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ABSTRACT 
 

The paper shows simple two-degrees-of-freedom mechanical models to illustrate the 
unstable-X point of bifurcation, the stable-X point of bifurcation and the point-like instability. 
Using the total potential energy function we determine: the critical loads of the perfect 
structures, the transformations which separate the active and passive parts of the energy 
functions, the different types of the equilibrium paths and the imperfection-sensitivity surfaces 
for all the three models. 
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1 INTRODUCTION 

 
The behaviour of an engineering structure depends only on a single control parameter, 

the time (the variation of the loads and imperfections also occur in time). According to Thom’s 
theorem only fold catastrophe can arise typically: i. e. a real structure (with its inevitable 
manufacturing imperfections) always loses its stability at a fold catastrophe, in which the 
equilibrium path merely reaches a maximum load at a limit point. 

The structure and the load are often assumed to be symmetric. In this case a Taylor 
expansion of the potential function in some (suitable) variables must contain vanishing 
coefficients of odd-power terms. Hence in the case of perfect structures, a fold catastrophe 
cannot arise, but perfect symmetry on the drawing board can give rise to the cusp catastrophe.

Let us analyse a finite degree of freedom elastic structure with a one-parameter load. 
The structure is in equilibrium if the gradient of the total potential energy function is zero, and 
the load is critical when the determinant of the Hessian is also zero. In the critical state the 
energy function has a catastrophe point. In the neighbourhood of this catastrophe point the 
function can be transformed into a canonical form of the catastrophe.  
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Changing the load parameter ( )crΛ−Λ=Λ λor , means moving along a curve in the 
parameter space even if we introduce some imperfection parameters. The structure might lose 
its stability only if this curve reaches the bifurcation set of the examined catastrophe, which is 
well-known from the catastrophe theory. A subclassification of the catastrophes can be done by 
the help of these curves (also called λ -routes in the following). 

In the case of the fold catastrophe only two subclasses exist. The load curve either 
crosses the bifurcation set (which is a point in the one dimensional parameter space) or it turns 
back when it arrives at the bifurcation set. The first case is the limit point of the equilibrium 
path; the second case is the asymmetric point of bifurcation. Both cases were analyzed by 
Koiter [1]. 

For the cusp catastrophes the dimension of the parameter space is two (the axes of the 
space will be denoted by a and b), and the bifurcation set is a cusped curve, which separates the 
parameter plane into two parts. An energy function belongs to every point of the parameter 
space, and the number of its stationary points is different for the different regions of the plane.  

There are two types of cusp catastrophes: the dual and the standard cusp.  
In the case of the dual cusp the points below the bifurcation set belong to functions 

having one minimum and two maxima, while the other part gives functions with one 
maximum. The structure can lose its stability only if it had stability. So if 0<λ (but it is close 
to 0), we must be below the curve of the bifurcation set. (There is no minimum, i. e. no stable 
equilibrium above the curve.)  

There are two possibilities for the perfect structure to lose its stability (Figure 1): 
• the λ -route crosses the bifurcation set at the cusp point (unstable-symmetric point of 

bifurcation) or 
• it turns back (unstable-X point of bifurcation).  

Fig. 1 − Routes in control space through dual cusp catastrophe  
 (the thin curves are the points of the bifurcation set) 

Fig. 2 − Routes in control space through standard cusp catastrophe 

In the case of the standard cusp the points below the bifurcation set belong to functions 
having one maximum and two minima, while the other part gives functions with one minimum. 
So we can start from any part of the parameter space. Theoretically there are five possibilities 
for the perfect structure to arrive at the cusp point (Figure 2): 



• starting from above the curve the λ -route crosses the bifurcation set (stable-symmetric 
point of bifurcation), 

• the smooth λ -route remains always above the bifurcation set (cut-off point), 
• the λ -route turns back (point-like instability), or 
• starting from below the curve the λ -route crosses the bifurcation set (upside down case), 
• it turns back (stable-X point of bifurcation).  

 

Koiter [1] has analyzed both the unstable- and stable-symmetric point of bifurcation. 
Thompson and Hunt [2] dealt with the cut-off point, Gaspar [3] with the upside down case, so 
we will show models for the remaining three degenerate cases. 

 

2. UNSTABLE-X POINT OF BIFURCATION 
 
Let us consider a simplified version of the structure analyzed by Gaspar and Domokos 

[4]. The structure is a hinged cantilever (Figure 3) comprising a link with normal rigidity k=4, 
pinned to the rigid foundation and supported by a linear rotational spring of stiffness c=1. The 
vertical load acts on the top of the link. A state of the structure can be given by two state 
variables ( )h,ϕ . The unloaded perfect structure is in equilibrium in the state 1,0 == hϕ . We 
introduce two imperfections: the rotational spring is unstressed if 1εϕ = , and normal rigidity of 
the link is 2ε+k .

Fig. 3 – Model for the unstable-X point of bifurcation 
 

The total potential energy function is 
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The perfect structure is in equilibrium if 
 0sin =Λ−= ϕϕϕ hcV (2) 
 ( ) 0cos1 =Λ+−= ϕhkVh , (3) 

which are fulfilled when kh /1 and 0 Λ−==ϕ . The Hessian matrix on the primary 
equilibrium path is diagonal: 

 ( ) kkc /10 Λ−Λ−=H , (4) 
so it is singular if 
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i. e. the critical state is given by the following data:  
 5.0,0,2 ===Λ crcrcr hϕ . (6) 

We slip the origin into the critical point by the linear transformations 
 vhh crcr +==+Λ=Λ ,, ϕϕλ , (7) 

and determine the truncated Taylor series: 
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Both vand ϕ appears in the second term, but the diffeomorphism 
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splits V into an active and a passive part: 
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Fig. 4 − Equilibrium paths for different imperfections (unstable-X point) 

Using the active part the equilibrium paths can be given as 
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and they are illustrated in Figure 4 in the case of different imperfections.  

Fig. 5 – The imperfection-sensitivity surface (unstable-X point) 
 

Eliminating ϕ from equations 0,0 == ϕϕϕ VV we get the imperfection-sensitivity  
surface (Figure 5): 

 ( )( ) 2/13/2
12 12εελ +−=cr , (12) 



which shows that there are  
- non-dangerous imperfections when the structure does not lose its stability, 
- very dangerous imperfections, e. g. the exponent is ½ if 0and0 21 >= εε , and 

what is more the exponent is 1/3 if 02 =ε .

3. POINT-LIKE INSTABILITY 

 
The structure shown in Figure 6 consists of two telescopic members (without friction), 

two linear and two rotational springs. The unloaded perfect structure is free of stress, the linear 
springs are in vertical, and the telescopic members are in horizontal position. The structure is 
loaded by a vertical dead load of magnitude Λ . We want to determine the equilibrium paths 
and the imperfection-sensitivity surface in a small vicinity of the critical point of the perfect 
structure when 

121 1,3,1 ε+=== lcc
and we introduce also a horizontal load of magnitude 2ε .
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Fig. 6 – The model for the point-like instability 
 

The position of the structure can be uniquely described by the x and y coordinates of the 
middle hinge. The total potential energy function of the imperfect structure is 
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The position 0== yx is critical for the unloaded perfect structure hence the Hessian is 
singular: 
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At this point Λcr =0, so now Λ=λ.
The truncated Taylor series of the potential function of the imperfect structure is 
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This has a mixed term, so we use the diffeomorphism 
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to split the passive and active parts of the energy function: 
 vvvvV p λ−+−= 24 42)( , (17) 
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The passive part can be transformed into a Morse saddle. The active part can be induced from 
the canonical form 
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of the cusp catastrophe by the transformations 
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so the λ-route of the perfect structure looks like the third case in Figure 2. 
If 02 =ε and 0=x , then 0=a

xV so the primary equilibrium path is vertical (Figure 
7a-c). All the points (but the critical one) of the path are stable for the perfect structure (Figure 
7a), this is why this case is called point-like instability. If 01 <ε then the critical point 
disappears (Figure 7b), and there will be an interval of the load where three equilibrium 
positions exist if 01 >ε (Figure 7c).  

If 02 ≠ε then the paths can be given by the following formula: 
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So there is always a continuous stable equilibrium path (Figure 7d), but if 1ε is large enough 
then a separate closed path also appears (Figure 7e). 
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Fig. 7 − Equilibrium paths at different imperfections (point-like instability) 

Substituting the transformations (20) into the equations of the bifurcation set: 
 32 2,3 pbpa =−= (22) 

we get the equation of the imperfection-sensitivity surface in parametric form: 

 ( ) 22
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The first bifurcation point decreases when 02 =ε and 01 >ε . In this case  
 18ελ −=cr , (24) 



but in other cases the structure will not lose its stability for continuous change of load, so the 
imperfection-sensitivity surface shows unimportant points (Figure 8). 
 

λ
cr

Fig. 8 – Imperfection-sensitivity surface (point-like instability) 
 

4. STABLE-X POINT OF BIFURCATION 

 
The structure shown in Figure 9 consists of two linear springs. ci denotes the stiffness in 

both tension and compression, and li is the stress free length of the ith spring (i=1, 2). The 
structure is loaded by a vertical dead load of magnitude Λ . We want to determine the 
equilibrium paths and the imperfection sensitivity surface in the small vicinity of the critical 
point of the perfect structure in the case of the following values: 

 7.0,4.0,1,985177808.1 21211 ===+= llcc ε . (25) 
A horizontal load of magnitude 2ε is also applied as an imperfection.  

1
Λ

c2

c1

l 2

l 1

x

y

Fig. 9 − Model for the stable-X point of bifurcation
 



The position of the structure can be uniquely described by the x and y coordinates of the 
middle hinge. The unloaded perfect structure has three equilibrium positions: 

 335.0,2185749299.0,3665011578.0,0 3,23,211 =±=== yxyx . (26) 
The first position is unstable, the other two are stable. We have to know in which stable 

state the structure is when we start to load it. Let us suppose, that the structure is in the state of 
positive x .

Increasing the load the perfect structure arrives at a critical state when  
 4455533422.0=Λcr , 5157563683.0,0 == crcr yx . (27) 
We slip the origin into the critical point ( )uyyxx crcr +==+Λ=Λ ,,λ and 

determine the truncated Taylor series: 
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we can split the function into an active and a passive part: 
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The equilibrium paths can be given as  
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some different types are shown in Figure 10. 

Fig. 10 – Equilibrium paths at different imperfections (stable-X point) 
 
The imperfection-sensitivity surface (Figure 11) is given by the following function: 
 ( ) 2/13/2

21 28075669.154090623487.0 εελ +±=cr . (32) 
The surface is similar to that shown in Figure 5, but stable and unstable positions are 

changed and we started in a position with positive x, so only the left (belongs to negative 2ε -s) 
part of the imperfection-sensitivity surface is interesting. 



Fig. 11 – The imperfection sensitivity surface (stable-X bifurcation) 
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