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Mechanical constraints have strong influence on the dynamics, and structure of 

granular aggregations. The contact forces within dense suspensions of active 

particles may give rise to intriguing phenomena including anomalous density 

fluctuations, long-range orientational ordering, and spontaneous pattern 

formation. Various authors have proposed that these physical phenomena 

contribute to the ability of animal groups to move coherently. Our systematic 

numerical simulations confirm that spontaneous interactions of elongated 

individuals can trigger oriented motion in small groups. They are however 

insufficient in bigger ones, despite their significant imprint on the group’s 

internal structure. It is also demonstrated that preferred directions of motion of 

a minority of group members can be communicated to others solely by 

mechanical interactions. These findings strengthen the link between pattern 

formation in active nematics, and the collective decision making of social 

animals.  
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1. Introduction 

Understanding the mechanisms operating in bird flocks, fish schools and other animal groups 

lacking leaders has received widespread attention in both physics, and biology [1]. Methods 

of statistical physics have been successfully applied to explore the macroscopic dynamics, 

and phase transitions of groups [2,3] initiated by local interactions of individuals. Among the 

rich variety of microscopic rules generating flocking, the most important are attraction (i.e. 

motion towards other individuals), and alignment (mimicking the heading of others) [4-7], 

which are considered as the two basic ingredients of oriented group motion.  

 

Local interactions as simple as passive contact forces can lead to long-range or quasi-long-

range ordering in particle sets, together with other peculiar phenomena such as anomalous 

density fluctuations and large-scale patterns. Liquid crystals, as well as actively moving or 

vibrated, apolar particles may exhibit nematic order [8-11]; polar grains with elongated [12-

18] or even round [19-21] shapes also show polar ordering. Both types of ordering has been 

observed for biofilaments driven by molecular motors [22-24] and in aggregates of mobile 

bacteria, whose interaction includes hydrodynamic coupling [25,26], and perhaps contact 

forces [18]. Based on the analogy between (polarly oriented) clusters of physical particles, 

and (oriented motion of) groups, many authors have suggested that passive mechanical 

interactions help various biological agents to gather into swarms, as well as to move 

coherently, see e.g. [7,10,18]. There is sufficient evidence for the first part of this statement, 

however the second part has only been investigated in dense aggregates of many particles 

moving in finite space, typically with periodic boundaries, representing a finite sample from a 

quasi-infinite set. In these models, nothing (but perhaps some explicit noise) works against 
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ordering, and some works even reported global orientational order regardless of the number of 

interacting particles [19,21]. The aim of the current paper is to examine a more realistic 

setting, in which the ordering mechanism rivals other effects such as cohesion. We study 

isolated, finite-sized groups, which stay together via active social interactions, but rely solely 

on passive interactions to achieve and maintain a common direction of motion. In addition to 

spontaneous, oriented group motion, it is also examined how the preferred heading of an 

informed (but unidentified) minority in the group is ‘communicated’ to the rest of the group 

by contact forces. The ecological significance of both tasks is straightforward: the former 

allows members to enjoy the advantages of staying together, and simultaneously to travel 

large distances while exploring limited resources (e.g. food or water). The latter is a toy 

model of escaping from predators, or guiding group members towards a newly discovered 

food source. It has been shown that these tasks are efficiently solved by groups, in which 

individuals monitor the heading of their close neighbors, and align themselves; the best 

quality of synchronization is achieved by big groups due to the averaging out of disturbances 

[27,28]. Our main finding (Section 3) is that the elementary mechanical interactions can 

almost perfectly substitute social alignment as long as the group in question is sufficiently 

small, and individuals have elongated shapes. The efficiency of the mechanism however 

breaks down as group size is increased. 

 

In our model (Section 2), individuals are represented by self-propelled, planar, rigid bodies 

moving in unbounded two-dimensional space, and exhibiting hard, frictionless collisions. To 

maintain group cohesion, a simple form of distance-independent all-to-all attraction is 

assumed among individuals. Alignment is not included explicitly in the model; this distinction 

between the two forms of social behavior is biologically relevant since alignment requires 

sensing the directions of motion of other individuals, which is a much more complex task than 
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tracking their positions. The simulation of the continuous dynamics combined with hard 

impacts is based on a custom-made variational principle of rigid body mechanics. 

 

 

 

Figure 1: The shape of one particle 

2. Description of the model 

We consider n two dimensional self-propelled rigid objects, each of which consists of two 

semicircles of radius r, and a rectangle of size 2r×2pr. The position of particle i is described 

by a vector xi pointing to its centre, and an orientation angle αi, which is defined as the angle 

between the forward pointing longitudinal axis of the particle and a fixed axis in a global 

frame (Figure 1). In the absence of body contacts, each particle moves forward by a constant 

speed, which is denoted by v0. Hence, the velocity vector of the particle’s centroid is 
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The index ‘unc’ of the velocity indicates that this equation holds while motion is not 

constrained by contacts. Simultaneously to translational motion, each individual turns towards 

its preferred direction represented by a vector pi. The associated angular velocity is 
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where the dot operator represents scalar product, and T means transpose. The preference 

vector pi is the weighted sum of two components: 

issipipi cc ,,, ppp += . (3) 

The unit vectors pp,i are the intrinsic directional preferences of the informed individuals, 

which reflect their knowledge about food sources, migration routes or dangerous locations. 

These vectors are kept fixed during the simulation. For uninformed individuals, cp,i=0 hence 

pp,i has no role. The second term implements social attraction to other individuals. ps,i is 

calculated as  

∑
≠ −
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n xx

xx
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1
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i.e. it is a vector of length between 0 and 1, pointing towards the ‘center of mass’ of the n 

individuals. The proposed form of distance-independent all-to-all attraction is one of the 

standard ways of modeling social cohesion (e.g. [29]), but not necessarily the most realistic 

one [30]. Previous works have also used all-to all cohesion below a given distance threshold 

[27,31] (which often exceeds groups size and results in effectively all-to-all interaction), 

increasing [32] or decaying [33] functions of distance, or interactions with a limited number 

of close neighbors [7]. Our focus is on small groups, in which the distance between the 

individuals is also limited, and thus all alternatives are practically similar. In the context of 

the present model, interactions limited to immediate neighbors in terms of a Voronoi diagram 

(as in [7]) was also tested, and this rule yielded similar results to (4). 

 

Next we give a brief summary of the simulation of the full system including volume exclusion 

constraints. For a more comprehensive description, the reader is advised to consult the 

Appendix. Equations (1),(2) can be interpreted as the overdamped motion of an object driven 

by propulsive forces and torques in the presence of Stokes drag in a viscous medium. The 
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damping coefficients for translational (ρ1) and rotational (ρ2) motion do not influence 

unconstrained motion, but they have some effect on constrained dynamics. The kinetic 

interpretation of the equations of motion allows to complement them by contact forces and 

impacts; these are however unknown. Instead of their direct calculation, we take a variational 

approach inspired by the classical Principle of Least Constraint (PLC) [34]. According to the 

PLC, the generalized acceleration of a constrained system is as close to the ‘unconstrained 

acceleration’ dictated by the free forces, as possible; in particular, if the unconstrained 

acceleration is consistent with the constraints, then it is adopted by the system. This principle 

is an efficient tool of rigid body simulations without friction, but it is not applicable to 

overdamped systems such as the present model. In the Appendix, we derive an analogous 

variational principle for overdamped systems, which also implements collisions, and is 

adapted to discrete-time simulations. Let the positions )(tix , )(tiα  of the objects be given at 

time t. Let equations (1),(2) predict )(, tuncix& , )(, tunciα&  unconstrained velocities, and let  

ttttt uncii

def

unci ∆⋅+=∆+ )()()( ,, xxx &  (5) 

ttttt uncii

def

unci ∆⋅+=∆+ )()()( ,, ααα &  
(6) 

Then, 

 

Principle 1: the updated configuration )( tti ∆+x , )( tti ∆+α  of the constrained system after a 

small time step ∆t is the minimizer of the quadratic function 
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among all values that satisfy the volume exclusion constraint (up to an O(∆t
2
) error term). 
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Principle 1 naturally lends itself to numerical integration of the full dynamics of the system. 

We perform simulations with up to approximately 102 individuals, which is sufficiently high 

to capture the transition from almost perfect order to effectively unordered motion. Details of 

the implementation are also found in the Appendix. 

 

The model has 4 dimensionless parameters, which are listed in Table 1 together with the 

values used here. The most important one is π1 controlling particle shape, which is 

systematically varied in the simulations between 1 and 8. π2 is 0 in the first series of 

simulations where spontaneous motion of a group without intrinsic directional preferences is 

analyzed (Section 3.1). In a second series of simulations (Section 3.2), where such 

preferences are included, the value π2=0.5 ensures that preferences of some group members 

may not overcome group cohesion and cause splitting. Parameter π3 determines the 

maneouvrability of the individuals. Very high turning rates suppress oriented motion. On the 

other hand, very low turning rates result in loose groups, in which mechanical interactions 

rarely occur. Thus, the intermediate value π3=1 is chosen, which also yields trajectories 

comparable to the real motion of various animals and bacteria. Finally, π4 enters through 

Principle 1. High values of π4 mean that contact forces turn objects easily rather than 

displacing their centroids. There seems to be no straightforward recipe for ‘realistic’ values of 

π4 due to the abstract nature of the model and the wide range of physical interactions it may 

represent. The choice π4=10 is based on visual inspection of simulated particle-particle 

interactions. To illustrate the effects of π3 and π4, and to support our choice, five short 

animations are attached [35]. 

 

Table 1: Dimensionless model parameters. Particle size s is defined as the arithmetic mean of body length 

and body width, i.e. s=2r(1+p/2). 
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Parameter Meaning 

Value in 1
st 

series 

Value in 2
nd  

series 

p+=11π  Length-width ratio of particle  Systematically varied between 1, and 8 

s

ip

c

c ,
2 =π  

Strength of intrinsic preference relative 

to social attraction 
0 

0.5 for informed, 0 for 

uninformed individuals 

0
3

v

scs=π  
Ratio of body size s (defined in 

caption) to turning radius 
1 

2

2

1
4 s

ρ
ρ

π =  

Sensitivity of drag force to velocity 

relative to that of drag torques to 

angular velocity. Fore more 

explanation, see the Appendix 

10 

 

The current model does not include noise explicitly, even though it is inherently present in 

biological systems, and it strongly affects the dynamics in certain situations (see for example 

[36]). Most notably, some noise may enhance synchronization, and other types of ordering in 

some dynamical systems including swarms [16,37,38]. In our case, numerical experiments 

with added noise show typically similar dynamics with somewhat noisier results. This is not 

surprising, since the attraction forces of the model perturb oriented motion somewhat 

similarly to noise. 

3. Results 

3.1 Spontaneous motion 

In these simulations (see also [39]), the individuals have no directional preferences (π2=0), i.e. 

they are driven purely by social attraction. Simulation results with π1=1, 2, 4, 8, and with 

various values of n between 3 and 74 are reported. For each combination of the parameter 

values, several runs are averaged, each of which covers a time interval of length 1000s/v0 
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(where s is particle size defined in the caption of Table 1). Before each run, the particles are 

assigned independent, uniformly distributed, random initial orientation angles (from the 

interval (0,2π)) and positions (within a disk of reasonable size depending on n). If two 

particles overlap, one of them is assigned a new initial configuration. Initial transient 

dynamics is typically only observable during a small portion of the simulations, thus the 

entire simulation is used for statistical evaluation. 

 

 The orientational order in the group is measured by the time average of the normalized speed 

of the group centroid, i.e. 

∑
=

=
n

i

i
nv

v
10

1
x&  (8) 

where ||, and <> stand for Euclidean length, and time average, respectively. This quantity is 

always nonnegative, and it takes the maximum value 1 if every particle moves in the same 

direction. In case of an unordered group, the mean value of v is 

nnAnvind /)()( =  (9) 

where A(n) is the mean size of the sum of n randomly oriented unit vectors with uniform 

distribution. A closed formula for A(n) can be found in [40,41]; A(n) is approximately n1/2, 

hence for big n, vind is almost 0.  

 

The values of v measured in the simulations, as well as vind(n) are shown in Figure 2. The 

simulation results reveal dramatic difference between round, and elongated individuals. For 

π1=1, the speed of the group centroid tends to be under the reference value vind(n), which 

indicates negative correlation of individual headings. This is not very surprising, given that 

the corresponding group structure resembles a solid crystal (Figure 3, right panel). This curve 

has an increasing portion if n<10 due to the fact that very small groups tend to follow periodic 
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patterns with very few or no contact among particles. The π1=4 and 8 curves show almost 

perfect ordering for n≤10, and significant amount of orientational order throughout the tested 

range. They are close to one another, indicating that this degree of elongation is enough to 

fully provoke the ordering mechanism. As n is increased, the nematic order of the group is 

gradually destabilized by individuals travelling at the front of the cluster and willing to turn 

back in response to social attraction. This gives rise to a continuously changing dynamic 

internal group structure and fluctuations of the order parameter instead of a stable ordered 

cluster. 

 

  

Figure 2: logarhythmic plot of the mean speed v of the group centroid as function of number n of 

individuals (solid lines). Error bars indicate standard deviation normalized by the number of runs minus 

1. The four curves represent ππππ1=1, 2, 4 and 8. The corresponding body shapes are shown as grey contours. 

The dashed line near the bottom represents expected velocities vind in case of an unordered group. 



 11 

 1 2 

Figure 3: typical snapshots of a group, see also the animations [39]. The ‘heads’ of the individuals are 3 

marked by dark stars. Left: oriented clusters if ππππ1=4, n=50. Right: tightly packed group with no 4 

directional order if  ππππ1=1, n=50. Other parameter values are specified in the text. 5 
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To gain some insight into the internal dynamics of a group (and into fluctuations of v), we 7 

introduce an a priori threshold vth (=2/3) of v, above which the state of the group is considered 8 

as ‘ordered’. From time to time, the group switches between the ordered and the unordered 9 

states. We define ‘buildup’ and ‘breakdown’ times as the average length of time intervals 10 

spent continuously in unordered, and ordered states, respectively. Measured values are shown 11 

in Figure 4. Buildup times increase exponentially with n; the mechanical interactions can very 12 

rarely bring groups into ordered state if n significantly exceeds 10 even if the particles are 13 

elongated. On the other hand, the breakdown times are still high above 1 if n=50 (provided 14 

that π1≥4), reflecting the fact, that these limited interactions are able to maintain the ordered 15 

state for a significant time, once it has been established. The two results together suggest that 16 

even though perfect orientational ordering requires more efficient mechanisms, mechanical 17 

interactions still have an important contribution to the maintenance of group order. 18 
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 19 

Figure 4: average buildup (filled circles) and breakdown (empty circles) times of the ordered state as 20 

functions of n. Notice the logarithmic scales. Data is shown only if the ordered state is reached at least 21 

once during every simulation with given set of parameter values.    22 

 23 

The last thing to notice about the first series of simulations is that big groups of elongated 24 

particles hardly ever become fully ordered, nevertheless they show characteristic internal 25 

structure, in the form of continuously splitting and rebuilding smaller, oriented clusters 26 

(Figure 3, left panel). This appears to be analogous to the patterns observed in large sets of 27 

particles, which have been extensively studied elsewhere. The focus of this paper is not on 28 

these patterns, thus we only briefly mention a crude estimation of the average sizes of these 29 

clusters using v. For simplicity we assume that the group consists of n/neff oriented clusters, 30 

each of which is of equal size neff. If furthermore the orientations of different subgroups are 31 

independent of each other, than the mean speed of the group centroid becomes vind(n/neff). 32 

Hence neff can be estimated via interpolation from v, with help of the curve vind(n), cf. Figure 33 

5. For π1≥4, neff is close to n for groups of consisting of only a few individuals (corresponding 34 
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to perfect ordering), and neff ≈10 is obtained in case of n=50. The curves suggest that neff 35 

probably saturates as n goes to infinity. 36 

 

Figure 5: Effective size neff of ordered clusters as function of n. 

3.2 Motion in a preferred direction 

To test how information is transmitted in groups via contact forces, a second series of 

simulations was done, in which k individuals out of n had the same intrinsic preferred 

direction of motion (π2=0.5), and the rest had no intrinsic preference (π2=0). 16 runs for 

n=10,20 and 8 runs for n=40 of length 1000 time units (as defined in Section 3.1) were 

executed with each parameter combination (k,p) and the mean speed vpd of drift in the 

preferred direction was measured in each case (Fig. 6). Other parameters and initial values 

were the same as in Section 3.1  

 

The drift velocities clearly show that elongated body shape helps information propagation in 

the group, and increases the drift speed by up to a factor of 2. There is significant variation 

over different runs, especially with smaller groups size (n=10), and elongated shapes, 
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indicating that the group exhibits one of various stable structures depending on the initial 

conditions. It is also notable that moderately elongated individuals (2≤π1≤4) sometimes 

perform better than very elongated ones. This appears to be the consequence of very stable 

oriented clusters of uninformed individuals in the latter case, which are less efficiently driven 

by a small number of informed ones. Adding some noise or decreasing π4 would change this 

counterintuitive trend. 

  

If body shape is elongated and n≤20, the mean values for the velocity vpd are significantly 

higher than the fraction k/n of informed group members, which means that even a minority of 

the group can efficiently guide the rest in a preferred direction. Couzin et al. [27] reported 

similar behavior in the context of more complex social interactions including social 

alignment. Hence, our simulations indicate that the efficiency of indirect communication via 

mechanical interactions of elongated objects is comparable to communication via direct 

alignment to nearby group members. There is however one major qualitative difference 

between the two cases: with social alignment, the fraction of informed individuals needed to 

guide the whole group in the right direction is lower in a big group than in a smaller one. In 

our case, comparison of results with n=40, and n=10-20 (cf. Fig. 6) suggests the opposite. 

This difference seems to reflect the extremely short range of mechanical interactions, leading 

to decreased efficiency in big aggregates.  
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Figure 6: A: Mean drift speed of a group consisting of n=10 (solid lines), n=20 (dotted lines lines) and n=40 

(dashed lines) individuals as a function of shape parameter π1. Errorbars represent standard deviation for 16 (8 in 

the case n=40) runs. The fraction k/n of individuals with (identical) intrinsic directional preferences is varied 

between 0.1, and 0.5.  

 

4 Discussion 

The main finding of this paper is that mechanical interactions can lead to collective consensus 

making in small groups on the move, if the individuals’ body shape is elongated. They are 

however insufficient to generate ordering in bigger ones. Indirect signaling of individual 

knowledge about optimal directions of motion was also found to be possible via contact 

forces. In this case, the short range of mechanical interactions counteracts the positive effect 

of noise averaging in big groups, and lower efficiency of communication was obtained for 

higher group sizes.  

 

Small, orientationally ordered groups are very often formed by higher order animals such as 

equids, fish, certain insects, or birds [1], many of which are able to apply more complex social 

behavioral rules, including direct alignment to neighbors. For this reason, the most significant 
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message of this paper is that mechanical interactions contribute to the global ordering of 

groups, and their effects should be taken into account in studies of collective motion. In this 

respect, the mechanical ordering mechanism is less strictly limited to small groups: as we 

found in Section 3.1, the contact forces have strong contribution to the maintenance of 

existing ordered structures even in those groups, which are too big to be ordered solely by 

them.  

 

Mechanical interactions are more important in tightly packed groups than in loose ones. It is 

remarkable that animal groups often become denser in emergency situations (e.g. in case of 

predator attack), thereby increasing the intensity of mechanical interactions as well. Our 

results suggest that this reaction may improve the group’s chance of escaping such a 

dangerous situation; nevertheless it is beyond the scope of this paper to judge the evolutionary 

significance of this behavioral pattern. 

 

Members of some animal groups do establish physical contact (e.g. sheep) as assumed in our 

model. In many real cases, individuals (e.g. birds) avoid collisions as part of their social 

interactions. The results of this paper are not directly applicable to the latter situation. 

However, hard, inelastic collisions represent a minimal-effort strategy of avoiding 

overlapping among rigid objects, according to a variational principle similar to the one used 

here [42]. This fact strongly suggests that hard interactions are analogous to economical 

collision avoidance schemes applied by biological agents, and that the latter have similar 

effects on orientational order. 
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6 Appendix: the simulation of constrained dynamics 

While the simulation of the differential equations (1)-(2)  is straightforward, incorporating the 

hard interactions among particles is much more challenging, because contact forces are 

unknown, and impulsive interactions are also possible. As first step towards the complete 

model, (1)-(2) are approximated by Newtonian (force-acceleration) equations: 

( ) unci

def

iunciim ,,1 Fxxx =−= &&&& ρ  
(10) 

 

( ) unci

def

iuncii M ,,2 =−= ααραθ &&&&  (11) 

where m, and θ are the masses, and the moments of inertia of the particles respectively. The 

right sides of the equations are the sums of the free forces ( unci ,F ), and torques ( unciM , ) acting 

on particle i. Each has two components, the first ones can be thought of as propulsive force, 

and torque, and the second terms are linear drag forces, and torques. The parameters ρi 

represent the intensities of each type of drag. The new equations predict the same dynamics as 

(1)-(2) in the limit m,θ→0, which is referred to in the paper as overdamped limit.  

 

It is theoretically possible to complement the right sides of equations (10),(11) with the 

constraint forces, and their torques, these are however unknown, and often ambiguous as long 
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as the individual objects are considered rigid. Instead of doing so, we derive a variational 

principle that can be used to simulate the system’s behavior in the overdamped limit without 

calculating the constraint forces. The simplicity of the below presented results is due to the 

fact that we assumed the drag to be linear function of the velocities in (10),(11). The new 

principle is analogous to the classical Principle of Least Constraint (PLC) [34], however the 

PLC applies only for regular systems that are not in the overdamped limit.  

 

D’Alembert’s principle states that the virtual work of constraint forces in mechanical systems 

is always zero. In a two dimensional system of rigid bodies with identical masses (m), and 

inertias (θ), this means 

( ) ( ) 0
1

,
1

, =−+− ∑∑
==

n

i

iiunci

n

i

iiunci Mm δααθδ &&&& xxF  (12) 

for arbitrary virtual displacements (and rotations) δxi, δαi, which are consistent with the 

constraints. One way to obtain the above virtual displacements is by virtual variations of the 

particles’ velocities during a small time interval τ, which also need to be in accord with the 

constraints. Substituting 

ταδδα

τδδ

ii

ii

&

&

=

= xx
. 

(13) 

(14) 

into (12) yields 

( ) ( ) 0
1

,
1

, =−+− ∑∑
==

n

i

iiunci

n

i

iiunci Mm αδαθδ &&&&&& xxF . (15) 

Fi,unc, and Mi,unc are given by the equations (10),(11) of unconstrained motion, thus 

( )( ) ( )( ) 0
1

,2
1

,1 =−−+−− ∑∑
==

n

i

iiiunci

n

i

iiiunci m αδαθααρδρ &&&&&&&&&& xxxx  (16) 

The terms proportional to m or θ vanish in the overdamped limit, yielding 
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( ) ( ) 0
1
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1
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iiunci αδααρδρ &&&&&& xxx  (17) 

This expression can be rewritten as  

( ) ( ) 0
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2
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n
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i.e. the left hand side is the variation of a single quadratic function: 

( ) ( ) 0
1

2
,2

1

2
,1 =








−+− ∑∑
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n

i

iunci

n

i

iunci ααρρδ &&&& xx . (19) 

This function represents the deviation of the real velocities of the constrained system from the 

values it would have in the absence of constraints (cf. (1),(2)). This quantity is stationary by 

(19). In fact, the deviation is always minimized by the actual values of ix& , and iα& . Thus, the 

unknown velocities, and angular velocities of the objects can be obtained by minimizing a 

quadratic objective function.  

 

A first approach to simulations with the help of equation (19) is the following:  

1. From the positions (xi, αi) of the objects, one can determine the unconstrained 

velocities ( unci ,x& , unci ,α& ) using (1),(2).  

2. The positions also allow to determine the actual constraints of the motion, which 

depend on the shapes (π1) and the sizes (r) of the individuals. In terms of velocities, 

the constraint is the following: if the distance between the closest points of two objects 

is positive, then they may have arbitrary velocities. If the distance is 0, then the time 

derivative of the distance is nonnegative. The latter condition yields linear inequalities 

for the velocities ix& , iα& . 

3. Given the results of the first two steps, the constrained optimization problem (19) is 

solved for ( ix& , iα& ). 
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4. Next, a small time steps of size ∆t is considered, during which the objects are assumed 

to have constant velocities. Hence, the positions are updated according to  

)()()( ttttt iii xxx &⋅∆+=∆+  

)()()( ttttt iii ααα &⋅∆+=∆+  

(20) 

(21) 

5. From this point, the whole cycle is repeated with updated positions 

The drawback of this method is that small numerical errors in velocities can accumulate over 

many time-steps to produce a macroscopic error in the positions, and overlapping objects. 

This shortcoming can be eliminated by noticing that the minimal deviation of the actual 

velocities ix& , iα&  from the ‘unconstrained’ values unci ,x& , unci ,α& implies, that after a small time 

step, the deviation of the updated positions )( tti ∆+x , )( tti ∆+α from the hypothetical values 

)(, ttunci ∆+x , )(, ttunci ∆+α is also minimal (cf. equations (5),(6),(20),(21)). Thus, the 

variational principle (19) is equivalent of Principle 1, which is stated in Section 2.  

 

The simulations of this paper are based on Principle 1. One time-step of the applied 

simulation method consists of the following parts: 

1) determination of unci,x& , and unci ,α& using (1), (2), and the actual positions of the particles 

2) determination of ( )ttunci ∆+,x , and )(, ttunci ∆+α  from (5),(6). 

3) determinations of the constraints in terms of positions. The condition is that the two 

objects should not overlap. This yields nonlinear inequalities for )( tti ∆+x , 

)( tti ∆+α , which can be linearized about the point )(tix , )(tiα  to obtain linear 

constraints. 

4) Application of Principle 1 to find )( tti ∆+x , )( tti ∆+α  
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The bulk of the computational capacity is needed to obtain the last step, which requires the 

minimization of a quadratic function under linear inequality constraints, i.e. a standard 

quadratic programming problem. There are numerous algorithms for this, nevertheless its 

complexity yields an upper bound on the number of simultaneously interacting objects. The 

author’s Matlab-based implementation of this algorithm was able to handle a group of 

approximately 120 individuals on a standard Pentium 4 PC. The time needed to perform a 

simulation depends strongly on the size of the swarm. For few individuals, simulations similar 

to the attached movie [39] can be done real-time. For 100 individuals, the simulation process 

is approximately two orders of magnitude slower.  
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