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Abstract — The Tensor Product (TP) model transfor-
mation is a recently proposed technique for transform-
ing given Linear Parameter Varying (LPV) models into
affine model form, namely, to parameter varying con-
vex combination of Linear Time Invariant (LTI) models.
The main advantage of the TP model transformation is
that the Linear Matrix Inequality (LMI) based control
design frameworks can immediately be applied to the re-
sulting affine models to yield controllers with tractable
and guaranteed performance. The effectiveness of the
LMI design depends on the LTI models of the convex
combination. Therefore, the main objective of this paper
is to study how the TP model transformation is capable
of determining different types of convex hulls of the LTI
models. The study is conducted trough the example of
the prototypical aeroelastic wing section.

I. INTRODUCTION

The affine model form is a dynamic model representation
whereupon LMI based control design techniques can imme-
diately be executed. It describes given LPV models by a
parameter varying convex combination of LTI models. The
TP model form is a kind of affine decomposition, where the
convex combination is defined by one variable weighting
functions of each parameter separately. Convex optimiza-
tion or linear matrix inequality based control design tech-
niques can immediately be applied to affine, hence to TP
models [5, 8, 12]. An important advantage of the TP model
representation is that the convex hull defined by the LTI
models can readily be modified and analyzed via the one
variable weighting functions. Furthermore, the feasibility
of the LMI’s can be considerably relaxed by modifying the
type of the resulting convex hull.

The TP model transformation is a recently proposed nu-
merical method to transform LPV models into TP model
form [3, 4]. It is capable of transforming different LPV
model representations (such as physical model given by an-
alytic equations, fuzzy, neural network, genetic algorithm
based models) into TP model form in a uniform way. In
this sense it replaces the analytical derivations and affine de-
compositions (that could be a very complex or even an un-
solvable task). Execution of the TP model transformation
takes a few minutes by a regular Personal Computer. The
TP model transformation minimizes the number of the LTI
components of the resulting TP model. Furthermore, the TP
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model transformation is capable of resulting different types
of convex hulls of the given LPV model.

In this paper we study how the TP model transformation
is applicable to generate different types of convex hulls of
the given LPV models. The study is conducted through the
example of the prototypical aeroelastic wing section.

II. PRELIMINARIES

A. Linear Parameter-Varying state-space model

Consider the following parameter-varying state-space
model:

ẋ(t) = A(p(t))x(t)+B(p(t))u(t), (1)

y(t) = C(p(t))x(t)+D(p(t))u(t),

with inputu(t), outputy(t) and state vectorx(t). The system
matrix

S(p(t)) =
(

A(p(t)) B(p(t))
C(p(t)) D(p(t))

)
∈ RO×I (2)

is a parameter-varying object, wherep(t) ∈ Ω is time vary-
ing N-dimensional parameter vector, and is an element of
the closed hypercubeΩ = [a1,b1]×[a2,b2]×·· ·× [aN,bN]⊂
RN. p(t) can also include some elements ofx(t).

B. Convex state-space TP model

S(p(t)) can be approximated for any parameterp(t) as the
convex combination of LTI system matricesSr , r = 1, . . . ,R.
MatricesSr are also calledvertex systems. Therefore, one
can define weighting functionswr(p(t)) ∈ [0,1] ⊂ R such
that matrixS(p(t)) can be expressed as convex combination
of system matricesSr . The explicit form of the TP model in
terms of tensor product becomes:

(
ẋ(t)
y(t)

)
≈S

N⊗
n=1

wn(pn(t))
(

x(t)
u(t)

)
(3)

that is ∥∥∥∥S(p(t))−S
N⊗

n=1
wn(pn(t))

∥∥∥∥≤ ε.

Here, ε symbolizes the approximation error, row vector
wn(pn) ∈RIn n = 1, . . . ,N contains the one variable weight-
ing functionswn,in(pn). Functionwn, j(pn(t)) ∈ [0,1] is the
j-th one variable weighting function defined on then-th di-
mension ofΩ, andpn(t) is then-th element of vectorp(t).
In (n = 1, . . . ,N) is the number of the weighting functions
used in then-th dimension of the parameter vectorp(t). The
(N + 2)-dimensional tensorS ∈ RI1×I2×···×IN×O×I is con-
structed from LTI vertex systemsSi1i2...iN ∈ RO×I . For fur-
ther details we refer to [2, 3, 4]. The convex combination of
the LTI vertex systems is ensured by the conditions:



Definition 1 The TP model (3) is convex if:

∀n∈ [1,N], i, pn(t) : wn,i(pn(t)) ∈ [0,1]; (4)

∀n∈ [1,N], pn(t) :
In

∑
i=1

wn,i(pn(t)) = 1. (5)

This simply means thatS(p(t)) is within the convex hull
of the LTI vertex systemsSi1i2...iN for anyp(t) ∈Ω.

S(p(t)) has a finite element TP model representation in
many cases (ε = 0 in (3)). However, exact finite element TP
model representation does not exist in general (ε > 0 in (3)),
see Ref. [13]. In this caseε 7→ 0, when the number of the
LTI systems involved in the TP model goes to∞. In this
paper we will show that the LPV model of the aeroelastic
system can be exactly represented by a finite TP model.

C. TP model transformation

The TP model transformation starts with the given LPV
model (??) and results in the TP model representation (3),
where the trade-off between the number of LTI vertex sys-
tems and theε is optimized [3]. The TP model transforma-
tion offers options to generate different types of the weight-
ing functionsw(·). For instance:

Definition 2 SN - Sum NormalisationVector w(p), con-
taining weighting functionswi(p) is SN if the sum of the
weighting functions is 1 for allp∈Ω.

Definition 3 NN - Non NegativenessVector w(p), con-
taining weighting functionswi(p) is NN if the value of the
weighting functions is not negative for allp∈Ω.

Definition 4 NO - Normality Vector w(p), containing
weighting functionswi(p) is NO if it is SN and NN type,
and the maximum values of the weighting functions are one.
We saywi(p) is close to NO if it is SN and NN type, and the
maximum values of the weighting functions are close to one.

Definition 5 RNO - Relaxed NormalityVectorw(p), con-
taining weighting functionswi(p) is RNO if the maximum
values of the weighting functions are the same.

Definition 6 INO - Inverted Normality Vectorw(p), con-
taining weighting functionswi(p) is INO if the minimum
values of the weighting functions are zero.

All the above definitions of the weighting functions de-
termine different types of convex hulls of the given LPV
model. The SN and NN types guarantee (4), namely, they
guarantee the convex hull. The TP model transformation
is capable of always resulting SN and NN type weighting
functions. This means that one can focus on applying LMI’s
developed for convex decompositions only, which consid-
erably relaxes the further LMI design. The NO type deter-
mines a tight convex hull where as many of the LTI sys-
tems as possible are equal to theS(p) over somep ∈Ω and
the rest of the LTI’s are close toS(p(t)) (in the sense of
L2 norm). The SN, NN and RNO type guarantee that those
LTI vertex systems which are not identical toS(p) are in the
same distance fromS(p(t)). INO guarantees that different

subsets of the LTI’s defineS(p(t)) over different regions of
p ∈Ω.

These different types of convex hulls strongly effect the
feasibility of the further LMI design. For instance paper [1]
shows an example when determining NO is useful in the
case of controller design while the observer design is more
advantageous in the case of INO type weighting functions.

In order to have a direct link between the TP model form
and the typical form of LMI conditions, we define the fol-
lowing index transformation:

Definition 7 (Index transformation)Let

Sr =
(

Ar Br

Cr Dr

)
= Si1,i2,..,iN ,

where r = ordering(i1, i2, .., iN) (r = 1..R = ∏n In). The
function ”ordering” results in the linear index equivalent
of anN dimensional array’s indexi1, i2, .., iN, when the size
of the array isI1× I2× ..× IN. Let the weighting functions
be defined according to the sequence ofr:

wr(p(t)) = ∏
n

wn,in(pn(t)).

By the above index transformation one can write the TP
model (3) in the typical form of:

S(p(t)) =
R

∑
r=1

wr(p(t))Sr .

Note that the LTI systemsSr andSi1,i2,..,iN are the same, only
their indices are modified, therefore the hull defined by the
LTI systems is the same in both forms.

III. CASE STUDY OF THE PROTOTYPICAL
AEROELASTIC WING SECTION

The prototypical aeroelastic wing section is used for the the-
oretical as well as experimental analysis of two- dimensional
aeroelastic behavior. It has complex dynamic behavior. One
can find a whole series of detailed studies of this wing sec-
tion in theJournal of Guidance, Control and Dynamic. For
more details we refer to [2, 1].

Let us consider the problem of flutter suppression for the
prototypical aeroelastic wing section as shown in Figure 1.
The flat plate airfoil is constrained to have two degrees of
freedom, the plungeh and pitchα. In order to have a deep
description of the equations of motion, we refer to Refs. [6,
7, 9, 10, 14]. Here we give only a brief discussion. The
equations of motion in linear parameter-varying state-space
form is:

ẋ(t) = A(p(t))x(t)+B(p(t))u(t) = S(p(t))
(

x(t)
u(t)

)
, (6)

where

x(t) =




x1(t)
x2(t)
x3(t)
x4(t)


 =




h
α
ḣ
α̇


 and u(t) = β

and
A(p(t)) =



h
k

c=2*b

M

L
c.g.

U
x

kh

b

a*b midchord
elastic axis

h

Deflected position

Equilibrium position

Fig. 1: Two-dimensional flat plate airfoil small deflection, force notation
and schematic diagram




0 0 1 0
0 0 0 1
−k1 −(k2U2 + p(x2(t))) −c1(U) −c2(U)
−k3 −(k4U2 +q(x2(t))) −c3(U) −c4(U)


 ,

B(p(t)) =




0
0

g3U2

g4U2


 ,

wherep(t)∈RN=2 contains valuesx2(t) = α andU . Further
d = m(Iα−mx2

αb2);

k1 = Iαkh
d ; k2 = Iαρbclα+mxαb3ρcmα

d ;

k3 = −mxαbkh
d ; k4 = −mxαb2ρclα−mρb2cmα

d ;
p(α) = −mxαb

d kα(α); q(α) = m
d kα(α);

c1(U) =
(
Iα(ch +ρUbclα)+mxαρU3cmα

)
/d;

c2(U) =(
IαρUb2clα(1

2−a)−mxαbcα +mxαρUb4cmα(1
2−a)

)
/d;

c3(U) =
(−mxαbch−mxαρUb2clα −mρUb2cmα

)
/d;

c4(U) =(
mcα−mxαρUb3clα(1

2−a)−mρUb3cmα(1
2−a)

)
/d;

g3 = (−Iαρbclβ −mxαb3ρcmβ)/d;

g4 = (mxαb2ρclβ +mρb2cmβ)/d;

The system parameters are given in the Appendix. These
data are obtained from experimental models described in full
detail in Refs. [9, 11].

kα(α)= 2.82(1−22.1α+1315.5α2+8580α3+17289.7α4)

is obtained by curve fitting on the measured displacement-
moment data for non-linear spring [11]. We remark that the
uncontrolled response of the system achieves limit cycle os-
cillation as claimed in Refs. [9, 11, 15]. One should note
that the equations of motion are also dependent on the elas-
tic axis locationa.

A. TP model representations of the prototypical aeroelas-
tic wing section

This subsection presents different TP model representations
of the LPV model (6). We execute the TP model transfor-
mation over aM1×M2, (M1 = 101 andM2 = 101) hyper
grid net inΩ : [14,25]× [−0.1,0.1] (U ∈ [14,25](m/s) and
α ∈ [−0.1,0.1](rad) ). The TP model transformation shows
that the LPV model of the wing section can exactly be given
by TP model with 6 LTI vertex models, namely, by the pa-
rameter varying convex combination of 6 LTI models:

S(p(t)) =
3

∑
i=1

2

∑
j=1

w1,i(U(t))w2, j(α(t))Si, j

In the followings we show that the type of the convex
combination can readily be modified by the TP model trans-
formation:
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Fig. 2: Weighting functions of the TP model 0 on the dimensionsα andU .

TP MODEL 0: The resulting weighting functions de-
picted on Figure 2 are directly obtained by the TP model
transformation without any further modification. They are
between−1 and+1 and orthogonal. The resulting LTI ver-
tex systems do not define the convex hull of the LPV model,
but their number is minimized.

TP MODEL 1: In order to have convex TP model to
which the LMI control design conditions can be applied, let
us generate SN and NN type weighting functions by the TP
model transformation. The results are depicted on Figure 3.
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Fig. 3: SN and NN type weighting functions of the TP model 1 on the
dimensionsα andU .

TP MODEL 2: In many cases the convexity of the TP
model is not enough, the further LMI design is not feasible.
In order to relax the feasibility of the LMI conditions, let us
define the tight convex hull of the LPV model via generat-
ing close to NO type weighting functions by the TP model
transformation, see Figure 7.

TP MODEL 3: Let us further modify the weighting
functions and define their INO - RNO type, see Figure 5.
Paper [1] shows that this type is advantageous in the case of
observer design.

Perhaps the above resulting weighting functions can be
derived analytically. The functionsw(α) can be derived
from kα. The analytical derivation ofw(U), however, seems
to be rather complicated. The analytical derivations of the
tight convex hull or INO - RNO type weighting functions
need the analytical solution of the tight convex hull problem
that is unavailable in general. In spite of this, the TP model
transformation requires a few minutes and is not dependent
on the actual analytical form of the given LPV model. If
the model is changed we can simply execute the TP model
transformation again.
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Fig. 4: Close to NO type weighting functions of the TP model 1 on the
dimensionsα andU .

IV. TYPICAL AFFINE MODEL FORM

TP model 2 was applied in [2] to design stabilizing con-
troller. Let us transform TP model 2

S(p(t)) =
3

∑
i=1

2

∑
j=1

w1,i(U(t))w2, j(α(t))Si, j

to the typical affine model form:

S(p(t)) =
6

∑
r=1

wr(U(t),α(t))Sr ,

whereSr = Si, j , wr(U(t),α(t)) = w1,i(U(t))w2, j(α(t)) and
r = 2(i−1)+ j (see Definition 7).

The weighting functionswr(·) are presented on the Fig-
ures 6 and 7.

V. CONCLUSION

This paper shows how the TP model transformation is capa-
ble of defining affine models with various types of convex
hulls of a given LPV model in a few minutes without an-
alytical derivations. We may conclude that the TP model
may replace the analytic affine model decomposition. We
studied the example of the LPV model of the prototypical
aeroelastic wing section.

VI. APPENDIX

Nomenclature
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Fig. 5: INO-RNO type weighting functions of the TP model 2 on the
dimensionsα andU .

• h = plunging displacement

• α = pitching displacement

• xα = the non-dimensional distance between elastic axis
and the center of mass

• m= the mass of the wing

• Iα = the mass moment of inertia

• b = semi-chord of the wing

• cα = the pitch structural damping coefficient

• ch = the plunge structural damping coefficient

• kh = the plunge structural spring constant

• kα(α) = non-linear stiffness contribution

• L = aerodynamic force

• M = aerodynamic moment

• β = control surface deflection

• ρ = air density

• U = free stream velocity

• clα = lift coefficients per angle of attack
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Fig. 6: Weighting functions of the affine model

• cmα = moment coefficients per angle of attack

• clβ = lift coefficients per control surface deflection

• cmβ = moment coefficients per control surface deflec-
tion

• a = non-dimensional distance from the midchord to the
elastic axis

System parameters

b = 0.135m; span= 0.6m; kh = 2844.4N/m; ch =
27.43Ns/m; cα = 0.036Ns; ρ = 1.225kg/m3; clα = 6.28;
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Fig. 7: Weighting functions of the affine model

clβ = 3.358; cmα = (0.5 + a)clα ; cmβ = −0.635; m =
12.387kg; xα =−0.3533−a; Iα = 0.065kgm2; cα = 0.036;
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