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Abstract — The Tensor Product (TP) model transfor-
mation is a recently proposed technique for transform-
ing given Linear Parameter Varying (LPV) models into
affine model form, namely, to parameter varying con-
vex combination of Linear Time Invariant (LTI) models.
The main advantage of the TP model transformation is
that the Linear Matrix Inequality (LMI) based control
design frameworks can immediately be applied to the re-
sulting affine models to yield controllers with tractable
and guaranteed performance. The effectiveness of the
LMI design depends on the LTI models of the convex
combination. Therefore, the main objective of this paper
is to study how the TP model transformation is capable
of determining different types of convex hulls of the LTI
models. This paper shows a case study of the TORA sys-
tem. The theory and the definitions of the affine decom-
position is discussed in the paper “Different Affine De-
composition of the Model of the Prototypical Aeroelastic
Wing Section by TP model transformation, PART I” of
this proceedings.

I CASE STUDY OF THE TORA SYSTEM

The Translational Oscillations with a Rotational Actuator
(TORA) system1 was developed as a simplified model of
a dual-spin spacecraft [13]. Later, Bernstein and his col-
leagues at the University of Michigan, Ann Arbor, turned it
into a benchmark problem for nonlinear control [1, 2, 3].

The system shown in Fig. 1 represents a translational os-
cillator with an eccentric rotational proof-mass actuator. The
oscillator consists of a cart of massM connected to a fixed
wall by a linear spring of stiffnessk. The cart is constrained
to have one-dimensional travel. The proof-mass actuator at-
tached to the cart has massm and moment of inertiaI about
its center of mass, which is located at distancee from the
point about which the proof mass rotates. The motion occurs

1Also referred to as the rotational/translational proof-mass actuator
(RTAC) system.
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Fig. 1: TORA system

in a horizontal plane, so that no gravitational forces need to
be considered. In Fig. 1,N denotes the control torque ap-
plied to the proof mass, andF is the disturbance force on
the cart.

Let q and q̇ denote the translational position and veloc-
ity of the cart, and letθ and θ̇ denote the angular position
and velocity of the rotational proof mass, whereθ = 0deg
is perpendicular to the motion of the cart, andθ = 90deg
is aligned with the positiveq direction. The equations of
motion are given by

(M +m)q̈+ kq = −me(θ̈cosθ− θ̇2sinθ)+F

(I +me2)θ̈ = −meq̈cosθ+N

With the normalization

ξ ,

√
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the equation of motion become

ξ̈+ξ = ε
(

θ̇2sinθ− θ̈cosθ
)

+w

θ̈ = −εξ̈cosθ+u

whereξ is the normalized cart position, andw andu rep-
resent the dimensionless disturbance and control torque, re-
spectively. In the normalized equations, the symbol (·) rep-
resents differentiation with respect to the normalized timeτ.
The coupling between the translational and rotational mo-
tions is represented by the parameterε which is defined by

ε ,
me

√

(I +me2)(M +m)

Letting x =
(

x1 x2 x3 x4
)T

=
(

ξ ξ̇ θ θ̇
)T

, the
dimensionless equations of motion in first-order form are
given by

ẋ = f(x)+g(x)u+d(x)w, (1)
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Table 1: Parameters of the TORA system

Description Parameter Value Units
Cart mass M 1.3608 kg
Arm mass m 0.096 kg
Arm eccentricity e 0.0592 m
Arm inertia I 0.0002175 kg m2

Spring stiffness k 186.3 N/m
Coupling parameter ε 0.200 —

Note thatu, the control input, is the normalized torqueN
andw, the disturbance, is the normalized forceF . In the fol-
lowings consider the case of no disturbance. The parameters
of the simulated system are given in Table 1.

A Determination of the convex state-space TP model form
of the TORA system

Observe that the nonlinearity is caused byx3(t) andx4(t).
For the TP model transformation we define the transfor-
mation space asΩ = [−a,a]× [−a,a] (x3(t) ∈ [−a,a] and
x4(t)∈ [−a,a]), wherea = 45

180π rad (note that these intervals
can be arbitrarily defined). Let the density of the sampling
grid be 101× 101. The sampling results inAs

i, j and Bs
i, j,

wherei, j = 1. . .101. Then we construct the matrixSs
i, j =

(

As
i, j Bs

i, j

)

, and after that the tensorS s
∈ R

101×101×4×4

from Ss
i, j. If we execute HOSVD on the first two dimen-

sions ofS s then we find that the rank ofS s on the first two
dimensions are 4 and 2 respectively. This means that the
TORA system can be exactly given as convex combination
of 4×2= 8 linear vertex model. The TP model transforma-
tion describes TORA system as:

ẋ(t) =
4

∑
i=1

2

∑
j=1

w1,i(x3(t))w2, j(x4(t))(Ai, jx(t)+Bi, ju(t)) .

(2)
In the followings we show that the type of the convex

combination can readily be modified by the TP model trans-
formation:

TP MODEL 0: The resulting weighting functions de-
picted on Figure 2 are directly obtained by the TP model
transformation without any further modification. They are
between−1 and+1 and orthogonal. The resulting LTI ver-
tex systems do not define the convex hull of the LPV model,
but their number is minimized.

TP MODEL 1: In order to have convex TP model to
which the LMI control design conditions can be applied, let
us generate SN and NN type weighting functions by the TP
model transformation. The results are depicted on Figure 3.

TP MODEL 2: In many cases the convexity of the TP
model is not enough, the further LMI design is not feasible.
In order to relax the feasibility of the LMI conditions, let us
define the tight convex hull of the LPV model via generat-
ing close to NO type weighting functions by the TP model
transformation, see Figure 4.

TP MODEL 3: Let us further modify the weighting
functions and define their INO–RNO type, see Figure 5.

The above resulting weighting functions can be derived
analytically in some cases, but as the model become more
and more complex, the analytical derivations needs more
and more expertise. Moreover, the analytical derivations of
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Fig. 2: Weighting functions of the TP model 0 on dimensionsx3(t) and
x4(t)

the tight convex hull or INO–RNO type weighting functions
need the analytical solution of the tight convex hull problem
that is unavailable in general. In spite of this, the TP model
transformation requires a few minutes and is not dependent
on the actual analytical form of the given LPV model. If
the model is changed we can simply execute the TP model
transformation again.

II TYPICAL AFFINE MODEL FORM

The TP model form can be transformed to the typical affine
model form that can be used in other control theories. Let
us transform the TP model

S(p(t)) =
4

∑
i=1

2

∑
j=1

w1,i(x3(t))w2, j(x4(t))Si, j
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Fig. 3: SN and NN type weighting functions of the TP model 1 on dimensionsx3(t) andx4(t)
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Fig. 4: Close to NO type weighting functions of the TP model 2 ondimensionsx3(t) andx4(t)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Angular position: x
3
 (rad)

W
ei

gh
tin

g 
fu

nc
tio

ns

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Angular speed: x
4
 (rad)

W
ei

gh
tin

g 
fu

nc
tio

ns

Fig. 5: INO–RNO type weighting functions of the TP model 3 on dimensionsx3(t) andx4(t)

to the typical affine model form:

S(p(t)) =
8

∑
r=1

wr(x3(t),x4(t))Sr,

where Sr = Si, j, wr(x3(t),x4(t)) = w1,i(x3(t))w2, j(x4(t))
andr = 2(i−1)+ j.

The weighting functionswr(·) of TP model 0 in the typi-
cal affine model from are presented in Fig. 6. As a compar-
ison, the weighting functionswr(·) of TP model 2 are also

depicted in Fig. 7. As the paper [4] presents, the stabilizing
controller derived from TP model 2 affine model showed
better control performance than TP model 1.

III CONCLUSION

This paper shows how the TP model transformation is capa-
ble of defining affine models with various types of convex
hulls of a given LPV model in a few minutes without ana-
lytical derivations. We may conclude that the TP model may
replace the analytic affine model decomposition. The paper
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Fig. 6: Weighting functions of the affine model
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Fig. 7: Close to NO type weighting functions of the affine model



represented the different affine models for the example of
the LPV model of the TORA system.
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