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Abstract — A recently developed technique of mod-
elling parameter varying dynamical systems is the Ten-
sor Product model representation, where a system is de-
composed to convex combination of several parameter-
invariant models. Effectiveness and tractability of the
representation depends strongly on the type of the ap-
plied convex combination. This paper presents an algo-
rithm, which generates a special type of convex combi-
nation, the RNO-INO representation. An example is also
introduced.

I. INTRODUCTION

The Tensor Product (TP) model form is a representation of
parameter-dependent dynamical systems, which has been
recently used in model control [3, 4]. At the TP model
representation, a parameter-dependent model is replaced
by a parameter-dependent convex combination of several
parameter-invariant models. The combination is defined by
weight functions of each parameter of the model. Many dif-
ferent TP representations of a specific model can be con-
structed, and the feasibility and behavior of the representa-
tion depends heavily on the type of the time-invariant mod-
els and the weight functions. No general algorithm has been
developed to find a proper representation of a given dynami-
cal model. Instead, many types of representations have been
proposed by different authors (eg. [6, 7]) and it is usually
decided empirically, which kind of representation to be used
in a given case.

The type of a TP representation is primarily characterized
by properties of the weight functions. One of these is the
’RNO-INO’, proposed in a slightly different form by [8].
They also presented an algorithm to construct this type of
representation. Our paper presents a different, improved al-
gorithm for producing TP model representations with RNO-
INO type weight-functions. The new algorithm provides a
more compact model representation than [8] (some details
about the difference are highlighted in Section VI.).

The more or less heuristic conditions such as the ’RNO-
INO’ are only useful if they provide advantageous represen-
tations of some models of practical interest. The description
of a specific example, namely the observer design of a pro-
totypical aeroelastic wing section can be found in the same
proceedings [5]).

In Section II. some definitions are listed. In part III., the
matrix decomposition problem associated with the RNO-
INO type TP model representation is shown. Section IV.
presents the algorithm for the matrix decomposition prob-
lem in a special case and based on this, the general case is
discussed in Section V.. Finally, Section VI. is devoted to
applications of the algorithm.

II. DEFINITIONS

Sum Normalization (SN) A matrix is called SN type if the
sum of the elements in each row is 1. Note that erasing
the last column of an SN type matrix results no loss of
information. Such a truncation of an arbitrary SN type
matrix X is denoted by X.

Non negativeness (NN) A matrix is called NN type if all
its elements are non-negative.

Normalization (NO) A matrix is called NO type if it is SN
and NN type and the maximum of each column is 1.

Relaxed normalization (RNO) A matrix is called RNO
type if it is SN and NN type and the maximum of each
column is equal.Note that these maxima are between 0
and 1.

Inverse normalization (INO) A matrix is called INO type
if it is SN and NN type, and the minimum of each col-
umn is 0.

III. RNO-INO TYPE TP REPRESENTATION

The basic elements of TP model transformation are not in-
troduced here, but one can find a brief summary of this
framework in the same book [5]). We only use the fact
that constructing a TP representation corresponds to the fol-
lowing simple matrix decomposition problems associated to
each parameter of the model:

S = U ·Z (1)

S is a given n× r ’system matrix’ of the parameter vary-
ing system, usually with n >> r. The n× r matrix U and
the r × r size Z have to be constructed. The former one
corresponds to the weight functions and the later one is a
’system matrix’ of the parameter-invariant models. The ma-
trix U is always SN, which corresponds to the fact that the
sum of the weight functions is 1, and it is also NN, since
U defines a convex combination of the parameter invariant
models. Further properties of U characterize special types
of TP representations. In our case, an RNO-INO represen-
tation corresponds to an RNO and INO type matrix U.

The rest of our paper deals with the following problem:
given is an initial TP representation of a specific model, ie.
a decomposition of the form (1), where U is SN and NN,
but not RNO-INO type, we construct another decomposi-
tion S = U′ ·Z′ , where U′ is SN, NN, RNO and INO. As
a further simplification we only deal with the following de-
composition of U:

U = U′ ·Θ, (2)



where the sizes of U′ and Θ are n× r and r× r, respectively.
Equation (2), substituted in (1) provides the final, RNO-INO
type decomposition (with Z′ = Θ ·Z).

One can easily verify that the SN property of Θ in eq. (2)
follows from the SN property of U′ and U. What is more,
(2) is equivalent of the following truncated form (see the
meaning of ’overlines’ at the definition of SN type matrices):

U = U′ ·Θ. (3)

We will refer to a geometrical interpretation of the above
equation, which has been proposed by [7]: hence U′ is SN
and NN, the row vectors of U are generated by eq. (3) as
convex combinations of the row vectors ofΘ, ie. the simplex
determined by the latter vectors bounds the points associated
to the rows of U. Instead of exact algebraic proofs, we will
refer to this geometrical interpretation several times. Notice
that an NO type matrix U′ would geometrically mean that Θ
is the exact convex hull of U, which shows that the NO con-
dition usually can not be satisfied. The milder INO property
means that Θ bounds U so, that each face of the simplex
contains at least one of the row vectors of U. The meaning
of the RNO condition is less illustrative.

We continue the paper by a further simplification of the
problem. In section IV. and V. an invertible, inhomogenous
linear transformation T is constructed, for which T(U) = U

′

(and U′ is SN, NN, INO and RNO). Finding T provides
the solution of the original problem: let the r× r unit ma-
trix be denoted by Ir. It follows straightforward from the
above shown geometrical interpretation that the trivial equa-
tion U′ = U′Ir is equivalent of the following ones:

U
′ = U′Ir (4)

T−1(U′) = U′ ·T−1(Ir) (5)

U = U′ ·T−1(Ir) (6)

Equation (6) is the desired (2) type decomposition of U.
The description of the proposed algorithm is split to two

parts. Section IV. deals with the decomposition of U ma-
trices with 2 columns; matrices, which have more than two
columns are discussed in Section V..

IV. MATRICES WITH TWO COLOUMNS

If U is an SN type matrix with two columns, a transforma-
tion T0, which makes the U vector RNO and INO is the fol-
lowing:

q = T0(p) : qk =
pk −mini(pi)

maxi(pi)−mini(pi)
(7)

where pk and qk denote the kth elements of the correspond-
ing vectors. If U

′ = T0(U), U′ is obviously SN,NN, INO and
RNO (the maxima of both columns are 1).

V. MATRICES WITH MORE THAN TWO COLUMNS

In this section, we show an invertible linear transformation,
which makes U INO-RNO, if U has more than two columns.
Subsection V./A. deals with a basic step of the algorithm,
Subsection V./B. contains the proof of two lemmas, and fi-
nally Subsection V./C. shows the course of the complete al-
gorithm.

A. Basic step of the algorithm

Let a be a non-negative constant and consider the product T
of the following four inhomogenous linear transformations:

Q = TA(P,a) : Qi, j(a) = Pi, j + a−1
ρ
(
∑ρ

k=1 Pi,k −1
)

(8)

Q = TB(P) : Qi, j = Pi, j −minl(Pl, j) (9)

Q = TC(P) : Qi, j = Pi, j
maxl(Pl, j)

(10)

Q = TD(P) : Qi, j = Pi, j

maxl(∑
ρ
k=1 Pl,k)

(11)

where ρ is the number of columns in the input matrix P, and
the (i, j)th element of any matrix X is denoted by Xi, j. See
also a geometrical illustration of the above transformations
in Figure 1.

Let W be an arbitrary SN type matrix with ρ> 2 columns.
If W

′ = T (W), W′ is obviously SN; it is NN and INO,
because TB changes the smallest element of the first r − 1
columns to 0 and TC and TD preserve this property, while the
smallest element of the rth column is 0 because TD and the
SN property of W′. Finally, W′ is almost RNO: the max-
ima of the az 1.,2., . . . ,(r − 1)th columns are equal due to
TC, but the maximum of the last one is different. The RNO
condition is completely satisfied if

f (a) = max
k

(
W ′

k,r(a)
)−max

k

(
W ′

k,1(a)
)

=

= 1−min
l

(
ρ−1

∑
k=1

W ′
l,k(a)

)
−max

k

(
W ′

k,1(a)
)

= 0. (12)

We will show later

Lemma 1:

lim
a→∞

f (a) = 1−0− 1
ρ−1

(13)

and also

Lemma 2: If TA(W,0) is INO and RNO, then

f (0) = 1−1−max
m

(
W ′

m,l(0)
)

(14)

If the condition of Lemma 2 holds for W, (12) has a posi-
tive solution a0, because f (a) is continuous and f (0) < 0 <
lima→∞ f (a). This value can be found numerically and W
can be transformed to RNO-INO form.

B. Proof of two lemmas

Proof of Lemma 1: If a approaches infinity, all row vectors
of T (W,a) lie approximately on the x1 = x2 = . . . = xρ line
of the ρ dimensional space (due to TA and TB, see Figure
2). One row will be the zero vector (because of TB), another
will be approximately [1/ρ,1/ρ, . . . ,1/ρ] (because TD) and
all the rest will be between these two vectors. The statement
of Lemma 1 follows straightforward from these facts.

Proof of Lemma 2: If TA(W,0) is INO, then TB, applied
on this matrix, becomes identity and because the RNO prop-
erty, the product of TC and TD is also identity. Thus, in this
case W

′(0) = TA(W,0). Moreover, this matrix is SN be-
cause of a = 0, (cf. Figure 2) ie.

min
l

(
ρ−1

∑
k=1

W ′(0)l,k

)
= 1 (15)
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Fig. 1: A geometrical illustration of the transformation T : the four panels
show the effect of the successive application of TA, TB, TC and TD on the
example of a 9×2 size matrix W. Point W X

i correspond to the ith row
vector of W after transformation TX , X ∈ {A,B,C,D}. The geometrical
effect of the transformation TX is: A: perpendicular stretching by a from

the line d (a = 4 in the figure), which would mean projection to d if a = 0.
B: shifting to the axis’ C: perpendicular stretching from the two coordinate

axis’, to fill the unit square. D: enlarging from the origin to hit line
x1 + x2 = 1.
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Fig. 2: A geometrical illustration of the transformations T applied on a
9×2 size matrix W if a >> 1, as well as if a = 0 and the condition of
Lemma 2 is satisfied. In both cases, the points are transformed to a line.

Notations are the same as in Figure 1.

Thus, eq. (14) holds. Q.E.D.

C. The complete algorithm

It was shown in Section V./A., that we can transform an ar-
bitrary SN type matrix W to RNO-INO type, if TA(W,0) is
RNO-INO type (cf. Lemma 2). If the former matrix has ρ
columns, notice that the latter has only ρ−1. This way the
problem can be reduced step-by-step to the trivial case r = 2
(see Section IV.). In this subsection, the complete algorithm
is presented.

Apply the notation U(1,r) = U and create U(1,k−1) (k =
r,r−1, . . . ,3) from the

U(1,k−1) = TA(U1,(k)
,0) (16)

recursion. The matrix U(1,2) is SN type and it is of size
n×2. It can be transformed to RNO-INO type by the trans-
formation T0, as shown in Section IV.. Let us apply the nota-
tion T0(U(1,2)) = U(3,2). After this,repeat the following steps
r−2 times with k = 3,4, . . .r respectively:

• 1: Let U(2,k) be created from U(1,k) as

U
(2,k) = T ∗(U(1,k)) = U(3,k−1)−U(1,k−1)+U

(1,k)
(17)

• 2: Notice that the TA and T ∗ transformations are com-
mutative, which is easy to see from their geometri-
cal meaning: e.g. if a = 0, TA projects the row vec-
tors of the input matrix orthogonally to the subspace
∑xi = 1 of the ρ dimensional space (cf. Figure 1/A),
and T ∗ shifts the row vectors, parallel to this subspace.
Because the commutativity of the two transformations
(see also eqs. (16), (17)) ,

TA(U(2,k)
,0) = TA(T ∗(U(1,k)),0) =

= T ∗(TA(U(1,k)
,0)) = T ∗(U(1,k−1)) = U(3,k−1) (18)

which is SN, RNO and INO type. Hence the condi-

tion of Lemma 2 is satisfied, U
(2,k)

can be transformed
to RNO-INO type as shown in Section V./A.. Let the

image of U
(2,k)

be U
(3,k)

.



Finally, the matrix U′ = U(3,r) is RNO-INO type and it
has been constructed from U by an invertible, linear, inho-
mogenous transformation.

VI. APPLICATION OF THE RNO-INO TYPE MODEL
REPRESENTATION

As already mentioned in the introductory part, the Ten-
sor Product model representation is a general framework of
modelling parameter-dependent dynamical systems. It pro-
vides a good approximation of many models even in cases
where analytical handling would be too complicated. Many
applications [5] show, that special types of Tensor Product
representation produce tractable results in most cases. The
RNO-INO type is one of the advantageous types of repre-
sentations, A former algorithm for an eq. (2) type RNO-
INO decomposition has been published in [7]. Their algo-
rithm produced an n×2 · r size matrix U′ and a 2 · r× r size
Θ, which means that the original system was decomposed to
the convex combination of 2r parameter-invariant systems.
The improved algorithm of this paper produces n× r size U′
and an r× r size Θ, which corresponds to the convex com-
bination of only r systems. Further decrease in the above
matrix sizes is not possible (hence an r−1 dimensional non-
degenerated convex hull has at least r points).

The main difficulty of creating a TP model representation
is the lack of guarantee that any of the proposed types of
representations is tractable at a specific model. That is the
main point, while several types of representations are in use
at the same time.

The proposed RNO-INO algorithm has been used at a
recently analyzed example: a prototypical wing-section,
which produces spontaneous limit-cycle oscillation but
should be stabilized for safety reasons. Two parts of the
stabilizer have been designed, a controller unit and an ob-
server unit [1, 2, 5]. At the latter one, the RNO-INO type
representation gave the only tractable solution among sev-
eral others. Hence this model is the subject of another paper
in the same proceedings, we do not present here any details
about the model, the representation or the simulation results.
At the same time, we hope that the presented algorithm will
help modelling several other examples.
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