and A an infinitesimal piece of area ∆S on its surface, where the mean 
and Gaussian curvatures of bdK are ρm

(A), and ρg
(A)
, respectively. Let M be another convex 

object, which represents the environment of K, B is the entire boundary of M (B=bdM) ρm
(M), 

and ρg
(M) denote mean- and Gaussian curvature functions on bdM. With this choice, Theorem 

1 yields the probability that A receives impact in a random collision between K and M: 

( ) ∑
=

−ΦΦ
2

0
23, )bd,(),(~impactreceives

k

kkk MMAKcAp  (5) 

 In the above formula, 
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where S(M) is the surface area, and I(M) is the mean curvature integral of M; furthermore, the 
integral of the Gaussian curvature is a topological invariant, which equals 4π for convex, 3D 
objects. We substitute the above equations as well as c0,3=1, c1,3=2,  c2,3=1 (for more details, 
the reader is advised to consult Schneider & Weil (2008)) into (5):   
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According to (1), the abrasion speed of K at A is proportional to  
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By scaling the speed, the right side of (1) is divided by 4π, and the ~ sign is replaced by the = 
sign, so our final PDE is 
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As we can observe, the abrasion speed is a linear combination of three terms, a constant one, 
and two others proportional to the mean and Gaussian curvatures, respectively. The shape 
dynamics described by (14) is invariant to scaling of sizes, this is, however, not reflected by 
the parameters S(M), and I(M). To enhance further analysis, we use the dimensionless form: 
 

[ ] A

A

m

A

g

def

A

A

m

K

K

M
A

g

K

K

M

A IS
I

I

IS

S

S
nnx 121

4
2

4
)()()(

)(

)(

)(
)(

)(

)(

)(

++=







+⋅+⋅= ρρρ

π
ρ

π
&  (15) 

 
where IS , are the relative surface area and mean curvature integral of M compared to K, 

hence 1== IS  if M, and K are identical. ,gρ  and mρ are scale-free curvatures, which are 

size-invariant, e.g. they are 1 on the surface of a sphere of arbitrary radius. By adopting the 
notation of the Introdcution we have IqSp 2, == . This model includes Firey’s equation if 
the environment consists of big particles (yielding p>>q>>1); the constant term dominates if 
M is much smaller than K (hence p<q<1); finally, the mean curvature term may also be 
dominant, if M is long and narrow (p<<1<<q), although this limit is physically less relevant 
due to the fragility of such shapes in physical processes.   
 
 
3. HOMOTHETIC SOLUTIONS 

From the point of view of shape dynamics, it would be highly interesting to know where 
typical initial shapes evolve to at certain parameter values.  A solution of (15) might diverge 
(e.g. with unboundedly growing flatness) or it may converge to a homothetic solution, so it is 
useful to learn about the latter and their stability. 
 
 As already mentioned, the behavior of the equation is well understood in case of abrasion 
purely by Gaussian curvature or by mean curvature. In case of purely uniform abrasion, 
homothetic solutions have been discussed by Pegden (2009), most of them are, however, 
unstable. Typical initial shapes may converge to an arbitrary tetrahedron (which is the only 
attractive homothetic solution), alternatively they may become either infinitely flat, or 
infinitely elongated. The fate of an initial shape depends on the number of touching points of 
its largest inscribed ball, which is 4, 3, or 2 in a generic situation. For more details, see 
Domokos et al (2009a,b).  
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If there are several non-vanishing terms in (15), little is known about the emerging dynamics. 
In fact, almost all analytic results concerning curvature dependent interface motion are 
restricted to homogenous (and in most cases only degree 1) functions of the principle 
curvatures (e.g. Andrews, 1999, Andrews 2000, Chow 1985,1987; Huisken 1984), and our 
equation is not of this type. Here, we show numerical results about homothetic solutions 
restricted to bodies of revolution.  
 
Let R(φ) (0≤φ≤π) denote the equation of the generating curve of an object of revolution in 
polar coordinates. This shape is a homothetic solution (that contracts to the origin of the 
coordinate system) if R is proportional to the abrasion speed in radial direction, i.e. by (14) if 
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with some constant c. (Notice that the square root term transforms abrasion speed in the 
direction of the surface normal to radial speed.) ρG, and ρm can be expressed as functions of 
R, R’, and R” (not shown), and (16) can be solved as a boundary value problem with boundary 
conditions R(0)=1 (which normalizes the size of the solutions), and R’(0)=R’(π)=0 (which 
guarantee smoothness at the poles of the object). For each triple c, S(M), I(M)

 solving the 
boundary value problem, the surface area, and the mean curvature integral of the 
corresponding object were calculated, and IS ,  were determined accordingly (Figure 1). 
 
The above described analysis uncovered the trivial homothetic solution L0 (the sphere), and 
branches of nontrivial ones Li (i=2, 3, 4,…) which are labeled by the number i of curvature 
maxima in the silhouette of the corresponding shapes. Among these, L2 is especially 
interesting, since it consists of elongated, as well as flat surfaces (on the two sides of L0), and 
the latter resemble flat beach pebbles.  
 
Our analysis does not provide information about the stability of these solutions. Nevertheless, 
Andrews (1996) investigated the closely related equation 
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and conjectured that the sphere is globally stable if the exponent p exceeds 1/4, and unstable if 
p<1/4. (This has been proved only for the specific values p=1/2 (Chow, 1985) and 1. If p=1/4, 
it is known that all ellipsoids are homothetic solutions, and the sphere is neutral, see Andrews 
(1996)). In order to connect these results to our equation, we linearize (17) about the sphere. 
Without loss of generality, we consider a perturbed unit sphere whose principal curvatures are 
1+εκi, i=1,2. Then, (17) becomes  
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Similarly, the linearization of (14) is 
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The two linearized equations are equivalent, if the relative weights of the constant, and the 
curvature-dependent term are equal, hence if 
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Since the object in question is a perturbed unit sphere, I(K)=S(K)=4π+O(ε). Thus, by definition 
of IS , , (20) becomes 

p
IS

IS
=

++
+

21
, (21) 

and the case p > 1/4 corresponds to  
123 >+ IS . (22) 

Thus, if the conjecture of Andrews is correct, then the sphere is a locally attracting shape in 
(15) if (22) holds, and it is unstable in the opposite case. In fact, these two regions lie on the 
two sides of the L2 branch in Figure 1. 
 
 

 

Figure 1: Numerically obtained bifurcation diagram of homothetic solutions in logarithmically scaled 

parameter space. Edges of the surfaces are highlighted for better visibility. I  and S are the parameters 

of equation (15); the solutions are parametrized by ρρρρR, where ρρρρ is the curvature of the contour at its 

bottom, and R is the distance of this point from the point where the homothetic solution contracts to. Some 

corresponding contours are also shown. The diagram shows a series of nontrivial families Li of solutions 

bifurcating from the trivial solution L0 (sphere; ρρρρR=1). If i is odd, the two halves on the two sides of L0 

contain the same set of solutions. In the parameter regimes 1≥S  , 1≥I  (not shown in the plot) nothing 

but the trivial solution was identified. 
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4. APPLICATIONS, DISCRETIZATIONS AND CONCLUSIONS 

4.1 Applications and limitations 

Equation (15) contains three terms two of which can be observed in Nature as independent 
abrasion processes under realistic conditions. The first term is related to the Gaussian 
curvature and, as already noted, corresponds (approximately) to abrasion by rolling. This 
process can be also understood as a sequence of collisions with infinitely large (planar) 
impactors, hence the coefficient S will dominate the equation. As first pointed out by Firey 
(1974) and later proven by Andrews (1999) the limiting geometry is a sphere. 
 
The third (constant) term can be observed in abrasion processes with very small impactors. 
On geological scale, this can be considered as an idealized model of the formation of 
ventifacts, i.e. stones shaped by wind-blown sand (Bourke, and Viles, 2007). Several aspects 
of ventifact formation (most notably the anisotropy of wind directions) are neglected by our 
model, nevertheless many of the observable ventifact shapes strongly resemble the limit 
configurations of Section 3 (cf Fig 2G). Currently, we are studying this abrasion process in 
more detail. On larger scale, an apparently similar process governs the abrasion of asteroids, 
via collisions to minor particles (Domokos et al. 2009a.) Figure 2 shows a simulation as well 
as an asteroid shape reconstructed by photometric imaging.   

 
 

   
 

  A    B    C   D       E 
       

          
 

F                         G  
 
 

Figure 2 A-E: Simulation of (15) with 0== IS  (p=q=0), i.e. uniform normal flow. Random, smooth 

initial shape (A)  is being abraded into an object with distinct sharp edges and flat areas (B-E) (source: 

Domokos et al., 2009a). Observe qualitative similarity  of D to F: observed asteroid shape Annefrank 5545 

(source: http://stardust.jpl.nasa.gov),  and G: ventifact from Mojave desert, California  (source: Greeley 

et a., 2002; a pen is also shown for comparision of sizes) both with sharp edges. 
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Equation (15) represents the abrasion due to one particular object M, however, it naturally 
extends to the case of many different abraders: in the latter case, the parameters p, q represent 
appropriate averages characterizing the abrading environment. This is relevant in a geological 
setting: it shows that interacting particles abraded by mutual collisions exhibit different types 
of abrasion according to their sizes. The interactions of sand particles and bigger stones has 
already been pointed out as an example. A similar effect must be present among pebbles, and 
our model suggests that in an assembly with mixed sizes, smaller pebbles are more likely to 
become round, while big ones tend to evolve into different shapes. More work is needed to 
learn about the shapes predicted by our model, and its relation to pebble abrasion. 
 
As already mentioned,  PDE (15) is only valid for convex shapes, however, the initial shapes 
of abrading objects are very often non-convex (concave). In such a situation, concave parts of 
the object are less exposed to (in case of small abraders) or completely protected from (in case 
of big abraders) the impacts, resulting in lower abrasion speed and in most cases the 
elimination of the concavity. While it is certainly not true that every single shape becomes 
convex eventually, we think that that this is the most common case. Moreover, the opposite 
requires special initial shapes that are less likely to be formed in natural processes (such as 
fragmentation).    
 
Nevertheless, there are other, serious limitations of the model: on one hand, the global 
geometry of K may influence the abrasion speed at a given point (e.g. if K and M are allowed 
to rotate, or if gravitational forces modify the trajectories of the colliding objects); on the 
other hand, it is often not clear whether sequences of random collisions are an adequate model 
for all abrasion processes, alternatively, it is not always clear how the relative probabilities 
associated with the three terms should be derived from the physical process. For example, 
beach pebbles are subject to relatively small impacts by the wave current; these are 
insufficient to trigger uniform random collisions. Instead, pebbles mostly slip or roll on each 
other, and in that case, the intensity of impacts on given surface portions is influenced by the 
global shape of the abraded object (e.g. flat pebbles mostly slip on their flat parts, which helps 
maintaining their flatness). Another example is the effect of friction-related abrasion in sliding 
contacts; this could be approximated in our model by the uniform flow, however, this 
approach is heuristic. Similarly, there is a heuristic analogy between the effect of abrasion by 
rolling, and the first term in our equation.  
 
 
4.2 A natural discretization scheme 

Equation (15) lends itself naturally to a random discretizations scheme; the three terms 
correspond to three random events with total probability one.  In fact, this is a new 
interpretation of equation (12) for the probability of collisions by assigning direct physical 
meaning to the three additive terms. The probability associated with the individual events 
corresponds to the relative weights of the three terms p, q, 1. The surface is now approximated 
by a convex polyhedron and the three events are the following: 
 

(A) The impactor is  large and flat; collision occurs between a face of M and a vertex of K. 
Impact location on K is selected randomly based on solid angles of the surface normal; 
in case of uniform radial intensity uniform distribution is assumed. Sharp vertices are 
selected with high probability. In this case a vertex of K is chopped of and replaced by 
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a small face, normal to the randomly selected direction. A random variable with 
lognormal distribution determines the volume of the chopped particle. 

(B) The impactor is large and thin; collision occurs between an edge of M and an edge of 
K. Impact location on K is selected randomly based on total product of edge-length 
and edge-angle; in case of uniform radial intensity uniform distribution is assumed. 
Sharp and long edges are selected with high probability. In this case an edge of K is 
chopped of and replaced by a small, thin face, normal to the randomly selected 
direction. 

(C) The impactor is much smaller than the object; collision occurs between a vertex of M  
and a face of K. Impact location on K is selected randomly based on surface area; in 
case of uniform radial intensity uniform distribution is assumed. Large faces are 
selected with high probability. In this case a face of K retreats parallel to itself. 

 
The above scheme can be either regarded as the “sequentially updated” discretizations of the 
PDE (15) or, alternatively, as a direct discrete model of the physical process. 
 
4.3 Conclusions 

We derived a general abrasion model in the form of a PDE, based on individual collisions.  
Using the results of Schneider and Weil (2008) we showed that collisions with impactors of 
arbitrary geometry can be understood as the linear combination of collisions with impactors 
with special geometry. In particular, three special types of impactors have to be considered: 
the infinitely large one, causing abrasion proportional to the Gaussian curvature, the infinitely 
small one, causing abrasion proportional to the surface area and the infinitely thin on, causing 
abrasion proportional to the mean curvature. We pointed out that the first two types appear in 
Nature as separate processes as well: infinitely large impactors represent an approximation to 
abrasion by rolling while infinitely small impactors represent an approximation to abrasion of 
stones by sand blasting or abrasion of asteroids by collisions with small meterorites. We also 
presented a natural discretization scheme, which regards the mentioned three special cases as 
independent random events. We made some modest steps towards the understanding of our 
model’s behavior. Though ‘worn’ is often considered as a synonym of ‘rounded’, and 
deviations from round shapes are sometimes just imperfections (Durian et al. 2006), 
nevertheless our preliminary results indicate that spontaneous symmetry braking and the 
development of nontrivial shapes might inherently be present in even the most idealized 
abrasion processes. 
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