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Abstract:This paper presents a case study of the TPDC (Tensor Product Distributed Compensation) based control
design framework in the stabilization issue of the Translational Oscillator with an eccentric Rotational proof mass
Actuator (TORA). First we execute TP model transformation on the linear parameter varying (LPV) model of the
TORA to yield its exact TP model representation. As a second step, we substitute the components of the TP model
into linear matrix inequalities to derive a controller that guaranties asymptotic stability. We show that the TPDC
can be uniformly executed on a large class of LPV models and is capable of involving further control performances
beyond stability.
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1 Introduction

The TP model form is a dynamic model representa-
tion whereupon Linear Matrix Inequality (LMI) based
control design techniques (for instance PDC frame-
work) can immediately be executed. It describes the
Linear Parameter Varying (LPV) model by a con-
vex combination of linear time invariant (LTI) mod-
els, where the convex combination is defined by the
weighting functions of each parameter separately. The
TP model representation is somewhat similar to the
affine decomposition whereupon convex optimization
or linear matrix inequality based control design tech-
niques are applicable [1, 2, 3]. The TP model can al-
ways be given in the typical affine model form. An
important difference between these model forms is
that the convex hull of the given dynamic LPV model
can readily be determined and analyzed in the TP
model representation. Furthermore, the feasibility of
the LMIs can be considerably relaxed in this repre-
sentation via modifying the convex hull of the LPV
model.

The TP model transformation is a recently pro-
posed numerical method to transform LPV models
into TP model form [4, 5]. It is capable of trans-
forming different LPV model representations (such
as physical model given by analytic equations, fuzzy,
neural network, genetic algorithm based models) into
TP model form in a uniform way. In this sense it
replaces the analytical derivations and affine decom-

positions (that could be a very complex or even an
unsolvable task), and automatically results in the TP
model form. Execution of the TP model transforma-
tion takes a few minutes by a regular Personal Com-
puter. The TP model transformation minimizes the
number of the LTI components of the resulting TP
model. Furthermore, the TP model transformation is
capable of resulting different convex hulls of the given
LPV model.

One can find a number of LMIs under the Parallel
Distributed Compensation (PDC) framework which
can immediately be applied to the TP model, accord-
ing to various control design specifications. Therefore
it is worth linking the TP model transformation and
the PDC design framework.

In conclusion, the TPDC framework is applicable
to various LPV model representations, and automati-
cally executable without analytical derivations in rea-
sonable time. Via solving the LMIs, selected accord-
ing to different control specifications, in the TPDC
framework the resulting controller guarantees the de-
sired specifications.

In this paper we investigate the use of the TPDC
framework in a control issue of the TORA system.

2 Notation
This section is devoted to introduce the notations
being used in this paper:{a, b, . . .}: scalar val-
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ues. {a,b, . . .}: vectors. {A,B, . . .}: matrices.
{A,B, . . .}: tensors. RI1×I2×···×IN :vector space of
real valued(I1 × I2 × · · · × IN )-tensors. Subscript
defines lower order: for example, an element of ma-
trix A at row-column numberi, j is symbolized as
(A)i,j = ai,j . Systematically, theith column vec-
tor of A is denoted asai, i.e. A =

[
a1 a2 · · ·].

(·)i,j,n, . . .: are indices. (·)I,J,N , . . .: are index up-
per bounds: for example:i = 1..I, j = 1..J ,
n = 1..N or in = 1..In. A(n): n-mode matrix
of tensorA ∈ RI1×I2×···×IN . A ×n U: n-mode
matrix-tensor product.A⊗n Un: multiple product as
A×1 U1×2 U2×3 ..×N UN . Detailed discussion of
tensor notations and operations is given in [6].

3 Tensor Product Distributed Com-
pensation (TPDC)

3.1 Linear Parameter-Varying state-space
model

Consider the following parameter-varying state-space
model:

ẋ(t) = A(p(t))x(t) + B(p(t))u(t), (1)

y(t) = C(p(t))x(t) + D(p(t))u(t),

with inputu(t), outputy(t) and state vectorx(t). The
system matrix

S(p(t)) =
(
A(p(t)) B(p(t))
C(p(t)) D(p(t))

)
∈ RO×I (2)

is a parameter-varying object, wherep(t) ∈ Ω is time
varyingN -dimensional parameter vector, and is an el-
ement of the closed hypercubeΩ = [a1, b1]×[a2, b2]×
· · · × [aN , bN ] ⊂ RN . p(t) can also include some el-
ements ofx(t).

3.2 Convex state-space TP model
S(p(t)) can be approximated for any parameterp(t)
as the convex combination of LTI system matricesSr,
r = 1, . . . , R. MatricesSr are also calledvertex sys-
tems. Therefore, one can define weighting functions
wr(p(t)) ∈ [0, 1] ⊂ R such that matrixS(p(t)) can
be expressed as convex combination of system matri-
cesSr. The explicit form of the convex combination
in terms of tensor product becomes:

(
ẋ(t)
y(t)

)
≈S N⊗

n=1
wn(pn(t))

(
x(t)
u(t)

)
(3)

that is ∥∥∥∥S(p(t))− S N⊗
n=1

wn(pn(t))
∥∥∥∥ ≤ ε.

Here,ε symbolizes the approximation error, row vec-
tor wn(pn) ∈ RIn n = 1, . . . , N contains weight-
ing functions wn,in(pn). Function wn,j(pn(t)) ∈
[0, 1] is the j-th univariate weighting function de-
fined on then-th dimension ofΩ, andpn(t) is the
n-th element of vectorp(t). In (n = 1, . . . , N)
is the number of univariate weighting functions used
in the n-th dimension of the parameter vectorp(t).
The (N + 2)-dimensional coefficient tensorS ∈
RI1×I2×···×IN×O×I is constructed from LTI vertex
systemsSi1i2...iN ∈ RO×I . For further details we re-
fer to [7, 4, 5]. The convex combination of the LTI
vertex systems is ensured by the conditions:

Definition 1 The TP model (3) is convex if:

∀n ∈ [1, N ], i, pn(t) : wn,i(pn(t)) ∈ [0, 1]; (4)

∀n ∈ [1, N ], pn(t) :
In∑

i=1

wn,i(pn(t)) = 1. (5)

This simply means thatS(p(t)) is within the con-
vex hull of the LTI vertex systemsSi1i2...iN for any
p(t) ∈ Ω.

S(p(t)) has a finite element TP model represen-
tation in many cases (ε = 0 in (3)). However, exact
finite element TP model representation does not exist
in general (ε > 0 in (3)), see Ref. [8]. In this case
ε 7→ 0, when the number of the LTI systems involved
in the TP model goes to∞. In the present control
design, we will show that the dynamic model of the
TORA system can be exactly represented by a finite
TP model.

In order to have a direct link between the TP
model and the typical form of affine models and LMI
conditions, we define the following index transforma-
tion:

Definition 2 (Index transformation)Let

Sr =
(
Ar Br

Cr Dr

)
= Si1,i2,..,iN ,

where r = ordering(i1, i2, .., iN ) (r = 1..R =∏
n In). The function ”ordering” results in the linear

index equivalent of anN dimensional array’s index
i1, i2, .., iN , when the size of the array isI1×I2× ..×
IN . Let the weighting functions be defined according
to the sequence ofr:

wr(p(t)) =
∏
n

wn,in(pn(t)).
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By the above index transformation one can write
the TP model (3) in the typical form of:

S(p(t)) =
R∑

r=1

wr(p(t))Sr.

Note that the LTI systemsSr andSi1,i2,..,iN are the
same, only their indices are modified, therefore the
hull defined by the LTI systems is the same in both
forms.

3.3 TP model transformation
The TP model transformation starts with the given
LPV model (1) and results in the TP model represen-
tation (3), where the trade-off between the number of
LTI vertex systems and theε is optimized [4]. The
TP model transformation offers options to generate
different types of the weighting functionsw(·). For
instance:

Definition 3 SN - Sum NormalisationVectorw(p),
containing weighting functionswi(p) is SN if the sum
of the weighting functions is 1 for allp ∈ Ω.

Definition 4 NN - Non NegativenessVector w(p),
containing weighting functionswi(p) is NN if the
value of the weighting functions is not negative for all
p ∈ Ω.

Definition 5 NO - Normality Vectorw(p), contain-
ing weighting functionswi(p) is NO if it is SN and
NN type, and the maximum values of the weighting
functions are one. We saywi(p) is close to NO if it
is SN and NN type, and the maximum values of the
weighting functions are close to one.

Definition 6 RNO - Relaxed NormalityVectorw(p),
containing weighting functionswi(p) is RNO if the
maximum values of the weighting functions are the
same.

Definition 7 INO - Inverted NormalityVectorw(p),
containing weighting functionswi(p) is INO if the
minimum values of the weighting functions are zero.

All the above definitions of the weighting func-
tions determine different types of convex hulls of the
given LPV model. The SN and NN types guarantee
(4), namely, they guarantee the convex hull. The TP
model transformation is capable of always resulting
SN and NN type weighting functions. This means that
one can focus on applying LMIs developed for con-
vex affine models only, which considerably relaxes
the further LMI design. The NO type determines a

tight convex hull where as many of the LTI systems as
possible are equal to theS(p) over somep ∈ Ω and
the rest of the LTI’s are close toS(p(t)) (in the sense
of L2 norm). The SN, NN and RNO type guarantee
that those LTI vertex systems which are not identical
to S(p) are in the same distance fromS(p(t)). INO
guarantees that different subsets of the LTI’s define
S(p(t)) over different regions ofp ∈ Ω.

These different types of convex hulls strongly ef-
fect the feasibility of the further LMI design.

3.4 Parallel Distributed Compensation
(PDC)

The PDC framework is applicable to convex TP mod-
els [9]. It defines one feedback to each LTI vertex
systems, namely, it starts with the LTI vertex system
S, and results in the vertex LTI feedbacksF of the
controller. The control value is computed by the help
of the same weighting functions as applied in the TP
model (3):

u(t) = −
(
F N⊗

n=1
wn(pn(t))

)
x(t). (6)

The F is computed by the LMI based stability
theorems selected according to the stability criteria
and the desired control performance, see Ref. [9].
By means of the PDC framework one can derive ob-
servers as well [10].

4 LPV model of the TORA system
Consider the system shown in Figure 1. which repre-
sents the TORA [11, 12, 13, 9]. The nonlinear cou-
pling between the rotational motion of the actuator
and the translational motion of the oscillator provides
the mechanism for control. Letx1(t) andx2(t) denote
the translational position and velocity of the cart with
ẋ1(t) = x2(t). Let x3(t) = θ(t) andẋ3(t) = x4(t)
denote the angular position and velocity of the rota-
tional proof mass. Then the system dynamics can be
described by the equation:

ẋ(t) = f(x3(t), x4(t))x(t) + g(x3(t))u(t),

whereu is the torque applied to the eccentric mass,
and

f(x(t)) =




0 1 0 0
−1

1−ε2cos2(x3(t))
0 0 εx4(t)sin(x3(t))

1−ε2cos2(x3(t))

0 0 0 1
εcos(x3(t))

1−ε2cos2(x3(t))
0 0 −εx4(t)sin(x3(t))

1−ε2cos2(x3(t))


 ,
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g(x(t)) =




0
−εcos(x3(t))

1−ε2cos2(x3(t))

0
1

1−ε2cos2(x3(t))


 ,

and letε = 0.05. The linearization around the
equilibrium point has a pair of nonzero imaginary
eigenvalues and two zero eigenvalues. Hence the sys-
tem at the origin is an example of a critical nonlinear
system. The goal of the control is to asymptotically
stabilize the system. In the present example we do
not go further than stabilization and apply the sim-
ple LMIs guarantying asymptotic stabilization. Note
that further control specification can be guarantied by
other LMIs.

k

m Iθ

e N

M

F

Figure 1: TORA

5 Applying TPDC

5.1 Executing TP model transformation

Let the transformation space beΩ = [−a, a] × [a, a],
wherea = 55/180π (note that these intervals can
be arbitrarily defined). Let the density of the sam-
pling grid be 101 × 101. The sampling results in
As

i,j and Bs
i,j , wherei, j = 1..101. We construct

matrix Ss
i,j =

(
As

i,j Bs
i,j

)
. We construct tensor

Ss ∈ R101×101×2×3 from Ss
i,j . When we execute TP

model transformation, we find that the rank ofSs on
the first two dimensions are 4 and 2 respectively. This
means that the TORA system can be exactly given as
convex combination of4× 2 = 8 LTI vertex models.
The LTI systems are:

ẋ(t) = (7)

4∑

i=1

2∑

j=1

w1,i(x3(t))w2,j(x4(t)) (Ai,jx(t) + Bi,ju(t)) .

The weighting functions w1,i(x3(t)) and
w2,j(x4(t)) are depicted on Figures 2 and 3. The

resulting vertex systems are (Si,j =
(
Ai,j Bi,j

)
):

S1,1 =




0 1 0 0 0
−1.0012 0 0 0.0280 −0.0352

0 0 0 1.0000 0
0.0352 0 0 −0.0280 1.0012


 ;

S2,1 =




0 1 0 0 0
−1.0012 0 0 −0.0278 −0.0354

0 0 0 1.0000 0
0.0354 0 0 0.0278 1.0012


 ;

S3,1 =




0 1 0 0 0
−1.0030 0 0 0.0003 −0.0552

0 0 0 1.0000 0
0.0552 0 0 −0.0003 1.0030


 ;

S4,1 =




0 1 0 0 0
−1.0041 0 0 −0.0006 −0.0756

0 0 0 1.0000 0
0.0756 0 0 0.0006 1.0041


 ;

S1,2 =




0 1 0 0 0
−1.0012 0 0 −0.0280 −0.0352

0 0 0 1.0000 0
0.0352 0 0 0.0280 1.0012


 ;

S2,2 =




0 1 0 0 0
−1.0012 0 0 0.0278 −0.0354

0 0 0 1.0000 0
0.0354 0 0 −0.0278 1.0012


 ;

S3,2 =




0 1 0 0 0
−1.0030 0 0 −0.0003 −0.0552

0 0 0 1.0000 0
0.0552 0 0 0.0003 1.0030


 ;

S4,2 =




0 1 0 0 0
−1.0041 0 0 0.0006 −0.0756

0 0 0 1.0000 0
0.0756 0 0 −0.0006 1.0041


 ;

5.2 PDC design to achieve asymptotic stabil-
ity

Having the above resulting TP model (7) one can
easily apply PDC control design framework. Before
starting with solving LMIs let the result of the TP
model transformation be given by linear indexing as
(see Definition 2):

ẋ(t) =
8∑

r=1

ωr(x3(t), x4(t)) (Arx(t) + Bru(t)) ,

(8)
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Figure 2: Weighting functions on dimensionx3(t)
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Figure 3: Weighting functions on dimensionx4(t)

whereAr=2(i−1)+j = Ai,j ; Br=2(i−1)+j = Bi,j and
ωr=2(i−1)+j(x3(t), x4(t)) = w1,i(x3(t))w2,j(x4(t)).

Than one can substitute these vertex models into
the following LMIs:

Method 8 Asymptotic stability
Find X > 0 andMr satisfying equ.

−XAT
r −ArX + MT

r BT
r + BrMr > 0 (9)

for all r and

−XAT
r −ArX−XAT

s −AsX+ (10)

+MT
s BT

r + BrMs + MT
r BT

s + BsMr ≥ 0.

for r < s ≤ R, except the pairs(r, s) such that
wr(p(t))ws(p(t)) = 0, ∀p(t).

Since the above conditions (9) and (10) are LMIs
with respect to variablesX and Mr, we can find a
positive definite matrixX and matrixMr or deter-
mine that no such matrices exist. This is a convex
feasibility problem. Numerically, this problem can be
solved very efficiently by means of the most power-
ful tools available in the mathematical programming
literature e.g.MATLAB-LMI toolbox [2]. The feed-
back gains can be obtained form the solutionsX and
Mr as:

Fr = MrX−1 and P = X−1. (11)

The above LMIs are feasible in the present case. By
the help ofr = ordering(i1, i2, .., iN ) one can de-
fine feedbacksFi1,i2,..,iN from Fr obtained in (11)
and store into tensorF of (6):

Fi,j = Fr=2(i−1)+j

so as:

F1,1 =
(−11.9254 5.3868 8.2466 16.8868

)
;

F2,1 =
(−7.9777 3.2653 5.3810 11.4298

)
;

F3,1 =
(−12.0212 5.5961 8.4807 17.1318

)
;

F4,1 =
(−12.9699 6.2143 9.2769 18.5103

)
;

F1,2 =
(−7.8927 3.2167 5.3159 11.3096

)
;

F2,2 =
(−11.9615 5.4097 8.2766 16.9395

)
;

F3,2 =
(−11.9892 5.5788 8.4573 17.0875

)
;

F4,2 =
(−13.0336 6.2490 9.3236 18.5984

)
;

The control value is generated as (6):

u(t) =

−



4∑

i=1

2∑

j=1

w1,i(x3(t))w2,j(x4(t))Fi,j


x(t).

5.3 Control results
Figure 4 shows the control result for the initial con-
ditions x(t) =

(
0.1 0 60π/180 0

)
and the con-

trol value is switched on att = 0s. The system is
asymptotically stable and beyond stability it is capa-
ble of tracking a sinusoidal (with amplitude15π/180
and frequency 0.01 rad/sec) command trajectory as-
signed tox3(t).

6 conclusion
We investigated the effectiveness of the Tensor Prod-
uct Distributed Compensation (TPDC) based control
design framework conducted trough the benchmark
control problem of the TORA system. We observed
the following advantages of the design framework:
The TPDC framework is a numerical method, and can
readily be implemented in MATLAB. It can uniformly
be executed to a large class of control problems in a
few minutes without analytical interaction. During the
execution of the framework to the TORA, we obtained
that the linear parameter varying state-space model of
the TORA can be given exactly by finite element TP
model with 8 LTI systems. We can also conclude that
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Figure 4: Simulation 2

the TPDC framework is capable of considering var-
ious different control specifications in terms of lin-
ear matrix inequalities. The whole numerical com-
putation is tractable, the resulting TP model is exact
in the present case, and the resulting controller guar-
antees the desired stability and control performance.
The detailed example shows simulation results to val-
idate the controller. We can observe that the control
result shown by simulations satisfies the desired per-
formance.
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