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ABSTRACT 
This thesis is devoted to the relation between imperfect symmetry (i.e. slight asymmetry) and 
optimisation in two distinct fields of science. The first part is motivated by the observation 
that engineering structures with imperfect symmetries are extremely rare, however both 
perfectly symmetrical and strongly asymmetrical structural solutions are frequent. It is 
demonstrated that perfectly symmetrical configurations are typically local optima in some 
class of structural optimisation problems, supporting the above observation. However, 
improving such configurations is often possible by introducing an adequate set of small 
perturbations. It is shown how to choose such a set, without performing detailed structural 
analysis of the structures. This result helps to improve symmetrical structures by minor 
perturbation of their symmetries. The emergence of local optima with imperfect symmetry is 
also investigated in structural optimisation. The second part of the thesis is based on the fact 
that imperfectly symmetrical body plans are common in the flora and fauna, in contrast to the 
world of structures. Such biological organisms are results of evolutionary development, which 
suggests their optimality. The aim of this part is the theoretical modelling of the loss of 
perfect symmetry in evolutionary development within the framework of Adaptive Dynamics: 
the ecological types of symmetry-breaking as well as the generic evolutionary patterns of the 
emergence of asymmetry are presented. 
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ABSTRACT IN HUNGARIAN   
MAGYAR NYELVŰ ÖSSZEFOGLALÓ 
 

TÖKÉLETLEN SZIMMETRIA MEGJELENÉSE A 
SZERKEZETOPTIMALIZÁLÁSBAN ÉS AZ 
EVOLÚCIÓBAN 
 

1.1 A DISSZERTÁCIÓ TÉMÁJA, ALAPKÉRDÉSEK 

A szimmetria kitüntetett szerepet játszik az emberi kultúra és megismerés minden területén. 
Az ember ősidők óta a szimmetria számos megjelenési formáját figyelte meg az őt körülvevő 
természetben a hópihék formájától kezdve egy virág felépítéséig, és a szimmetriára régtől 
fogva, mint a harmónia, tökéletesség szimbólumára tekintenek. Az ókori görög művészetben 
csakúgy, mint a tudományos világképükben, a szimmetria fő szervezőelemként jelentkezik. 
Számos példa mutatja ugyanakkor, hogy tökéletlen szimmetriájú (vagyis a szimmetrikustól 
csak kismértékben különböző) kompozíciókkal is kísérleteztek, például a szobrászatban vagy 
a templomépítészetben. A későbbi művészeti stílusok, azon belül is talán legjobban az 
építészeti stílusok, előnyben részesítették a tökéletes, illetve tökéletlen szimmetriájú 
kompozíciókat. A modern stílus volt az első, amely elvetette a szimmetria kitüntetett voltát, 
sőt tudatosan kerülte azt. A művészetekhez hasonlóan központi szerepet kapott a szimmetria a 
tudományok fejlődésében, elég, ha a kvantumfizika csoportreprezentációkon alapuló 
elméletére gondolunk. 
 
A mérnöki szerkezetek között is gyakoriak a szimmetrikus formák, de az építészettel 
ellentétben tökéletlen szimmetriát csak elvétve látunk ezek között. A mérnöki alkotások 
tervezésekor általában célszerűségi szempontok az elsődlegesek, ezért a fenti megfigyelés azt 
az intuíciót sugallja, hogy egy tökéletlen szimmetriájú szerkezet nem lehet optimális, sőt, 
rosszabb, mint a tökéletesen szimmetrikus forma. A disszertáció egyik fele ennek az okát 
kutatja. Bemutat egy egyszerű optimalizálási feladat-típust ahol ez az intuíció helyesnek 
bizonyul. Ezen túlmenően két kérdést vizsgál: meg lehet-e a szimmetriát mégis zavarni úgy, 
hogy az a szerkezeten javítson, illetve egy tökéletlen szimmetriájú szerkezetalak lehet-e 
optimális. 
 
Az élő természetben az evolúcióra gyakran úgy tekintenek, mint egy önszabályozó 
optimalizálási folyamatra, amely során a legéletképesebb életformák kifejlődnek és 
kiszorítják a kevésbé tökéleteseket. Ilyen értelemben az evolúció analógnak tűnik a mérnöki 
optimalizálással. Az evolúció során az élőlények testfelépítésének szimmetriája is változik 
(pl. a gerincesek általában kétoldali, míg a csalánzók sugaras szimmetriával rendelkeznek). A 
szimmetria általános az állatvilágban, de gyakran tökéletlen. A véletlenszerűen kialakuló 
hibákon kívül számos élőlény szimmetriájában genetikusan öröklött tökéletlenségek 
találhatók, ilyen például az emberi jobb/balkezesség és a hozzá kapcsolódó agyi aszimmetria, 
amely egyértelműen előnyösebb, mint a tökéletesen szimmetrikus felépítés. A dolgozat 
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második része az aszimmetria kialakulásának lehetőségeit vizsgálja az Adaptív Dinamika 
eszköztárának felhasználásával: fő célja annak felderítése, milyen típusai vannak az 
aszimmetria megjelenésének és ezekhez milyen evolúciós mintázatok kapcsolódnak. 
 
A dolgozat tehát két jelentősen eltérő tudományterületen vizsgálja a szimmetria és optimum 
viszonyát. A mérnöki részben a tökéletlen szimmetriájú szerkezetek hiánya motiválta a 
kutatást, míg az evolúciós fejezet alapfelismerése a tökéletlen szimmetria gyakori volta az 
élővilágban. Mindkét terület szorosan kapcsolódik az optimalizálás témaköréhez, bár az 
evolúció számos aspektusa nem érthető meg, ha pusztán optimalizálási folyamatnak tekintjük. 
Valójában a két téma matematikai szempontból a sima függvénycsaládok (potenciálok) 
szinguláris pontjaival foglalkozó elemi katasztrófaelmélet közismert eredményeinek két eltérő 
jellegű általánosítása és alkalmazása. Míg a szerkezetoptimalizálási részben a potenciál nem 
sima volta jelenti a többletet, az evolúciós rész az „általánosított potenciálként” is felfogható 
fittnesz-függvények szinguláris pontjait vizsgálja. Mindkét esetben olyan eredményeket 
láthatunk, amelyek az elemi katasztrófaelméleti ismeretek alapján szokatlanok: a 
tartószerkezeti részben olyan bifurkációk jelentkeznek, ahol a szimmetrikus megoldás 
optimalitása a bifurkációs pontban nem változik, míg az evolúciós kutatás eredményei azt 
mutatják, hogy szimmetrikus élőlények között egy új, aszimmetrikus forma el tud terjedni 
anélkül, hogy kipusztítaná a szimmetrikus formát. 
 
A két témakörhöz kapcsolódó vizsgálatokat részletesebben a következő két pontban foglalom 
össze.  

1.2 SZERKEZETOPTIMALIZÁLÁS 

Szerkezetoptimalizálási feladatokban gyakori, hogy egyes szerkezeti elemek jósága külön-
külön van definiálva, és a legkedvezőtlenebb elem határozza meg a teljes szerkezet jóságát, 
azaz potenciálját. A fejezet gondolatmenete abból a felismerésből indul ki, hogy a fenti 
feladattípusnál egy tengelyes vagy egyéb szimmetriájú szerkezet szimmetriáját megzavarva a 
tökéletes szerkezet általában lokális, ”robusztus” optimum, azaz ilyen feladatokban a 
szimmetria kis mértékű megzavarása ront a szerkezeten, mégpedig a romlás mértéke a 
zavarással lineárisan nő, ellentétben egy sima optimummal, ahol a minőségcsökkenés csak a 
zavarás négyzetével lenne arányos. A lokális optimum természetesen nem zárja ki más, 
erősen aszimmetrikus lokális optimumok létét. Ez a tény egyrészt hozzájárulhat annak az 
alapvető felismerésnek a magyarázatához, hogy miért olyan ritka a tökéletlen szimmetria 
mérnöki szerkezetek geometriájában, másrészt egyenesen következik belőle a kérdés, hogyan 
lehetne mégis javítani egy szimmetrikus szerkezeten, a szimmetria kismértékű zavarásával.  
 
Ha egy helyett több szimmetria-sértő változót vezetünk be, akkor a szimmetrikus 
konfiguráció javíthatósága szempontjából az alábbi esetek fordulhatnak elő: 

A: a szimmetrikus konfiguráció robusztus optimum 
B1: a szimmetrikus konfiguráció optimum, de nem robusztus, azaz van a 

változóknak olyan kombinációja, amellyel a szerkezet minősége nem lineárisan 
romlik. 

B2: a szimmetrikus konfiguráció nem optimum, azaz a változóknak van olyan 
kombinációja, ami javít a szerkezeten. 

Javíthatóság szempontjából a B2 típus van kitüntetett helyzetben. Ugyanakkor az, hogy egy 
példa B1 vagy B2 típusba tartozik-e, csak részletes erőtani számítások alapján dönthető el, 
míg az A és a B típusok között pusztán a szerkezet szimmetriaviszonyai és a változók 
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ismeretében is különbséget tehetünk. Definiáltam ezért a potenciális javíthatóság fogalmát, 
ami annyit jelent, hogy a tökéletes szerkezet B típusú, és a klasszikus reprezentációelmélet 
eredményeinek felhasználásával adott változóhalmazra és szimmetriatípusra a potenciális 
javíthatóság egyszerűen ellenőrizhető feltételét határoztam meg (I. tézis). Ennek 
segítségével könnyen kiválaszthatók olyan változók, amelyekkel egy szerkezetet kis 
zavarással potenciálisan javítható, ezen belül a tényleges javíthatóság kérdése részletes erőtani 
számításokkal dönthető el. A potenciális javíthatóságra olyan szükséges, illetve elégséges 
feltételeket is meghatároztam, amelyek kizárólag a változók számára vonatkoznak (II. 
tézis).  
 
A javíthatóság mellett további kérdésként merült fel, lehetséges-e, hogy a szimmetriát kis 
mértékben megzavarva (lokális) optimumot kapunk, azaz a szimmetrikus szerkezet 
optimálisan javítható. Majdnem szimmetrikus optimumokat egy p paraméter bevezetésével 
előállított feladatcsaládban találhatunk a paraméter azon p0 értéke környezetében, ahol a 
szimmetriatörő változók x vektorának optimális értékeit p függvényében ábrázolva az 
(x,p)=(0,p0) pontból aszimmetrikus (x≠0) optimumok ágaznak el. Ezért az optimális 
javíthatóság kérdése a potenciálfüggvények bifurkációanalízisére vezet. Nem sima 
függvényekről lévén szó, az elemi katasztrófaelmélet eredményei nem alkalmazhatóak, a 
sima, szimmetrikus potenciálok szokásos villa-elágazása helyett más bifurkációs mintázatok 
jelentkeznek tipikusan. Tengelyes szimmetriájú szerkezetekre a vizsgálatot elvégezve 
megállapítottam, hogy egy szimmetriatörő változó esetén speciális kivételektől eltekintve 
a szerkezetcsaládban nincsenek optimum-elágazások (III.1 tézis), ez az eredmény azt 
mutatja, hogy a majdnem szimmetrikus szerkezeti optimumok rendkívül ritkák. Ugyanakkor 
példát mutattam olyan, más szimmetriával rendelkező szerkezetek családjára, ahol a 

szimmetrikus szerkezetek potenciálisan nem javíthatók, a szerkezetcsaládban mégis 

vannak optimálisan javítható elemek (III.2 tézis). Ezekben az esetekben, meglepő módon, 
az optimális javíthatósághoz kevesebb szimmetria-sértő változó bevezetése szükséges, mint a 
potenciális javíthatósághoz, annak ellenére, hogy a természetes intuíció szerint az előbbi 
tulajdonság tűnik speciálisabbnak.  
 

1.3 ASZIMMETRIA AZ EVOLÚCIÓBAN 

A dolgozat második része azzal az evolúciós jelenséggel foglalkozik, amikor kétoldali 
szimmetriával rendelkező élőlények testfelépítésében valamilyen öröklött aszimmetria jelenik 
meg, azaz szimmetriájuk tökéletlenné válik az evolúció során. Az evolúció sok szempontból 
tekinthető optimalizálódásnak, de valójában több annál, hiszen nem egy „optimális” faj 
egyeduralkodóvá válásához vezet, hanem a természetben tapasztalt sokféleséghez. Ennek 
megfelelően az evolúciós folyamatok modellezése mutat ugyan matematikai hasonlóságokat a 
szerkezetoptimalizálással, de az analógia csak részleges: az optimalizálási feladatok egy adott 
megoldás jóságát kifejező potenciálon alapulnak, ezzel szemben a biológiai modellekben 
ennek megfelelő fittnesz-függvény egy élőlény életképességét adott környezetben adja meg. A 
környezeti viszonyokra az adott életközösségben együtt élő összes élőlény hatással van, tehát, 
egy élőlény „jóságát” önmaga mellett a vele együtt élő versenytársak gyakorisága és típusa is 
befolyásolja. Ezt a tulajdonságot gyakoriságfüggésnek nevezik. 
 
Az aszimmetria kialakulásának vizsgálatára az adaptív dinamika eszköztárát használtam, 
amely az evolúció fenti aspektusát figyelembe veszi, de számos, matematikailag nehezebben 
kezelhető tényezőt (pl. az evolúció részletes genetikai hátterét, összetett populációdinamikai 
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jelenségeket, nagy változással járó evolúciós lépések lehetőségét) elhanyagol, így aránylag 
könnyen alkalmazható számos evolúciós jelenség modellezésére. 
 
Az aszimmetria megjelenésének típusait két szempont szerint osztályoztam. A megjelenést 
kiváltó ok szempontjából: 
− Egyszerűbb élőlények genetikai rendszerei gyakran nem teszik lehetővé az aszimmetria 

kódolását. Az evolúciós fejlődés során a genetikai rendszer komplexebbé válik, és így 
lehetséges lesz az aszimmetria kialakulása. Ha az adott környezeti feltételek mellett 
előnyös, ki is alakulnak aszimmetrikus élőlények. Ezzel leegyszerűsített módon egy olyan 
tényezőt veszünk figyelembe (a genetikai korlátokat), amelyekkel az adaptív dinamika 
általában nem foglalkozik. 

− Az aszimmetria kialakulása genetikailag lehetséges, de ökológiailag nem előnyös, majd a 
külső környezet megváltozása miatt előnyössé válik. Ennek modellezéséhez időfüggő 
adaptív dinamikai modellt kell vizsgálni.  

 
A szimmetriatörés ökológiai jellegét tekintve pedig az alábbi típusokat különítettem el: 
 

(A) A modell gyakoriságfüggő. Ezen belül két, az irodalomban nem tárgyalt altípust 
vezettem be (IV. tézis): 
(A1)  ha két aszimmetrikus élőlény egymás tükörképe, akkor egymással 

felcserélhetőek, a modell viselkedésének megváltozása nélkül. Ezt erős 
szimmetriának neveztem el. 

(A2)  ha két aszimmetrikus élőlény egymás tükörképe, akkor sem azonos a 
szerepük. Ezt gyenge szimmetriának neveztem el. 

(B) A modell nem gyakoriságfüggő (tehát a vizsgált evolúciós folyamat optimalizálási 
feladatra vezethető vissza). Ekkor a tükörkép élőlények szükségképpen 
felcserélhetőek. 

 
A dolgozatban mind a hat esetre felsoroltam az aszimmetria kialakulásának tipikus 
mintázatait, összesen három különbözőt (V.1 tézis). Időfüggő modellben, az (A1) esetben 
kimutattam egy szokatlan elágazás-típus lehetőségét is: egy szimmetrikus populációban 

megjelenhet és elterjedhet egy új, aszimmetrikus típus, amely együtt él a szimmetrikus 

ősökkel (V.2 tézis). Ez jellegében különbözik az adaptív dinamikában szokványos evolúciós 
elágazásoktól, amelyek során az elágazás előtti őstípus mindig eltűnik. Az új mintázat annak 
köszönhetően alakul ki, hogy erős szimmetria esetén az időfüggő modell fittnesz-függvénye 
diszkrét időpillanatokban degenerálttá válhat, ugyanakkor a mutációs lépések véges (nem 
infinitezimálisan kicsiny) mérete miatt a degenerált modellre jellemző viselkedés hosszabb 
ideig is fennáll, és azalatt néha számottevő evolúciós fejlődés is lezajlik. Ez az eset azt is 
mutatja, hogy az aszimmetria megjelenésében a külső környezeti változások fontos 
szerepet játszanak (V.3. tézis). 
 
Az erős és a gyenge szimmetria közti különbséget valódi példákon, míg az új típusú evolúciós 
mintázatot egy klasszikus modellen szemléltettem.   
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CHAPTER 1  INTRODUCTION 

 

 
“Yet each in itself- this was the uncanny, the anti-organic, 
the life-denying character of them all-each of them was 
absolutely symmetrical, icily regular in form. They were too 
regular, as substance adapted to life never was to this 
degree - the living principle shuddered at this perfect 
precision, found it deathly, the very marrow of death - Hans 
Castorp felt he understood now the reason why the builders 
of antiquity purposely and secretly introduced minute 
variation from absolute symmetry in their columnar 
structures.” 

 
(Thomas Mann: The magic mountain, 1928) 

 
The identification of ‘symmetry’ and ‘perfectness’ is probably as old as aesthetics itself and it 
is fundamental part of human art, science, and philosophy. This idea probably originates from 
multiple empirical observations of symmetry in the physical world. 
 
The symmetries emerging in natural patterns, such as crystal structures, snowflakes, or water 
waves (Weyl, 1989) are widely considered as representative examples of beauty and harmony 
of Nature. This idea was already present in the ancient Greek culture where the word 
“symmetry” originates from. In fact, symmetry was considered as a main organising principle 
of the world. One of the first structured cosmic models of Anaximander describes the world 
as a system with spherical layers (Couprie et al, 2003), while the widely known theory of 
Platon identified four of the platonic solids with the four basic elements of the world (Cooper 
et al, 1997). Though models of the material and the universe have changed radically during 
the past millenia, symmetry still seems to play central role in understanding the physical 
world. In the 20th century many fields of science were built on group theory. The 
corresponding literature is huge, we only mention some general books on symmetry, Rosen, 
1995, Hargittai et al., 1994) and a book on its application in quantum physics (Jones, 1998). 

Symmetry seems to be a strong feature of the living world, as well (Purves et al, 2003). The 
majority of animals and also many plants have some kind of symmetry (Figure 1.1). The 
quasi-spherical symmetry of the most ancient multi-cellular creatures (mesozoans), the 
cylindrical symmetry of filamentous algae or various worms (e.g. earthworm), the radial 

 

 

 

 

A B C 

Figure 1.1 Examples of body plans with different symmetries: quasi-spherical body of mezosoans (A), a 

cylindrical earthworm (B), radial symmetry of anemones (C) 
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symmetry of anemones or the bilateral symmetry of the most vertebrates all show the 
presence of symmetry in common body plans. Evolution seems to reduce symmetry in most 
cases, i.e. more complex body plans usually have lower-order symmetries, even though there 
are examples of secondary symmetries as well (e.g. the secondary radial symmetry of sea 
urchins and starfish, which evolved from a bilateral body structure). At the same time, we can 
find a few completely asymmetrical animals (e.g sponges) as well as many creatures with 
genetically inherited imperfectness of symmetry. The handedness or the position of the heart 
in the human body, are nice examples of the latter category, where the symmetrical basic 
body plan is preserved despite the imperfectness. 

Beyond Nature and Science, symmetry gains main role in all fields of human creativity. In the 
ancient Greek culture symmetry was an aesthetical category rather than a pure mathematical 
definition, which emerged as an unavoidable ingredient of art and philosophy, as well. As an 
example, ancient Greek sculpture shows perfect symmetry, while gradual emergence of 
asymmetry can be observed in later representations of the human body, cf. Figure 1.2 
(Marótzy, 2005). In accordance with the hint of Thomas Mann, architecture also preferred 
symmetry in the ancient times and later. All historical styles of architecture considered 
symmetrical forms as perfect. Accordingly, early works of a style usually show rigorous 
symmetry, while imperfectness (i.e. slight violation) of symmetry is a frequent indicator of the 
claim for renewal during the disintegration of architectural styles (Figure 1.3). The modern 
movement of the early XXth century was the first one to reject the aesthetical superiority of 
symmetry (Preziosi, 1998). 
 
While architectural forms are strongly determined by aesthetical considerations, engineering 
structures, such as bridges, towers, or shells of major size are developed primarily by virtue of 
practical optimality criteria. Still, engineering structures tend to be symmetric as well, see 
Figure 1.4 for examples of several types of dihedral symmetries, all of which are common 
among tower-like structures. At the same time, we can find many asymmetrical engineering 
structures as well: Figure 1.5 shows two bridges of Seville, one of which is a classical form 
with reflection symmetry, while the other one is a popular asymmetrical structural solution. 

 

A 

 

B 

 

C 

 

D 

Figure 1.2 Ancient Greek sculptures of different ages A: ‘Cycladian goddess’, Amorgos, 2000 BC; B: 

‘Kyros’, Anavissos, 520 BC.; C: ‘Youth of Anitikitera’, Anitikitera, 340 BC.; D: ‘Aphrodite’, Myrina, 

2
nd
 century AD. Photos are taken from Petrakos, 1993 (A,B,C) and Kunze et al, 1992 (D). 
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Figure 1.3 Example of the imperfect symmetry in architecture: the late-renaissance Castle of Chambord, 

France (Domenico da Cortona, 1537). Notice the difference in the number of windows of the left and the 

right wing and several other ‘imperfect’ details. 

 

  

Figure 1.4 Left panel: Eiffel tower, Paris, France with D4 symmetry. Right panel: Water tower in Siófok, 

Hungary with D8 symmetry. 

 

  

Figure 1.5 Left panel: El Alamillo bridge, Seville, Spain (designed by S. Calatrava, 1992). Right panel: La 

Barqueta bridge, Seville, Spain (designed by Juan J. Arenas and Marcos J. Pantaleón, 1992). 
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As already shown, imperfect symmetry seems to be a distinct category in evolution as well as 
in arts and aesthetics. It is plausible to pose the question, whether this category may emerge as 
an optimal design among engineering structures. Needless to say, among existing structures 
such constructions are extremely rare. This observation is in tune with the engineer’s general 
intuition, which suggests that small perturbation of the symmetry yields an imperfect, i.e. 
worsened structural configuration.  
 
One of our goals is to find arguments supporting the engineer’s intuition, i.e. we would like to 
understand why slight perturbation of the symmetry of an engineering structure often weakens 
the quality of the structure. On the other hand, it is also our goal to pinpoint cases where the 
engineer’s intuition fails, i.e. to find cases where imperfect symmetry proves to be optimal. 
This idea leads naturally to the construction of unusual, though optimal structural shapes with 
imperfect symmetry, which are, not in the geometric but in the structural sense, more perfect 
than their symmetric counterparts. Chapter 2 of my work is devoted to these questions. 
 
The heart of structural optimisation is a ‘goodness measure’, which allows to distinguish 
between better/worse configurations. Similar potentials emerge in various fields of scientific 
research where some kind of optimisation is dealt with. According to the Darwinian theory, 
evolution is ruled by natural selection, which can be considered as a self-optimisation process 
of biological systems. Thus, optimal structural shapes carry a close analogy to the form of 
biological organisms created in evolutionary processes, such as the human body. In particular, 
evolutionary development in changing environment can be considered as downhill motion of 
an evolving variable x (scalar or vector) on a U(x,t) time-dependent ‘potential-landscape’. 
Motivated by the similarity between evolution and engineering optimisation, Chapter 3 of my 
work deals with the evolutionary modelling of the emergence of bilateral asymmetry, which is 
a common evolutionary phenomenon and usually results in a body plan with imperfect 
symmetry. The main goal of this part is to determine the generic temporal patterns of the 
emergence of new, asymmetric branches of the evolutionary tree within the framework of 
Adaptive Dynamics.  
 
Despite the obvious analogy between engineering optimisation and evolution, two basic 
differences need to be outlined. First, simplifying evolution as optimisation is misleading: this 
point of view cannot explain the diversity in Nature. To solve this contradiction, evolutionary 
biology adopted the basic idea of game theory, namely that one’s fitness (potential) depends 
on its own strategy and also on the competitors’ strategy (Hofbauer et al, 1998). With other 
words, coexisting populations modify the environmental conditions (e.g. the abundance of 
food sources), and this way they influence each other’s fitness, which may stabilise their 
coexistence. Thus, the ‘fitness functions’ of many biological models are generalised 
‘potentials’ of the form s([c],x,t), where the meaning of x and t are the same as in case of 
optimisation potentials, while the new argument [c] symbolises data on the number and types 
of competitors. 
  
Furthermore, the mathematical analogy of optimisation and evolution hides a major physical  
difference between the two tasks. Evolution is a dynamical process, which develops in time, 
while structural optimisation is a static procedure. In the latter case we can (and also we will) 
introduce a parameter (quasi-time), however this will result in families of separate 
optimisation examples, rather than one complex task of optimisation. By introducing a 
parameter, we can create optimum diagrams yielding bifurcation patterns of optima, which 
are mathematically somewhat analogous to evolutionary patterns (generated by the real time 
parameter). At the same time, the latter ones are spontaneous bifurcations, which can be 
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observed in Nature in temporal data-series, while the former ones do not emerge 
spontaneously, they just serve to give a broader view on structural optimisation. 
 
The link between the two fields of my investigations is more than just the common basic 
concept of optimisation: the applied techniques and the aims of the two parts also show 
remarkable similarities. In the structural part, generic results on the optimality/improvability 
of a symmetric structural configuration against a given number or a given set of perturbing 
variables is investigated, based on the truncated Taylor expansion of its potential function. 
The aim of the investigations is to derive conditions of improvability, which do not call for 
detailed analysis of the specific potential functions. Analogously, the evolutionary part 
operates with the truncated Taylor-expansions of fitness functions to find generic evolutionary 
patterns without working out detailed ecological models and exact fitness functions. 
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CHAPTER 2 STRUCTURES 
 
 
 

2.1  INTRODUCTION TO STRUCTURAL OPTIMISATION 

2.1.1  Problem statement 

This chapter of the thesis deals with the role of symmetry in structural optimisation. As 
discussed in Chapter 1, engineering structures are often symmetric, which may have objective 
cause, i.e. the symmetrical form may often be the optimal solution of a design problem. In the 
engineering praxis symmetrical forms are considered to be better than their perturbed, slightly 
asymmetrical variants. A small asymmetry is usually regarded as an imperfection of the 
structure; almost symmetrical design is extremely rare. In this section we will determine exact 
criteria for the local optimality of symmetric shapes. In particular, we will be interested in 
general conditions and an algorithm to determine whether a symmetric structure may be 
improved via small geometric perturbations. 
 
Optimisation is often based on a scalar ‘goodness measure’, which is determined for all 
possible solutions of a problem and the biggest/smallest value corresponds to the best 
solution. We will follow this tradition and associate optima with minima, ‘pessima’ with 
maxima of a scalar potential. The literature for shape optimisation is extremely rich, for 
reference we mention Hemp (1973), Rozvány (1989), Banichuk (1990) and Sokolowski et al 
(1992). Optimising structural topology is also a popular field of research (see e.g. Bendsoe, 
1995, Allaire, 2002). It is remarkable that almost all examples discussed in the literature 
exhibit some degree of symmetry. We do not intend to challenge the validity of these results; 
on the contrary, they illustrate one side of the landscape we are interested in. Our goal is to 
draw attention to the existence of the other side, i.e. optimal structural solutions with slight 
asymmetry. 
 
In this work we will study one-parameter (p) families of structures, depending on a vector of 
“symmetry-breaking” scalar variables x=[x1 x2...xd]. we will investigate the optimal value of 
the variables according to an arbitrarily chosen scalar measure of quality U(p,x), associated 
with the weakest point of the structure. This implies that U is an upper envelope of the 
individual, smooth potentials, associated with the weak points of the structure. (Alternatively, 
one may look for an optimum based on a single, global criterion, e.g. minimisation of the 
total mass of a structure. Such problems typically lead to a single, smooth potential. Although, 
mathematically the latter one is undoubtedly a much simpler scenario, it does not fit to many 
real-life engineering problems: optimality of a structure consisting of several, identical 
elements, leads to the above-discussed concept of weak points. The next subsection will 
illuminate in detail the difference between the two approaches, based on a simple example.) 
  
We will assume that for all values of the parameter p, the structure associated with x=0  
possesses a finite, non-trivial symmetry group Γ and furthermore we will assume that none of 
the other, individual (x≠0) structures is Γ-invariant, however, the total, d-dimensional set of 
structures is Γ-invariant. (For more detail, see conditions (i) and (ii) in Section 2.2). Since U 
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is generated as an upper envelope of smooth functions, the symmetrical, x=0 configuration 
falls typically into one of the following categories: 
 
 (A)  Non-smooth (robust) optimum (minimum) 
 (B)  Partially or completely smooth optimum, pessimum  (maximum) or saddle. 

 
An optimum is called robust if U is growing linearly in every direction. Partial smoothness 
means that a smooth submanifold is passing through x=0. A rigorous definition of  these 
categories will be given in Section 2.2, see Definition 2.1. 
 
A symmetrical structure at x=0 will be called potentially locally improvabe if it falls into 
category (B) (cf. Definition 2.2). In particular, pessimum or saddle, correspond to actual 
improvability. Whether a potentially locally improvable structure is actually locally 
improvable, one has to perform structural analysis of internal forces and stresses. We will 
show examples of such computations in subsections 2.5, 2.6.2, and 2.7. 
 
A one-parameter (p) symmetrical structure family will be called optimally improvable at p=p0 
if the symmetrical optimum at x=0 bifurcates at p=p0 as the parameter p is varied (cf. 
Definition 2.3, Section 2.2). Structures, which are either actually improvable or optimally 
improvable, fall into the category of ‘imperfect symmetry’ discussed in Chapter 1. 
 
Before stating the principal claims, some of the above key concepts (e.g. optimum based on 
global criterion vs. weak points, smooth optimum vs. robust optimum, potentially locally 
improvable vs. actually locally improvable) are illustrated on a simple example. 
 
 

2.1.2 An illustrative example: bifurcation of the symmetric optimum 

 The symmetry of structures corresponds to the symmetry of the optimisation potentials. 
Smooth potentials (studied extensively in Golubitsky et. al., 1992) are adequate to model 
many optimisation problems in engineering, however, the classical pitchfork bifurcation of 
smooth, reflection-symmetric potentials predicts that the optimal symmetric solution will 
become pessimal, beyond a critical parameter value of a one-parameter family of optimisation 
problem.  
 
 This prediction may be correct in some cases, but apparently not in each one: the diagram of 
the optimal/pessimal values of x versus p match the general predictions if the total mass is 
minimised assuming constant safety against buckling in a one-parameter family of three-
hinged structures (Figure 2.1/A). This is an optimisation problem based on a global criterion 
(cf. the optimisation diagram of Figure 2.1/C). However, if we assume that the two bars have 
given, equal cross-sections and the safety against buckling is investigated, the symmetrical 
(x=0) configuration proves to be (locally) optimal for all values of parameter p, despite the 
bifurcation in the optimum diagram (cf. Figure 2.1/B). The latter optimisation problem is 
based on the concept of weak points.  
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The discrepancy between the classical model’s prediction and the actual behaviour of the 
second example can be explained if we try to define a suitable ‘potential’ for the optimisation 
problem. The safety of both bars (defined as the compressive force in the bar divided by its 
critical force) behaves smoothly but the envelope of these ‘local potentials’ will be, in 
general, non-smooth. In our case, the two local potentials: f1(p,x) and f2(p,x) are 
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where N1, N2 denote the compressive forces in the members, 
crN1 , 

crN2  stand for the 
corresponding Euler buckling loads, l1, l2 are the lengths, and EI is the flexural rigidity of the 
bars. Observe that f2(p,x)=f1(p,-x). If p is constant, the ‘optimisation potential’ U(x) of the 
structure can be generated from f(x) as    

( ))(),(max)( -xfxfxU =  (2.3) 

(see also Figure 2.2). It is easy to see that U(x) has a (non-smooth) local minimum at x=0 for 
almost all values of p, thus this simple example suggests that the symmetric configurations of 
engineering structures are robust (non-smooth) optima, whenever the global optimum is 
determined by the worst of a discrete assembly of ‘weak points’. 

 

Figure 2.2: The reflected potential U(x,p) at p=0.5, generated via (2.3) from (2.1). 

 C

x

 

Figure 2.1 A: A simple three-hinged model loaded by the concentrated force N. Ni, and li stand for the 

internal forces, and the lengths of the bars, respectively. B: Optimisation diagram of safety against 

buckling if the cross sections are equal and independent of x C: Optimisation diagram of total mass if the 

cross-sections of the bars are circles (each of them with necessary diameter) and constant safety against 

buckling is demanded. (continuous line: optimum, dashed line: pessimum). 

 



Chapter 2   Structures 
─────────────────────────────────────────────────────────────────────── 

16 

 

This type of potential is rather common in engineering practice: load-bearing structures are 
the most often designed based on strength conditions of the form s ≤ su, where s and su are, 
respectively, the design and ultimate value of an internal force or stress. Since all parts of a 
structure have to meet these conditions, a straightforward choice of potential is max(s/su) for 
the whole object, which is often of type (2.3).  
 
We can also introduce two or more perturbing variables. We will discuss later the example of 
Figure 2.4, which is the same as the previous one (Figure 2.1/A,C) with one additional 
symmetry-breaking variable. If only one of the variables is considered, x1=0 or x2=0 proves to 
be local optimum (see the x2=0 and x1=0 planes in Figure 2.4/B,C). However, for 
simultaneous optimisation of both variables, robust optimality vanishes, because the potential 
is typically either a partially smooth optimum (Figure 2.4/B) or a saddle point (Figure 2.4/C). 
In neither of the cases is it a robust optimum. According to our previous definition, it falls into 
category (B), i.e. it is potentially, locally improvable, however only the saddle point (Figure 
2.4/C) corresponds to actual improvability.  
 
This simple example illustrates that some symmetrical structures are potentially, or even 
actually improvable, other structures are robustly optimal in the symmetric configuration and 
cannot be improved with the given set of variables. 
 
Our aim is to investigate this type of optimisation problems with principal focus on the 
question, under which conditions proves the symmetrical configuration to be a non-smooth, 
robust optimum (similar to the first introductory example). The answer is used to throw light 
on some questions of practical interest: the optimality of x=0 means that any minor 
perturbation of the symmetrical structure makes it worse. However, if one can find adequate 
variables where the optimality vanishes, the structure can be improved via a small 
perturbation. This way we can create unusual structural configurations with ‘imperfect’ 
symmetry, which are better than the usual, symmetric ones. However, if a small perturbation 
results in improvement, a bigger perturbation is likely to make the structure even better, i.e. 
the optimal configuration is usually strongly asymmetric. Thus, a further question is whether 
an optimal structure might or might not have ‘imperfect’ symmetry, i.e. slight asymmetry. 
 

2.1.3 Principal results and structure of Chapter2 

My main goal is to give simple algorithms determining the potential or optimal improvability 
of structures without actually performing structural analysis, i.e. without computing internal 
forces, stresses, etc. Below I give the list of my principal results, with references to the exact 
sources. Standard concepts of group and representation theory (see the Appendix for a 
summary or Jones, 1998) are used in the formulations.  
 
First I state the most general criterion, which provides an easy-to-handle algorithm to decide 
whether a given structure can be locally improved in a given set of variables: 
 
I. I have proved that the sufficient and necessary condition of potential local 

improvability is that the representation of the Γ symmetry group of the structure in 

the space of variables is not sub-representation of the regular representation of ΓΓΓΓ. 
This statement is based on Theorem 2.5, Theorem 2.3, and Definition 2.4. The 
representation in the space of the variables is rigorously defined by eq. (2.4). I illustrated 
the application of this algorithm on many structural examples (Subsections 2.5, 2.6.2 and 
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2.7). My numerical computations show that potential improvability very often implies 
actual improvability.  

 
My next goal was to determine weaker criteria of potential improvability. 
 
II.  I have determined both the sufficient and the necessary criteria for potential local 

improvability, based solely on the number d of variables. In particular, 
II.1 I proved that the typically sufficient condition of potential, local improvability 

is d≥O(Γ) where O(Γ) denotes the order of Γ. This condition yields for planar 
reflection symmetry d≥2, in case of Cm (cyclic groups) and Dm (dihedral groups) 
symmetry it yields d≥m and d≥2m, respectively. This condition is based on 
Theorem 2.6 in Subsection 2.4.3.2 

II.2 I have proved that the typically necessary condition of potential local 
improvability is d≥2dim(Γ), where dim(Γ) denotes the dimension of the 

smallest real-valued representation of Γ, which has no trivial component (cf. 
Theorem 2.7 in Subsection 2.4.3.2, and Definition I.19). The necessary condition 
yields d≥2 for Dm symmetry and C2k symmetry, in case of C2k+1 symmetry it yields 
d≥4. In case of C2 and D1, this condition agrees with both the necessary condition 
in Principal Result II.1 and the sufficient and necessary condition in Principal 
Result I. For C3 symmetry, this result seems to contradict II.1 and I if the number of 
variables is 3. In fact this is not a contradiction, since an adequate set of variables 
cannot consist of 3 variables in this case. 

II.3 I have also proved that in case of D1 symmetry (e.g. planar reflection symmetry) 
there exist special, atypical structures which can be locally improved by using 

only d=1 variable. This statement is based on Theorem 2.1, Subsection 2.3.2. I 
determined the exact criteria for these special cases. Based on an example with D2 
symmetry (Example 3/D in Section 2.5) I demonstrated that there exist special, 
atypical cases (contradicting the general criteria) in other symmetry groups, as well 
(cf. Section 2.7). 

 
III. I proved the following statements regarding optimal improvability: 

III.1 I have proved that in case of D1 or C2 symmetry (e.g. planar reflection 
symmetry) and d=1 variable a typical, one-parameter family of structures cannot be 
optimally improved, i.e. the typical, necessary condition of optimal 
improvability is d≥2(cf. Theorem 2.8). In the proof I listed the possible 
optimum/pessimum bifurcations and provided structural examples for each listed 
case (cf. Section 2.6). 

III.2 I have provided an example of a structural family and a set of variables, which 
cannot be improved locally, however, it can be improved optimally. Thus, I 
have showed, that in case of some symmetry groups, optimal improvability can be 
achieved with a smaller number of variables than local improvability (as opposed to 
D1 symmetry). This statement is based on Subsections 2.5.5, 2.6.3. 

 
Principal Results II.3, III.1, and a special case (reflection symmetry) of Principal Results I, 
II.1-2 have been published in Várkonyi et al.(in press). The publication of the rest of the 
results is in preparation. 
 
Section 2.2 specifies the problem and the questions more precisely. The analysis of local 
optimality of the perfect configuration is investigated in parts 2.3 and 2.4. Section 2.5 
illustrates the results via a number of numerical examples. In 2.6, the question of optimal 



Chapter 2   Structures 
─────────────────────────────────────────────────────────────────────── 

18 

 

improvability is examined, while 2.7 shows and classifies exceptional cases. Finally the 
results are summarised in 2.8. Appendix I presents some elements of representation theory, 
which serves as mathematical background of Section 2.4. 
 

2.2  GENERAL DEFINITION OF THE PROBLEM  

The example in the Introduction (cf. Section 2.1.2) is generalised in two ways. First, the 
symmetries of structures are allowed to be different from reflection-symmetry; second, the 
number of symmetry-breaking variables can be arbitrary. Thus, in general, the object of our 
investigation is a structure, which is invariant under the elements of a finite symmetry group 
Γ. Such objects will be referred to as ‘Γ-symmetrical’. In practical engineering problems, Γ is 
usually a cyclic or dihedral group or the trivial group, which corresponds to the lack of 
symmetry (see the arguments in Section I.2 in the Appendix). It is required that the loads, the 
internal forces, and, in fact, any external condition which has an effect on the optimisation 
process, support the ‘Γ-symmetry’ of the structure.  
 
The optimisation is based on a scalar potential, which corresponds to some structural 
property, e.g. risk of buckling, total mass, maximum of bending moment, etc. Structures with 
lower potentials are considered as better. 
 
The symmetry of the structure should be disturbed by some geometrical variables x=[x1 
x2...xn], x∈Rn (R stands for the set of real numbers). These variables represent the set of 
structures, which are considered as possible solutions of the optimisation problem. The 
structure corresponding to x=x0 is referred to as S(x0). The variables have to fulfill two 
restrictions:  
 

(i) S(x) is Γ-invariant if and only if x=0. 
(ii)  the set {S(x), x∈Rn} is Γ-invariant. 

 
Condition (i) is a consequence of the fact that our investigation relies to the optimality of the 
Γ-symmetrical configuration x=0 compared to non-symmetrical ones, i.e. disturbed 
configurations should not be Γ-symmetrical. Condition (ii) means on the level of the 
engineering problem that if an asymmetrical configuration S(x) is a potential solution then the 
transformed configuration γi(S(x)), γi∈Γ is also potential solution. Since the set of possible 
solutions is limited primarily by external conditions, which should not break the Γ-symmetry, 
(ii) is a natural symmetry condition. Finally, we require that all group elements γi∈Γ 
(i=1,2,…r) should be represented by real-valued matrices Di (i=1,2,…r) in the space of the 
variables x, i.e. the symmetry transformations correspond to simple matrix multiplication: 

γi(S(x))=S(Dix), (2.4) 

In fact, the set D of matrices Di is a representation of Γ in the mathematical sense (see I.3); it 
will be referred to as the ‘induced representation of Γ ’. The above requirement is purely 
technical, which makes the application of representation theory on our problem easier. 
According to our experience, this condition does not preclude any optimisation problem of 
practical interest.  
 
It is worth remarking that Γ also has a representation in the physical space of the structure, 
since the elements of Γ correspond to matrix transformations in an adequate physical co-
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ordinate system. The latter representation of Γ will not gain importance during the following 
investigations. 
 
As shown in the introductory part, the structural optimisation example based on a local 
criterion (Figure 1.1/A,B) yielded unexpected results, namely local optimality of the 
symmetrical configuration, which did not vanish at bifurcation points. We want to extend this 
result to other optimisation problems, where local goodness measures fi correspond to 
elements/points of the structure (called weak points) and the worst of the weak points 
determines the global goodness (i.e. the potential U(x)) of the structure: 

kifU ii ,...,2,1)(max)( == xx  (2.5) 

The functions fi(x) are supposed to be analytic, which allows approximating them by 
truncated Taylor-expansions if |x|<<1.  
 
The symmetrical configuration x=0 in the first example was not only a local optimum, but it 
was a “robust” one, i.e. for x<<1, we had U(x)-U(0)≈c|x| (where c>0 is a constant). (At 
smooth optima we have U(x)-U(0)≈c|x|2, for x<<1.) As we will see, this kind of non-smooth 
optimum is a characteristic property of similar examples. Before going into details, we give 
an exact definition of robust optima, which applies for problems with arbitrary number of 
variables: 
 
Definition 2.1: The point x=0 is a robust local optimum (or minimum) of the scalar function 
U(x), x∈Rn if there exist scalars δ,ε>0 such that |x|<δ yields U(x)-U(0)≥ ε⋅|x|. (|x| denotes 
the l2-norm of the vector x. 
 
Based on Definition 2.1, symmetrical structures can be classified according to the following, 
simple scheme: 
 
(A) x=0 corresponds to a robust optimum. In this case, S(0) cannot be improved via small 

perturbations. 
(B) x=0 does not correspond to a robust optimum. Then we have two possibilities: 

(B1)  S(0) cannot be improved via small perturbations. 
(B2)  S(0) can be improved via small perturbations 
 

As we will show, one can decide whether S(0) belongs to (A) or (B) without computing 
structural behaviour, solely based on the symmetry group Γ and the variables xi. Here, the 
main goal of the thesis is to describe this algorithm and also, to formulate sufficient and 
necessary criteria for S(0) belonging either to (A) or to (B). 
 
If S(0) belongs to (B), one can decide only after performing structural computations on the 
individual structure whether it belongs to (B1) or (B2). Although we will provide specific 
examples of such computations, we do not give any general method to distinguish between 
structures in (B1) and (B2), hence structures in category (B) are called “potentially 
improvable”. This concept is formalised in 
 
Definition 2.2: A symmetrical structure is called ‘potentially locally improvable’ or simply 
‘potentially improvable’ in a given set of variables x, if x=0 is not robust, local optimum. 
 
In case of a one-parameter family of structures S(p,x) (where for each value of p criteria (i) 
and (ii) are satisfied) one can look for  bifurcations of optima resulting in “slightly 
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asymmetrical optima”. This concept will be also defined via the notion of “optimal 
improvability”, in the following manner: 
 
Definition 2.3: A one-parameter family of symmetrical structures is ‘(locally) optimally 
improvable’ in a given set of variables x at p=p0 if for any δ,ε>0 there exist x1, p1 so that 
|x1|≤δ, |p1-p0|≤ε  and S(p1,x1) is locally optimal in x. 
 
Obviously, Definition 2.3 does not mean that S(p0,0) can be optimised with a small 
perturbation of the symmetry, but it means that there are S(p1,0) members of the family close 
to S(p0,0), which own this property. In fact, Definition 2.3 implies the existence of 
asymmetrical optima bifurcating from the x=0 line (which is always a critical point, i.e. local 
optimum, pessimum, or saddle due to the symmetry of the potential) at p=p0. For smooth 
potentials, such branches emerge in classical pitchfork bifurcations (e.g. Figure 2.1/B). On the 
other hand, bifurcations from non-smooth, robust optima seem to emerge in unusual 
bifurcation patterns (cf. Figure 2.1/C) where the bifurcating branches do not carry optimal 
solutions. Thus, “optimally improvable” structures are likely to be even rarer as locally 
improvable structures. This property will be investigated later via bifurcation analysis of 
optimum diagrams.  
 
In the next unit, we start the examination of potential, local improvability in the simplest case 
of reflection-symmetrical structures. 
  

2.3  REFLECTION SYMMETRY 

In case of reflection symmetry (D1 group), the elements of Γ are γ0≡identity, and 
γ1≡reflection, which will be represented by the real-valued matrices D0 and D1 in the space of 
the variables: D0=Ik (k×k  identity matrix) and γ1γ1=γ0 yields D12=Ik. Thus, if there is one 
perturbing variable, then D0=1, D1=±1. Since D1=1 contradicts condition (i), the only 
possibility is: D0=-D1=1. Similarly, one can derive D0=-D1=Ik from condition (i) in case of 
several variables. Thus, if D1-symmetrical structures are optimised with the given conditions 
(i),(ii), reflection of the structures corresponds to changing the variables from x to –x. Notice 
that the example of Figure 2.1 also had this property.  
 
We remark that the group C2 is isomorphic to D1, i.e. the results of this section are valid for 
C2-symmetry, as well. 
 

2.3.1  Optimisation with one variable 

The optimisation potential of a D1-symmetrical example is either of the form of (2.3), or if the 
structures have more than two local weak points, it is of the form 

( ))(max)( xUxÛ i= ,                i=1,2,…,n, (2.6) 

where the functions Ui(x) are defined by (2.3). Examples of the latter type are presented later, 
in subsection 2.6.2. 
 
As demonstrated in the Introduction, potentials of type  (2.3) (and, in fact, also (2.6)) have 
robust optima at x=0, unless df/dx|x=0=0. Thus, reflection-symmetrical structures are typically 
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locally non-improvable with one perturbing variable. This property is generalised later to 
arbitrary symmetry and stated in Principal Result II. 
 

2.3.2 Exceptional cases 

There are special types of structures where x=0 is not a robust optimum, because df/dx|x=0≡0. 
We show two examples in Figure 2.3. In both cases, U is defined as the maximum of the 
bending moment along the beams.  
 
In case A, the global moment maximum (i.e. the weakest point) of the symmetrical structure 
is at the middle of the beam if p is adequately big. The weakest point is invariant to the 
reflection of the structure, thus, the corresponding potential is symmetrical (f2(x)= f2(-x)), its 
first derivative is always 0 and U(x)=max(f2(x), f2(-x)) is smooth at x=0. S(0) is potentially 
improvable in the sense of Definition 2.2 (and, in this case, it actually is improvable).  
 
In case B, the weakest point is not in the middle, i.e. the above ‘symmetry argument’ does not 
apply. Still the structure proves to be locally improvable, due to a specific property of its 
moment diagram: if small displacements are assumed (i.e. the secondary effect of the 
deformations on the loads is neglected), the emerging moment diagram happens to be 
symmetric, even if x≠0. Thus, f1(x)=f1(-x) again holds. Here again, potential improvability 
implies actual improvability. We conclude with 
 
Theorem 2.1:  There exist exceptional reflection-symmetric structures, which are potentially 
improvable with one variable. Examples where the weakest point is invariant to reflection as 
well as some structures with atypical potential functions belong to this category. 
 

  
A B 

Figure 2.3 A: A beam, its moment diagram and the corresponding potential U=max(fi)  if p=4. The 

symmetrical configuration is potentially, locally improvable, because the weakest point of the beam is 

invariant to reflection. B: another example, where the symmetrical structure is locally improvable, 

because f1(x)≡≡≡≡f3(x) holds for this specific example 
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Notice that the behaviour of the example “A” follows from simple symmetry-considerations. 
Identifying such a case needs only partial analysis (i.e. finding the weakest point of the perfect 
structure). However case “B” is completely example-specific, it could not be recovered but 
via determining the inner forces of the structure for all values of x. More details about types of 
exceptions are presented in part 2.7. Other exceptional examples are discussed in subsection 
2.6.2 (D1-symmetry) and 2.5 (other symmetries). 
 

2.3.3 Several variables 

One also can introduce two or more perturbing variables. The example of Figure 2.4 is the 
same as our first example (Figure 2.1/A,B) with one additional symmetry-breaking variable. 
The variables fulfil conditions (i)-(ii). If only one of them is considered, x1=0 or x2=0 proves 
to be local optimum (see the x2=0 and x1=0 planes in Figure 2.4/B,C). For simultaneous 
optimisation of the two variables, robust optimality vanishes, because the potential of the 
form U(x)=max[f(x),f(-x)] has a smooth subspace across the point x=0 (the ‘wedge’, where 
f(x)=f(-x)), consequently x=0 is typically either optimum (Figure 2.4/B) or a special type of 
saddle point (Figure 2.4/C). In neither of the cases is it a robust optimum (because of the 
smooth subspace). According to Definition 2.2, it is potentially, improvable, however only the 
saddle point (Figure 2.4/C) corresponds to actual improvability. Detailed numerical analysis 
of the two-variable example is discussed in part 2.5.2. 
 
We would like to remark here that this kind of saddle is ‘almost’ an optimum in the sense that 
an infinitely small random perturbation of the symmetry typically makes the structure worse 
(Figure 2.4/D). This property is true for arbitrary symmetry group and number of variables 
provided that gradf(x)|x=0≠0 (‘grad’ denotes the gradient vector of scalar functions). 
 

 
 

Figure 2.4 A: A simple three-hinged model with two perturbing variables. B: optimisation potential of the 

structure if p=0.15. The symmetrical configuration is wedge-like (i.e. not robust) optimum. Notice that 

optimisation with only one of the variables (white sections of the surface) would result in robust optimum.  

C: optimisation potential if p=2. The symmetrical configuration is a wedge-like “saddle” i.e. not optimum. 

D: The grey domain indicates values of x, for which U(p,x)<U(p,0) if p=2. Notice that a randomly chosen 

small (|x|<<1) value of x is typically out of this range. Thus, a small, random perturbation of the symmetry 

typically spoils the structure. 
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2.4 GENERAL SYMMETRY 

2.4.1 Introduction 

The previous subsection investigated optimality of reflection-symmetrical structures in 
problems where we had a set of local optimality criteria and the worst one determined the 
global ‘goodness’ of the structure. We have also demonstrated in the introduction that this 
kind of optimisation problems is rather general in the engineering practice. 
 
Planar structural models with reflection symmetry are often called simply ‘symmetric’. On the 
other hand, spatial structural models have many different types of symmetries. The goal of the 
forthcoming part is to generalise the assessments of Section 2.3 for structures with arbitrary 
symmetry. Several concepts and results of group and representation theory are used in this 
part. These are summarised in Appendix I. 
 
As primary result for reflection symmetry, it has been demonstrated that in case of 
optimisation with one variable x, the symmetrical configuration x=0 was a local, ‘robust’ 
optimum. Conversely, when two (or more) variables were optimised simultaneously, robust 
optimality of the x=0 configuration vanished. The order of the group D1, associated with 
reflection symmetry, is 2, which yields the primary intuition that structures with r-order 
symmetries are potentially locally improvable if and only if the number d of variables is equal 
or more than r. The next subsections will show that only the ‘if’ part of the previous 
conjecture is true, however we can still determine sufficient and necessary conditions of 
potential local improvability, based on symmetry considerations. 
 
 First, in subsection 2.4.2 we derive an exact, however example-specific sufficient and 
necessary condition of robust optimality. This is further developed in subsection in 2.4.3 to 
find typical conditions, which are based solely on symmetry considerations. The latter 
conditions are the primary results of this part of the thesis. 
 

2.4.2 Exact condition of robust optimum 

In this part we derive a necessary and sufficient condition of the robust optimality of S(0), 
which is based on the knowledge of the inner forces of the specific example. Later we will 
show that in non-degenerate, typical cases this result can be generalised to structures with 
unknown inner forces, yielding the principal results of the thesis. 
 
The potential of the whole structure is of the form of (2.5). Local properties of U(x) at x=0 are 
only influenced by the weakest points of the perfect configuration S(0), i.e. those fi(x) 
functions for which fi(0)= U(0). At the same time, the perfect structure S(0) has usually more 
than one ‘weakest’ points due to its symmetry. 
 
Let fi(x), i=1,2,...,k denote the potentials associated with the set of weakest points of S(0): 
The linear approximation of U is 

( ) ( ) 1 if,...,2,1max))
2

<<=++= xxxg(0(x kioUU T
ii  (2.7) 

where gi=gradfi(x)|x=0. With these notations,  
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Theorem 2.2: The configuration S(0) is a robust optimum if and only if x=0 is an internal 
point of the convex hull of the endpoints of vectors gi,,  i=1,2,...,k (points at the border are not 
considered as internal points). 
 
Proof of the “if” part of Theorem 2.2: Assume that x=0 is inside the convex hull. In this case 
it can be written as a convex combination of the nodes of the convex hull: 

∑∑
==

=>=
k

i
ii

k

i
ii ccc

11

1,0where0 g  
(2.8) 

Transposing both sides of eq. (2.8) and multiplying them by a unit vector (v∈Rd, |v|=1) yields 

vg∑
=

=
k

i

T
iic

1

0  
(2.9) 

In the above sum, either all components are 0 or some of the components are positive. If there 
exists a v=v0, for which all terms are zero, then v0 is orthogonal to the vectors gi i.e. the 
vectors do not span the d-dimensional space of the variables Rd, which means that their 
convex hull has no internal point at all in Rd. This is in contradiction with the initial 
assumption. Thus, there must be a positive component in (2.9) for arbitrary v:  

( ) 1arbitraryfor 0max
1

=>
≤≤

vvg
T
j

kj
, (2.10) 

The function on the left side of eq. (2.10) is continuous in v and the set {v∈Rd, |v|=1} is 
compact. According to the Extreme Value Theorem (see e.g. Malik, 1992), such functions 
have a global minimum, which is positive, due to eq. (2.10) 

( )( ) 0maxmin
11

>




=

≤≤=
vgD

T
j

rjv
m , 

(2.11) 

Eq. (2.7) can be rearranged as  

( ) ( )2
1

(max)()( xxxg0x oUU T
i

ri
+⋅+=

≤≤
, (2.12) 

where xxx /=  and 1=x . From (2.11) and (2.12) we have 

( )2)()( xx0x omUU +⋅+≥ , (2.13) 

 which means that x=0 is robust optimum of U(x) (cf. Definition 2.1). Q.e.d. 

O

O

h

h

O’

x
O’

x

 

Figure 2.5: Illustration to the ‘only if’ part of Theorem 2.2 if d=2 (left panel) and d=3 (right panel). Grey 

colour denotes the convex hull of the gradient vectors. The vectors themselves are hidden in the 3D case. 

 
Proof of the “only if” part of Theorem 2.2: Instead of a rigorous proof, we show an 
illustrative sketch of proof, which is easy to imagine if d≤3 and applies for arbitrary d. (See 
also Figure 2.5) Assume that x=0 (denoted by “O”) is not in the convex hull! Consider the 
nearest point O’ (in sense of l2-norm) of the border of the convex hull to O (This might be O 
itself). For every border point P of an arbitrary d-dimensional convex object, we can find a 
‘tangent’ d-1 dimensional hyperplane h (h is a plane if d=3,it is a line if d=2), which contains 



Chapter 2   Structures 
─────────────────────────────────────────────────────────────────────── 

25 

 

P and has the whole convex object on one side. Consider a tangent hyperplane of the convex 
hull at O’. Let x be the normal vector of h, which is on the opposite side of h than the convex 
hull. In this case, gi

T
x≤0 for arbitrary 1≤i≤r. According to (2.12), U(x)≤U(0)+o(|x|2), i.e x=0 

cannot be robust optimum: the symmetric structure is potentially improvable. Q.e.d. 
 

2.4.3 Application of representation theory to optimisation problems 

In the following part, the typical conditions for the robust optimality / potential improvability 
of the symmetric configuration S(0) are derived. These conditions refer to the number and 
type of the perturbing variables. As we will see, the results are typical but not exact in the 
sense that they do not hold for degenerate types of potential functions (e.g. in the reflection-
symmetrical part, U(x) potentials were exceptional if generated from f(x) with zero derivative 
at x=0). We use many results of representation theory, which are summarised in Appendix I. 
 
In this subsection we will use the following notations (in accordance with previous ones) : 
vector x for the perturbing variables and d for the number of variables, S(x) for the 
corresponding structures, Γ≡{γ1,γ2,...,γr} for the symmetry group of  S(0), D≡{D1, D 2,..., Dr} 
for the elements of the induced representation in the space of the variables, fi(x) (i=1,2,...,k) 
for the potentials associated with the weakest points of S(0), P for one of the weakest points,  
fP(x) for the corresponding potential and finally gi=gradfi(x)|x=0 and g=gradfP(x)|x=0. 
 
In subsection 2.4.3.1, we outline that the set of weakest points can typically be generated from 
one such point P as the orbit of P with respect to Γ (i.e. {γi(P), i=1,2,...,r, see more about 
orbits in part I.4). This way we find a simple connection between the functions fi(x), which 
yield a characterisation of the convex hull of the endpoints ofvectors gi (Subsection 2.4.3.2). 
Thus, we can apply Theorem 2.2 without detailed computation of a specific example. 
 
2.4.3.1 Orbits in the optimisation problem 
Let P denote one of the weakest points of S(0) (such as the left bar of the introductory 
example of . Figure 2.1/A). Due to the Γ-symmetry of S(0), each weak point γi(P) is identical 
to P, thus their potentials are equal if x=0 (in the introductory example γ0(P) and γ1(P) are the 
left and the right bar, respectively). It is possible, however atypical, that some additional 
points have the same potential.  
 
If the potential associated with P is fP(x), then the potentials of other weakest points are 

)()()( )( xDxx iPPi fff
i

== γ . Thus, the resultant optimisation potential U(x) of the structure is 

typically of he form 

1)(max)(
1

<<=
=

xxDx iffU iP

r

i
, (2.14) 

and ‘>’ emerges in eq. (2.14) instead of ‘=’ atypically. (This is the case at the example of 
Figure 2.3 if p is chosen so that f1(0)=f2(0)). 
 
Let g denote grad(fP(x))|x=0. With this notation, gi=grad(fP(Dix))|x=0=Di

T
g. Notice that the 

vectors gi=Di
T
g are the orbit of g with respect to the representation DT≡{DiT j=1,2,...,r}. Thus 

from eq. (2.14) and Theorem 2.2, we have 
 
Lemma 2.1: Let g denote the gradient of the potential associated with one of the weakest 
points of S(0). If x=0  is an inner point of the convex hull of the orbit of g with respect to 
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DT≡{DjT j=1,2,...,r}, x=0 is a robust optimum. Vice versa, if x=0 is a robust optimum, x=0 is 
typically inside the convex hull. 
  
The application of Lemma 2.1 still assumes the knowledge of g, which is example-specific. In 
the next subsection, an improved version of Lemma 2.1 is derived, which is based solely on 
the type of the induced representation. We will use the fact that matrix transposition is a 
unitary transformation, i.e. DT is equivalent to the induced representation D (cf. Definition 
I.10). 
 

2.4.3.2 Analysis of the induced representation 
Now we can formulate the most general theoretical results. The goal of this part is to give 
typical predictions on the optimality/improvability of a symmetrical structure (x=0), based 
solely on the symmetry group Γ and the induced representation D. We show first that the 
analysis of Γ and D indicates if an example violates condition (i). Second, we derive the 
typical, necessary and sufficient conditions of potential improvability of S(0) based on Γ and 
D, and finally we give separate necessary and separate sufficient conditions for the potential 
improvability based only on the number d of perturbing variables. 
 
The forthcoming statements are based on classical results of representation theory, which are 
summarised in Appendix I. One of the basic elements of the theory is the decomposition of 
representations to the direct sum of irreducible components, which is unique and easy to 
construct for representations of finite groups. The technique of creating such a decomposition 
is also discussed in the Appendix. The only remarkable difference between the classical 
theory and the structural applications is that the former one applies for complex-valued 
representations, however the representations emerging in structural optimisation are 
necessarily real-valued. Thus, some results are modified to apply for real-valued 
representations (Subsection I.5). Among others, we define the notion of ‘half-irreducibility’, 
which means irreducibility among real-valued matrices (Definition I.19). The half irreducible 
decomposition of a representation is also unique and simple to create. 
 
We remark that two special types of representations play an important role in structural 
optimisation: one is the trivial representation (Definition I.8), in which every group element is 
represented by the scalar 1, and the other one is the regular representation of Γ (Definition 
I.13), which consists of r×r matrices and which has among others a trivial component in its 
irreducible decomposition. 

Effect of condition (i) 

Condition (i) excludes the Γ-symmetry of S(x) if x≠0. The structure S(x) would be Γ-
symmetric if and only if we had S(x)=γi(S(x))=S(Dix) for every 1≤i≤r. This would imply that 
Dix=x for every 1≤i≤r, i.e. the induced representation would have a nontrivial invariant point. 
Such points occur if and only if D has a trivial component in its irreducible decomposition 
(see a summary on the decomposition of representations in I.3.2 and also Lemma I.1 in I.4.1). 
Hence,  
 
Theorem 2.3: Condition (i) is satisfied iff the induced representation has no trivial 
component. 
 
Although problems violating condition (i) are not subject of this research, we remark that 
there is no technical difficulty of analysing such optimisation problems. In that case one can 
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prove (see Lemma I.3), that x=0 is usually not inside the convex hull of the endpoints of 
vectors Di

T
g , i=1,2,...,r, thus Lemma 2.1 yields  

 
Lemma 2.2: If the induced representation has a trivial component (i.e. condition (i) is not 
satisfied), the unperturbed configuration x=0 is typically not a robust optimum. 
 
Example 2/B in Subsection 2.5.3 is a numerical illustration of this case. 

Typical conditions of potential improvability 
If condition (i) is satisfied, the induced representation has no trivial component (cf. Theorem 
2.3) and x=0 is a convex combination of the orbit of g (the coefficients in eq. (2.8) are ci=1/k 
according to Lemma I.2). Hence, x=0 is inside the convex hull of the orbit of g unless the 
convex hull is degenerate (Degeneracy means that the elements of orbit do not span Rd, in 
which case their convex hull has no “inside”, only border points). Thus, Lemma 2.1 yields: 
  

Lemma 2.3: If the orbit of g with respect to the representation DT spans Rd and DT (or, 
equivalently, D) has no trivial component, the symmetrical configuration x=0 is a robust 
local optimum. Otherwise, x=0 is typically not a robust local optimum. 
 
The ‘otherwise’ part of Lemma 2.3 also follows from Lemma 2.1 if the induced representation 
has no trivial component (i.e. condition (i) is not violated); it is a consequence of Lemma 2.2 
if D has a trivial component. 
 
Lemma 2.3 reduces the question of robust optimality to deciding whether the orbit of g spans 
R
d or not, which depends primarily on the type of the induced representation D. If D is half-
irreducible, the condition of Lemma 2.3 is true for arbitrary g≠0 (see Lemma I.9). Thus we 
have:  
 
Theorem 2.4: If the induced representation is half-irreducible but it is not the trivial 
representation and the gradient g is non-zero, then x=0 is a robust local optimum of potential 
U(x), i.e. S(x) is  not potentially improvable. 
 
It is also shown in the Appendix (Lemma I.8) that if the induced representation is not half-
reducible but it is a sub-representation of the regular representation of Γ (these basic concepts 
are defined in the Appendix), then the orbit of a typical vector g spans Rd. Since the regular 
representation has one “forbidden” trivial component, it is worthwhile to introduce 
 
Definition 2.4: A representation is called cyclic if it is a sub-representation of the regular 
representation of Γ, and it has no trivial component. 
 
Based on Lemma 2.3 and the above results, we can now formulate  
 
Theorem 2.5: S(0) is typically robustly optimal iff the induced representation is cyclic. 
 
“Typically” means on the one hand that an adequately chosen gradient g may make S(0) 
potentially improvable if D is cyclic, but with randomly chosen g, the chance of getting robust 
optimum at x=0 is 1. On the other hand, robust optimality of S(0) is possible although atypical 
if D is not cyclic. The latter option originates from the possibility of inequality in eq. (2.14). 

 



Chapter 2   Structures 
─────────────────────────────────────────────────────────────────────── 

28 

 

Weakened results based on the number of variables 
The conditions of the previous unit (Theorem 2.4, Theorem 2.5) need only the decomposition 
of the induced representation as input, which is much more simple to perform than detailed 
structural analysis. At the same time, we can often predict optimality/improvability of S(0) if 
only the number of variables is known.  
 
The regular representation of the group Γ of order r is r-dimensional (i.e. it consists of r×r 
matrices). At the same time, it has one trivial component. Thus, cyclic representations in the 
sense of Definition 2.4 are at most r-1 dimensional, i.e. Theorem 2.5 yields 
 

Theorem 2.6: If d≥r, then S(0) is typically potentially improvable. 
 
At the same time, half-irreducible representations are always sub-representations of the 
regular representation of Γ, i.e. they are cyclic (except if trivial, which is excluded by 
condition (i)). A one-dimensional representation is obviously irreducible (i.e. also half-
irreducible), thus the perturbation of a structure’s symmetry with one variable does not yield 
potential improvability due to Theorem 2.5. At the same time, some groups have only k or 
more dimensional half-irreducible (non-trivial) representations, where k≥2. In these cases a 
non-cyclic representation is at least 2k-dimensional, i.e. 
 
Theorem 2.7:  If d<2dim(Γ) (where dim(Γ) means the dimension of the smallest non-trivial, 
half-irreducible representation of Γ and d is the number of perturbing variables) and 
condition (i) is satisfied, S(0) is typically robustly optimal. 
 
In practical optimisation problems, Γ is a cyclic (Cn) or dihedral (Dn) group (see the meaning 
of the notations and the origin of this fact in Section I.2). Among these groups, Cn has only 
two-dimensional half-irreducible components if n is odd (see in part I.5), thus in this case S(0) 
is typically a robust optimum if it is perturbed by less than 4 arbitrary variables. (It follows 
from the same fact that the number of variables satisfying (i) and (ii) can be 2 but cannot be 1 
or 3) In case of dihedral symmetries and cyclic ones of even order, only optimisation with one 
arbitrary variable yields robust optimality. 
 
Notice that Theorem 2.6 (necessary condition of potential improvability), Theorem 2.7 
(sufficient condition) and Theorem 2.5 (necessary and sufficient condition) are equivalent in 
case of C2 and D1-symmetries. The latter one imeans reflection-symmetry. Hence it is not 
surprising that predictions about the potential improvability of reflection-symmetrical 
structures were based only on the number of variables.  
 

2.5  NUMERICAL OPTIMISATION EXAMPLES  

This part contains the detailed analysis of several structural optimisation problems. The main 
steps of the investigations are described below (part 2.5.1). After the general description, the 
examples are presented in 2.5.2-2.5.5. Example 1 is a reflection-symmetrical structure, the 
rest are D2 or D3 symmetrical. The two versions of Example 2 illustrate the analytical results. 
Example 3 has four variants, one of which proves to be exceptional according to the 
numerical results. Finally, Example 4 illustrates another exceptional case.  
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2.5.1 Main steps of the analysis 

The analysis starts with prediction of the potential improvability of S(0) based on the results 
of Section 2.4. After that, detailed numerical analysis follows in each case. Details of the steps 
are described below.  

Analytical part 
It is decided analytically whether x=0 is typically a robust optimum or not. Steps of the 
analysis are the following: 
 
Step I. Determination of the induced representation of the problem. This is an intuitive but 

not difficult step. Notice that this step requires the fulfilment of condition (ii) and 
also that the elements of the group Γ are represented by linear matrix 
transformations in the space of the variables.  

Step II. Construction of the irreducible and half-irreducible decompositions of the induced 
representation. (The technique is summarised in Section I.3.2).  

Step III. ,Categorisation of the optimisation problems according to Theorem 2.3, Theorem 2.4, 
and Theorem 2.5 (1: condition (i) does not hold; 2: robust optimum is atypical; 3: 
robust optimum is typical; 4: robust optimum is sure unless g=0). 

 
For exact results concerning the robust optimality of x=0, further steps could follow: 
 
Step IV. Selection of one of the weakest points (denoted by P so far). Some exceptional 

structures (similar to the example of Figure 2.3/A) can be detected this way. 
Step V. Determination of the gradient g of the potential fP(x) at x=0, to check robust 

optimality directly. Atypical but possible results as well as further exceptional 
structures (such as that of Figure 2.3/B) can be detected this way. 

 
The benefit of the last two steps is the recognition of atypical results (e.g. where g happens to 
be 0) and exceptional cases. Further information on types and handling of exceptions can be 
found in part 2.7. In case of simple examples, steps IV, and V. can be performed analytically, 
however, in case of more complicated structures they may include numerical work as well. 

Numerical part 
Beyond the local, analytical investigation at x=0, global numerical optimality analysis 
yielding all local minima, maxima, and saddle points (i.e. all critical points) of the potential 
function U was performed in case of some of the examples. These calculations have been 
done on a PC in MATLAB environment using the Simplex Method (Allgover et al, 1990). 
Most of the examples have two symmetry-breaking variables (d=2), and one symmetry-
preserving parameter, thus the results are plotted in 2+1 dimensional optimum diagrams. The 
parameter was included to get an overview on a family of structures and the number of 
variables was restricted because increasing the number of variables results in exponential 
growth of computational time. According to my experience, computing structural families 
with three or more variables would need more sophisticated tools (e.g. path following 
algorithms, see Domokos et al, 1995 or parallel processing in clusters, see Domokos et al, 
2001) and developing an ‘optimising software’ was not a primary goal of this work.  
 
The bifurcation diagrams show the location and types of the critical points of the potential 
function. Since non-smooth potentials of type (2.5) are not everywhere differentiable (e.g. 
usually at x=0), we need a generalised interpretation of critical points. Critical points of a 
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smooth h(x) function are the solutions of the grad(h(x))=0 equation. The first derivatives 
Ui(x)=dU(x)/dxi of U(x) suffer discontinuities of the first kind at some points, i.e. the left-
hand and right-hand derivatives exist but are not identical. To overcome this problem, we 
apply the concept of interval derivative, (see e.g. Korn et al, 1968) which results in the 
interval [Ui left(x), Ui right(x)]. (For example, the interval derivative of f(x)=|x| at x=0 is the 
interval [-1,1]. At smooth points the interval derivative gives a scalar, identical to the classical 
derivative. With this concept, the generalised gradient is a ‘vector’, the entries of which are 
intervals and 
 
Definition 2.5: A point of U(x) is called critical if each entry of the generalised gradient 
contains zero as an element. 
 
In case of optimisation with 2 variables (d=2), there are three distinct kinds of critical points 
(see also Figure 2.6): 

− smooth critical points of U are also critical points of some of the generating 
functions fi(x). where x=[x1 x2]. These can be determined from the equation  

( )( ) T]00[grad =xif , (2.15) 

which should be solved for every 1≤i≤n (n denotes the number of weak points of 
the structure). As supplementary condition, one should also check that the 
solutions x=x0 really emerge in U, i.e. that fi(x0)= max[fh(x0) h=1,2,...,n] 

− wedge-like (i.e smooth in one direction, non-smooth in the other) critical points 
emerge where two intersecting functions fi and fj form a ‘wedge’ and the bottom of 
the wedge (which is a smooth line) has a critical point. These are determined from 
the  

( ) ( )
( )( ) ( )( )




=×
=

0gradgrad xx

xx

ji

ji

ff

ff
 

(2.16) 

equations, which should be examined for every pair 1≤i,j≤n. In the second 
equation, ‘×’ denotes vector product and this equation corresponds to the 
condition that the line of intersection of the two functions (the bottom of the 
wedge) has zero slope. The supplementary condition grad[fi(x)]

T⋅grad[fj(x)]<0 
ensures that the line of intersection of the functions is really a ‘wedge’; 
fi(x)=max[fh(x) h=1,2,...,n] should also be checked.  

− robust (i.e. sharp in all directions) optima may emerge when three (or more) of the 
generating functions coincide. The corresponding equations are  

( ) ( ) ( )xxx kji fff == , (2.17) 

which should be solved for every triple 1≤i,j,k≤n. The functions enclose a robust 
optimum, if and only if the point x=0 is inside the convex hull of their gradient 
vectors (cf. Theorem 2.2); fi(x0)=max[fh(x0) h=1,2,...,n] should also be checked.  

 



Chapter 2   Structures 
─────────────────────────────────────────────────────────────────────── 

31 

 

smooth                  wedge-like               robust

optimum

saddle

pessimum

 
 

Figure 2.6: Generic types of critical points at functions of the form of (2.5). Symbolic pictograms of each 

type are also presented. We use these later to identify the critical points in the bifurcation diagrams. 

 

2.5.2 Example 1 

As first example, the structure of Figure 2.4 is analysed. It has been pointed out in Section 2.3 
that there is typically no robust optimum at reflection-symmetric examples with two or more 
variables. We can regain these results with the general tools based of representation theory 
(Section 2.4): the symmetric structure has two invariant transformations: γ0≡identity and 
γ1≡reflection to the y axis; it is D1-symmetrical. The corresponding elements of the induced 
representation are D0=<1 1> and D1=<-1 -1>, where <*> denotes a diagonal matrix with 
elements *. The irreducible decomposition of this representation consists of two I1 
components (see the notations of Table I.4). Since the regular representation of D1 contains 
only one example of I1, the induced representation is not cyclic, x=0 is potentially locally 
improvable. 
 
Numerical analysis was also performed for arbitrary positive value of p (Figure 2.7). 
According to the results, x=0 is typically wedge-like optimum or saddle, i.e. either potentially 
or even actually improvable. 
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Figure 2.7: Optimum diagram of example 1. Blue and green points denote local minima and saddle points 

of the U(x1,x2) functions. Small pictograms indicate the local shape of U (wedge-like or smooth) at these 

points using the notations of Figure 2.6. 
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2.5.3 Example 2 

The second example (Figure 2.8/A,B) is shown to illustrate the role of the regular 
representation in structural optimisation problems. We concentrate on the analytical 
investigation and we will see that the numerical results are trivial in this case.  
 
The bars of the D3-symmetrical perfect structure have equal cross-sections of unit area, their 
ultimate normal forces are also assumed to be unit. The structure is optimised for maximal 
safety in the strength of the bars i.e. the potentials associated with the bars are the quotients of 
their internal forces and the ultimate force. The cross-sections of five bars are perturbed (so 
that the areas are 1+x1,1+x2,...,1+x5 in Figure 2.8/C), while the total mass of the structure is 
constant (i.e. the cross-section of one bar is 1- x1- x2-...- x5). The steps of the analysis follow 
section 2.5.1: 
Step I. The elements of the induced representation are collected in Table 2.1. Notice that the 

symmetry transformations simply permute the six perturbed legs. Accordingly, the 
elements of the induced representation are almost permutation matrices.  

Step II. We follow the technique of creating the irreducible decomposition discussed in I.3.2: 
the character of the induced representation is χ =[-1 -1 5 -1 -1 -1]. Group D3 has 3 
irreducible representations (Table I.4), their characters are χ0=[1 1 1 1 1 1], χ1=[1 1 
1 -1 -1 -1], χ2=[-1 -1 2 0 0 0]. The solution of eq. (I.4) is n0=0, n1=1, n2=2, i.e. there 
is no trivial (I0) component and there is one example of I1 and two examples of I2 
irreducible component in the decomposition of the induced representation. The 
regular representation of D3 has 1, 1, and 2 examples of the three components, 
respectively. The half-irreducible decomposition of D  is the same as the irreducible 
one.  

Step III. According to the previous results of the decompositions, condition (i) is satisfied; the 
induced representation is not half-irreducible, but it is cyclic, i.e. robust optimum is 
typical although not true for arbitrary g≠0.       

Step IV. At the given geometry, the weakest points are the six perturbed legs.(Calculations are 
omitted here, we just mention that the structure is statically determinate, i.e. the 
internal forces can be determined from equilibrium equations of the bars and 
hinges.) The bar with area 1+x1 is one of the weakest points of the perfect structure. 

Step V. The perturbation has no effect on the equilibrium equations, i.e. it does not modify 
the internal force N in the weakest point. The ultimate force of this bar is 
proportional to the cross-sectional area, i.e. Nu1(x)=1+x1. Consequently the gradient 
of the corresponding potential f1(x)=N/Nu1(x) is g=[N 0 0 0 0]

T. The orbit of g is [N 0 
0 0 0]T, [0 N 0 0 0]T, [0 0 N 0 0]T, [0 0 0 N 0]T, [0 0 0 0 N T [-N -N -N -N -N]T, which 
span R5. Thus we conclude that there is robust optimum at x=0 (cf. Lemma 2.3). 
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Figure 2.8: Upper (A) and 3D (B) view of Example 2, with two different perturbations (C, D). Each of the 

perturbations refer to the cross-sectional areas of the CiBj bars. 
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Table 2.1: The induced representation (second row) corresponding to symmetry transformations (first 

row) of Example 2/A. The elements of the D3 symmetry group are the following: ai is rotation by 2iππππ/n 
around the line OA (see Figure 2.8). bi is reflection to the plane OABi. 

The last result is not surprising, since an arbitrary x∈R5 perturbation weakens at least one of 
the six bars due to the total mass constraint, but does not modify the internal forces. Thus, in 
this case x=0 is a unique and global optimum. Notice that D3 is of order 6, while the induced 
representation is cyclic and 5-dimensional. According to Theorem 2.6, this is the maximal 
number of variables, which might yield robust optimum. In this case, the induced 
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representation is a ‘truncated’ version of the regular representation of D3, from which only the 
trivial component has been removed.  
 
We could analyse the same problem without the total mass constraint (Figure 2.8/D). In this 
case the areas of the six perturbed legs are 1+xi, i=1,2,...,6. Since the symmetry 
transformations of the perfect structure permute the six legs, the induced representation 
consists of 6×6 permutation matrices, it is the regular representation of D3. According to 
Theorem 2.3, this example does not satisfy condition (i), which is again not surprising: if 
x1=x2=...=x6, the D3 symmetry is preserved. Despite the violation of (i), local optimality of the 
perfect configuration could be investigated: x=0 is typically not a robust optimum according 
to Theorem 2.5. In our specific case, this is again trivial, no deeper analysis is needed, since if 
all variables are positive, all legs are strengthened, i.e. the structure is improved. 

2.5.4 Example 3 

In this part, the structure of Figure 2.9 is optimised with four different perturbations The 
perfect configuration is D2-symmetrical. This structure is statically indeterminate of degree 
one, i.e. its inner forces can be determined from equilibrium conditions and one additional 
compatibility equation on the deformation of the bars. This time, safety against buckling is 
optimised and the cross-sections of the bars are assumed to be equal (similar to the example 
of Figure 2.1/A,C). The potential associated with one of the bars is 

2

2 )()(
)(/)()(

π
==

EI

lN
NNf cr

xx
xxx , 

(2.18) 

where N and Ncr are the internal force and the critical force in the bar, E, I and l stand for the 
modulus of elasticity, minimal inertia, and length of the bar, respectively. 

 
A B 

 
C D 

Figure 2.9: Example 3 with four different perturbations. 

The analytical results are the following:  
Step I.& II: The decompositions of the induced representations (Table 2.2) show that all 

examples are reducible; A, B, D are cyclic but C is not (it contains too many 
examples of the I3 component). 

Step III. According to Theorem 2.5, x=0 is typically robust optimum in examples A, B, 
and D but it is not a robust optimum in example C. 

Step IV. is trivial (all bars are weakest points).  
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Step V. has not been performed. 
Numerical analysis of the four examples was also executed (Figure 2.10). The results match 
the expectations at examples 3/A,B,C: 

− At C, S(0) is potentially improvable (it is a ‘wedge-like’ optimum if p<0.5 or p>3, 
or saddle otherwise).  

− At A and B, S(0) is typically not potentially improvable, though there are 
exceptional points (e.g. the bifurcation point [p,x1,x2]≈[0.9 0 0] at example B), 
where the gradient vector g assumes an atypical value and the robust optimum 
vanishes.  

The numerical results of example 3/D do not match the predictions: as the optimum diagram 
shows, x=0 is not a robust optimum. Instead, it is typically a wedge-like optimum (if p>1.8 
approximately) or saddle point (if p<1.8). The unexpected result indicates a special property 
of the optimisation potential, which cannot be derived from simple symmetry conditions 
(similar to the example of Figure 2.3/B). We can simply verify this hypothesis: if x1=0, the 
structure is invariant under rotation by π around the z-axis. The displacement of the middle-
hinge E due to the load is also invariant under this transformation, i.e. it is vertical. Consider 
one of the bars (Figure 2.11) and let the displacement of its upper end be denoted by ∆z 
(∆z<<1). The potential associated with this linear, elastic bar is (cf. (2.18)) 
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which is independent of x2. (N, ∆l, A, E denote compressive force, shortening, area of cross-
section and modulus of elasticity of the bar, respectively.) Thus, ∂f/∂x2=0 at x=0. The gradient 
of f is of the form g=[* 0]T. Vectors of this form happen to be an invariant subspace of the 
transposed induced representation (i.e. Di

T
g=[* 0]T for i=1,2,3,4), thus the convex hull of the 

orbit is degenerate and there is no robust optimum at x=0 according to Lemma 2.3. However, 
if the same structure was optimised with a different kind of potential (e.g. safety of 
compressive strength) we would find robust optimum in accordance with the initial 
prediction.  
 

irreducible/half-ireducible components of 
D2 
 

I0 I1 I2 I3 

number of components in the regular 
representation of D2 

1 1 1 1 

Example 2/A 0 0 1 1 
Example 2/B 0 0 1 1 
Example 2/C 0 0 0 2 

number of components  in 
the induced representation 
of 

Example 2/D 0 1 0 1 

Table 2.2: Irreducible/half-irreducible decompositions corresponding to examples 2/A-D. The technique of 

creating the decompositions is discussed in part I.3.2. Names of the representations are taken from Table 

I.4. Neither of the induced representations has trivial components (I0); C is not cyclic (because it has two I3 

components). 
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Figure 2.10: Optimum diagrams of examples 2/A-D (see Figure 2.9). Blue, green and red points denote local 

minima, saddle points and maxima of the U(x1,x2) functions. Small pictograms indicate the local shape of U (sharp, 

wedge-like or smooth) at these points. Notice that sharp critical points are always robust optima and wedge-like 

points are optima or saddles. For better clarity, only the domain x1, x2≥≥≥≥0 has been plotted in A and D. 

 

 
Figure 2.11: Deformation of a bar 

of example 3/D if x1=0. As it has 

been shown, the displacement of 

the upper end (∆∆∆∆z) is vertical. 

Figure 2.12: Example 4 with two different perturbations. A1A2A3 is a 

regular triangle. There are two variables at A, while at B, the 

number of perturbations is 4; x3 and x4 refer to the cross-sectional 

areas of the bars.  
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2.5.5 Example 4 

The structure is similar to example 3, but now it has only three legs and S(0) is D3-symmetric. 
The optimisation potential is the same as before, see (2.18). Two variables perturb the 
structure at example 4/A (similar to example 3/A), while the number of variables is four at 
4/B: x1 and x2 are displacements of the middle hinge, while x3 and x4 perturb the cross-
sections of the bars assuming constant total mass and constant shape of the cross-section. 
Conditions (i) and (ii) are satisfied in both cases; the decompositions of the induced 
representations are shown in Table 2.3. Example 4/A has a half-irreducible induced 
representation, while the other one is reducible but cyclic. In both cases, robust optimality of 
x=0 is predicted.  
 
The structure has only three bars, all of them are weakest points of S(0). However, notice that 
the D3 group is of order 6, i.e. the perfect structure should have 6 weakest points! This 
contradiction emerges because each of the weak points are invariant under one of the 
symmetry transformations of the perfect structure (bar AiB is invariant to reflection to the 
plane 0BAi). The situation is similar to the case of Figure 2.3/A, where the weakest point was 
invariant under reflection and the resulting potential did not match the general predictions. 
Analogously, the predictions might prove incorrect at this example: the invariance of a weak 
point under some of the symmetry-transformations (e.g. γj) means that the gradient of 
corresponding potential satisfies g=Dj

T
g, which is an unexpected degeneracy and might 

change the typical results. As the most remarkable difference, the orbit of g consists of 6 
vectors, but only 3 non-identical ones. Better predictions can be obtained if the structure is 
considered as only C3- instead of D3-symmetric (i.e. the symmetry transformations, for which 
some of the weakest points are invariant are neglected). In this case the number of weakest 
points (and the corresponding gradient vectors) is predicted correctly by equation (2.14). This 
means a new decomposition of the induced representation (Table 2.4). The result predicts that 
4/B is not cyclic, i.e. x=0 is typically not a robust optimum. On the other hand, 4/A is half-
irreducible, the prediction is unchanged in this case.  
 
The numerical results support the improved predictions. Example 4/B has too many variables 
to determine its optimum diagram with the existing software, but we can determine the 
diagram of restricted versions of the problem. In fact, 4/A is a restricted version of 4/B (with 
x3=x4=0, see Figure 2.13/A) another possibility is the restriction x2=0 and x3=x4 (Figure 
2.13/B). At Example 4/A, x=0 is typically robust optimum, while at the other one, it is not. It 
follows from the latter result that there is no robust optimum in the original problem 4/B, 
either. 
 

Irreducible/half-irreducible components of 
D3 

I0 I1 I2 

number of components in the regular 
representation of D3 

1 2 1 

Example 3/A 0 1 0 number of components  in 
the induced representation 
of 

Example 3/B 0 2 0 

Table 2.3: irreducible/half-irreducible decompositions corresponding to Examples 3/A-B. (The two kinds 

of decompositions are identical.) The technique of creating the decompositions is discussed in part I.3.2. 

Names of the representations are taken from Table I.4. Neither of the induced representations has trivial 

components; both are cyclic. 
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irreducible components of C3 I0 I1 I2 

number of components  in the 
regular representation of C3 

1 1 1 

Example 
3/A 

0 1 1 number of 
components  in the 

induced 
representation of 

Example 
3/B 

0 2 2 

 

    
half-irreducible components of 

C3 
I0 S1 

number of components  in the 
regular representation of C3 

1 2 

Example 
3/A 

0 1 number of 
components  in the 

induced 
representation of 

Example 
3/B 

0 2 

 
 

Table 2.4: irreducible (left panel) and half-irreducible (right panel) decompositions corresponding to 

Examples 3/A-B, considered as only C3-symmetric. The technique of creating the decompositions is 

discussed in part I.3.2. Names of the representations are taken from Table I.4, table 6.  
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Figure 2.13: Optimum diagrams of example 4/A and a restricted version of 4/B. (Blue, green and red 

points denote local minima, saddle points and maxima of the U(x1,x2) functions. Small pictograms indicate 

the local shape of U (robust, wedge-like or smooth) at these points.  

2.6  BIFURCATION ANALYSIS OF OPTIMUM DIAGRAMS 

Until now, individual structures have been investigated and predictions concerning their 
potential improvability have been derived. In this part, the object of our research is extended 
to one-parameter families of structures, which allows investigation of optimal improvability 
with small perturbations of the symmetry.  
 
As defined in the introduction (Definition 2.3) optimal improvability corresponds to slightly 
asymmetrical optima bifurcating from the x=0 line. Such lines often appear at bifurcations of 
smooth functions with one variable (e.g. Figure 2.1/B), where the symmetrical optimum 
switches to pessimum. Similarly, bifurcating asymmetrical optima often emerge at examples, 
where the optimality of x=0 is not typical, i.e. the optimum may change to another type 
(saddle or pessimum), see Figure 2.7, Figure 2.10/C,D, Figure 2.13/B. On the contrary, if x=0 
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is typically optimal, there are usually no bifurcating optima (Figure 1.1/A, Figure 2.10/C,D), 
although we have an exceptional diagram (Figure 2.13/A). 
 
It seems rather hopeless to decide in general whether a one-parameter family of structures 
with a given kind of symmetry and a given set of perturbing variables may or may not yield 
bifurcating optima. Such a result would need either a general statement about this property or 
the bifurcation analysis for all finite groups (infinite number!) and each of their 
representations. Due to the probable difficulties, we confine ourselves to the case of D1 
(reflection) symmetry: in the forthcoming part, we take a systematic approach to the 
bifurcations associated with potentials of the form (2.3) and (2.6), which we refer to as 
“reflected potentials” and “multiple reflected potentials”, respectively. Section 2.6.2 provides 
structural engineering examples for each bifurcation, and finally the bifurcation analysis 
connected to the exceptional diagram Figure 2.13/A is presented in 2.6.3.  
 
Elementary catastrophe theory (Poston et al, 1978) determines the bifurcations of smooth 
potentials. Bifurcations associated with special non-smooth potentials can also be found in 
Poston et al (1978), Section 16, where a generalisation of Thom’s theorem is introduced in 
case of the so-called conditional catastrophes, however symmetrical potentials are not 
investigated. The forthcoming part is analogous to these ones, although its significance is 
much more modest. Elementary catastrophe theory has many other applications to 
engineering problems, e.g. Thompson et al (1973, 1984). Similarly to former works, we are 
looking for the Taylor series expansion of the generating, smooth potentials f(x) at x=0. In our 
case, this provides a classification of bifurcation points for the non-smooth optimisation 
potential U(p,x), containing both ‘classical’ cases as well as new ones.  
 

2.6.1 Typical bifurcations in case of D1 symmetry 

Our goal is to give a local classification of one-parameter (p) classes of reflected (part 2.6.1.1) 
or multiple reflected (2.6.1.2) potentials U(x,p) at x=0; this is an analogue to Thom’s theorem 
for smooth functions. The local classification of U is reduced to the local classification of the 
smooth f generating potentials.  
 
2.6.1.1 Reflected potentials 
Thom’s theorem shows that the local classification of a smooth function is usually determined 
by the lowest order non-vanishing term(s) of the function’s Taylor expansion. Let )(n

fT  denote 

the truncated Taylor series of the function f(x,p) up to the nth-order term. 
At a general point on the p axis (x=0) )1(

fT  does not vanish typically. At the same time, there 

exist typically a finite number of isolated points along the x=0 line, where )1(
fT  vanishes, and 

there is typically no point where )2(
fT  vanishes.  

If )1(
fT does not vanish, f(x,p) is, according to Thom’s theorem, locally equivalent of the (0,0) 

point of the f (1)(x,p) function:  
. )((1) xx,pf =  (2.20) 

 
Consequently, the (0,0) point of the reflected U(x,p) function generated from f via (2.3) is 
locally equivalent to the (0,0) point of U(1)(x,p) generated from the f (1) potential in (2.20). 
This type of point is analogous to non-degenerate critical points of smooth functions, but it is 
non-smooth (Figure 2.14), more specifically it is robust minimum (cf. Definition 2.1).  
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If )1(

fT  vanishes but )2(
fT does not, U(0,p) is locally equivalent of U(2)(0,0) generated from one 

of the following two f (2) functions: 
2)2( ),( xxppxf ±⋅=  (2.21) 

 

 

Figure 2.14: Generic point of reflected functions Figure 2.15: Unstable-X catastrophe 

 
The (0,0) point of U(2) is analogous to a fold catastrophe point of a smooth function. It has two 
dual forms, the corresponding bifurcations are the unstable-X (Figure 2.15) and the point-like 
“bifurcation” (Figure 2.16). They appear different because the different role of maxima and 
minima in case of reflected functions. Figure 2.1/B, associated with the three-hinged example, 
also shows an unstable-X type bifurcation. As already introduced, higher degeneracy of f(x,p) 
is atypical and there are no more typical catastrophes of one-parameter families of reflected 
functions.  
 
Notice that neither the X- nor the point-like bifurcation contains bifurcating asymmetrical 
optima. Thus,  
 
Theorem 2.8: If a one-parameter family of D1 symmetrical structures is optimised with one 
variable, there is typically no value of the parameter where the structure is optimally 
improvable. 
 
At the same time, there are applications, where f(x,p) is, for some reason, odd or even (the 
even or the odd terms of the Taylor expansion vanish) and some other catastrophes are 
typical. We have already seen two examples of the latter case (cf. Figure 2.3).  
 
In the case when f(x,p) is odd (i.e. f(x,p)+c=-(f(-x,p)+c)), the typical robust optimality of x=0 
is unchanged, but there exist isolated points, where U is locally equivalent of U(3)(0,0) 
generated of f (3): 

3)3( ),( xxppxf +⋅=  (2.22) 
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catastrophe 
point 

 
 

Figure 2.16: Point-like catastrophe Figure 2.17: Five-branch pitchfork 

 
This corresponds to a ‘five-branch pitchfork’ (Figure 2.17), which has no dual form. This 
pattern contains bifurcating optima, i.e. optimal improvability is not atypical in this special 
case, as opposed to Theorem 2.8. 
 
In the case when f(x,p) is even (i.e. f(x,p) = f(-x,p)), U is a smooth, symmetric function. The 
two emerging classes are well-known: the first (typical) one is equivalent of U(4)(0,0) 
generated of f (4) 

2)4()4( ),(),( xpxfpxU ±==  (2.23) 

which is a one dimensional Morse-saddle, i.e. a smooth, non-degenerate critical point. Beyond 
this, there are typically isolated points where U is locally equivalent of U(5)(0,0) generated of f 
(5): 

42)5()5( ),(),( xxppxfpxU ±⋅==  (2.24) 

 
These are the well-known standard and dual cusp catastrophe points (Figure 2.18), producing 
the ‘stable’ and ‘unstable’ symmetric bifurcation. This is the typical bifurcation occurring in a 
one-parameter family of symmetric, smooth functions. In the following, this bifurcation will 
be called ‘three-branch pitchfork’. Here again, bifurcating optima emerge, but this is not 
surprising, since x=0 changes from optimum to pessimum at bifurcation points. 
  

2.6.1.2 Multiple reflected potentials 
Among this kind of functions (see (2.6)), the typical bifurcations are the same as those of 
reflected potentials: the bifurcations of Û are a subset of the bifurcations of the individual Ui 
functions. A bifurcation of Uk at (x,p)=(0,p0) appears in Û, if 

( )( ).,pU),pU ik 0i0 0max0( =  (2.25) 

 
At the same time there are isolated points V at the x=0 axis where  

                 )(0, )(0,U pUp ji = ,                    i≠j (2.26) 

At these points, no bifurcation emerges if Ui and Uj are not exceptional, i.e. both have robust 
minima at V. However, a special ‘wedge-bifurcation’ may appear (there is an example in 
Figure 2.19), if Ui has a local minimum, and Uj has a local maximum at V. The latter can 
occur if Uj  is generated from even f function (i.e. it is of type U

(4) or U(5)) 
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Figure 2.18: Standard cusp catastrophe, or stable 

three-branch pitchfork 

Figure 2.19: An example of the wedge-bifurcation 

 

2.6.2 Examples in engineering: optimisation of structures 

In this part we provide a list of examples (Figure 2.20), illustrating all the bifurcations 
described in part 2.6.1. Our goal was to make this illustration homogeneous and easy to 
follow in the sense that each bifurcation type is demonstrated on the same type of structure 
(continuous beam with four supports). As a result, some illustrations are somewhat artificial. 
Including a larger variety of structures yields other illustrations, however, their description 
would be more lengthy. Similar examples have been studied  in Buella (2002), Alkér (2001).  
 
Structures similar to our beams are usually designed based on strength conditions of the form 
f ≤ fu, where f and fu are, respectively, the design and ultimate value of the bending moment. 
Such conditions have to be met by all parts or points of the structure. If the design variable x 
is optimised for this kind of condition, it is plausible to define an ‘optimisation potential’ 
Û(x,p) as  the maximum of f(x,p) for all points of the structure, a ‘better’ structure 
corresponding to smaller values of Û(x,p). As already shown previously, if 

− a one-parameter (p) family of structures is examined,  
− f(x,p) is a smooth function at all points or parts of the structure, 
− x satisfies condition (i)-(ii), which means in our case that γ1(S(x))= S(-x) (with 

γ1≡reflection)   
Û(x,p) is typically a multiple reflected potential, thus the examples are likely to produce the 
bifurcations in question. 
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Figure 2.20 A-F: various parameterised beams and loads; G: qualitative moment diagram of the 

structures A-D 

 
 

2.6.2.1 Unstable X bifurcation. 
Consider the uniform, linearly elastic beam in Figure 2.20/A with four supports, subjected to 
uniform vertical load. Our goal is to optimise the position x of the hinge, making the 
maximum Û of the bending moment as small as possible.  
 
Calculating the support and hinge reactions under the assumption of small deformations 
(linear theory) is a common structural engineering problem. Solution techniques are available 
in advanced undergraduate textbooks; most easily it can be solved by the force method (cf. 
Gere et al., 1990), yielding finally the internal bending moment acting at an arbitrary point of 
the beam. The qualitative moment-diagram is illustrated in Figure 2.20/G. There are three 
pairs of local maxima in the moment diagram denoted by fi and fi

’; i=1,2,3. So Û(x,p) is now 
the maximum of three pairs of local maxima: 

),,,= 321max( UUUÛ  (2.27) 

 
where the Ui’s are reflected functions as defined in (2.3): 

),= '
iii ffU (max ,      i=1,2,3 (2.28) 

In our example the fi functions can be determined analytically (cf. Gere et al, 1990) as: 

( )[ ]
( )2223
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We computed the bifurcation points of the Ui functions as the solutions of the dfi(x,p)/dx=0 
equation analytically and found that there is an unstable-X bifurcation in U2(x,p) at point  
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Since U2>U1 at P, this X-bifurcation of U2 occurs in the Û function as well (cf. (2.25) and the 
corresponding remarks). A representative domain of the bifurcation diagram is plotted in 

Figure 2.21. At point V=(0, 12 − ) on axis p, we have U1=U2, so we could expect a wedge-
bifurcation based on equation (2.26). However, since both U1 and U2 have local minima at V, 
no bifurcation occurs (cf. the comments after equation (2.26)). 
 

Figure 2.21: An example of the X-bifurcation  Figure 2.22: An example of the point-like 

bifurcation 

 
2.6.2.2 Point-like bifurcation 
In the previous example, equation (2.30) provides a simple relationship between f1 and f2, 
which shows that the critical points of U1 and U2 typically coincide. Furthermore, the 
following form of (2.30) (where f2

2 is approximated by its truncated Taylor expansion) 
 

( )
2
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pxf

⋅−⋅−+
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+−
=  

(2.33) 

 
shows that an unstable-X bifurcation point of U2, corresponds to a dual, point-like bifurcation 
point of U1 if f2(0,p)<1/2 (which is true for p<1). So U1 has a point-like bifurcation at 
P≈(0,0.420) (cf. Figure 2.21), however, it is hidden, because Û≠U1 at point P. In order to 
make the point-like bifurcation at P appear in Û, we change the geometry of the structure 
slightly. 
 
The new geometry is illustrated in Figure 2.20/B: the two inner supports are both 
symmetrically moved down by the distance a (this could be the result of soil settlement). This 
modification causes, according to our computations, the following effects: 

− moves the critical point P downward in the bifurcation diagram , 
− does not change the position of point V because the moment diagrams are 

unchanged if x=0. 
If, e.g. a=0.003, the new bifurcation point P’ is under V, and the point-like bifurcation of U1 
appears in Û (Figure 2.22). 
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2.6.2.3 Five-branch pitchfork bifurcation 
The example of Figure 2.20/C is similar to the previous ones, but the position of the middle 
supports is optimised instead of the position of the hinge. Analysis is done in the same way as 
at the first example. 
 

The bending moment fmid at the middle of the structure is zero at arbitrary (x,p) values, since 
there is a hinge. On the other hand fmid can be expressed from f2 and f2

’ as:  
/2-)/2+( = 2'

22mid pff f  (2.34) 

 
Combining (2.34) with fmid =0 yields 

),(-),(),(),( 22
'
22

 2 pxfpx fpxfpxfp +=+=  (2.35) 

 

  

Figure 2.23: An example of the five-branch pitchfork. Figure 2.24: An example of the ‘stable’ three-branch 
pitchfork. 

 
 
According to (2.35), f2 is an odd function of x (the non-vanishing constant term does not 

influence the critical points), so at the bifurcation point P= ( )2/3,0  it is locally equivalent to 
f(3) (defined in (2.22)), thus the bifurcation of U2  is a five-branch pitchfork. In the 
neighbourhood of P, U2>U1, so, based on (2.25), this bifurcation occurs in Û as well (cf. 
Figure 2.23.)  
 
2.6.2.4 Three-branch pitchfork bifurcation 
The beam of Figure 2.20/D is again slightly different from the previous ones: the hinge is 
missing. This structure is statically indeterminate of the second degree, so two compatibility 
equations are needed beyond the equilibrium equations. The solution is constructed in the 
same way as at the other examples.   
As f3 occurs at the symmetry axis of the structure, we have: 

),(-),( 33 pxfpx f =  (2.36) 

and  
p)(x,Up)(x,fp)(x,f 3

' 
33 ==  (2.37) 

Since U3 is always a smooth, symmetric function of x, the typical bifurcation of U3 is the 
(stable or unstable) three-branch pitchfork. In our example, U3 has a stable pitchfork at point 
P≈(0,0.4805). (The second co-ordinate of P has been computed numerically as a root 
of 03 =′′f , leading to a sixth-order polynomial equation.) Since U3 is not the global maximum 
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of the bending moment at P, the structure has to be modified in order to have the pitchfork in 
Û as well. One example of such a modification is adding the loads of Figure 2.20/E to the 
structure. This load has the following properties:  

− it leaves the moment diagram in the outer spans invariant and only changes the 
moment diagram in the middle span: it increases U3 and does not influence U2 and 
U1. If N is chosen appropriately, U3 becomes global maximum.  

− the effect of the load is independent of x, so the character of the bifurcation 
remains unchanged. 

Figure 2.24 shows the bifurcation diagram for N=1. At this value of N we can observe the 
‘stable’ symmetric bifurcation in Û. 
 
2.6.2.5 Wedge bifurcation 
Let us regard Figure 2.20/F. The structure is the same as the one in Figure 2.20/D, however, 
the load on the outer spans is now zero. At point V=(0,1) we have U2=U3. At this point, U2 
has a local minimum and U3 (which is a U

(4) type potential, cf. (2.23)) has a local maximum. 
The two functions form a wedge-bifurcation, which appears in Û. The corresponding 
bifurcation diagram is illustrated in Figure 2.25. 
 

 

Figure 2.25: An example of the wedge-bifurcation. 

 

2.6.3 Bifurcation analysis at different symmetries 

The analysis of part 2.6.1 showed that there are typically no bifurcating, asymmetrical optima 
in a one-parameter family of D1-symmetrical examples, at which x=0 is robust optimum (cf. 
Theorem 2.8). The only exception was a special case where the generating function f had the 
odd property as an example-specific degeneracy. 
 
This fact suggests that bifurcating optima might be atypical in one-parameter families of 
structures with arbitrary symmetry, in which x=0 is robust optimum. (In other words: the lack 
of potential improvability implies the lack of optimal improvability.) However, we have 
found a D3-symmetrical counter-example (example 4/A, Figure 2.13/A), which indicates 
either that the counter-example has a specific degeneracy or that the above generalisation 
fails.  
 
To decide this question, we performed a partial bifurcation analysis based only on the 
symmetry and the induced representation of example 4/A, regardless to the inner forces of the 
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specific structure to find some generic bifurcation patterns. The technique of the examinations 
is analogous to that of part 2.6.1.  
 
We consider a one-parameter family of potential functions U(x1,x2,p). According to eq. (2.14), 
U is generated from a smooth function f(x1,x2,p) (i.e. the potential of bar A1B) via 

( )[ ]pfpU i
i

,max),(
2

0
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=
= , (2.38) 

where x=[x1 x2]
T and the matrices Di are elements of the induced representation of example 
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The local classification of U is derived from the classification of f(x,p). The truncated Taylor 
expansion of  f(x1,x2) up to the second-order term is the following: 
 

2
2022111

2
12020111000

)2( xaxxaxaxaxaaT f +++++=  

 

(2.40) 

As already shown in part 2.5.5, bar 1 is invariant under reflection to the OBA1 plane (see 
Figure 2.13/A). Due to this symmetry, the potential of the bar satisfies f(x1,x2)= f(x1,-x2), i.e. 
a01=a11=0 in (2.40). Beyond that, we can assume a00=0 because the constant term is 
indifferent from the point of view of bifurcation analysis. 
 

x2 x1

U( )x

 

Figure 2.26: typical local configuration of the U(x) function at x=0 

 
At typical points, )1(

fT does not vanish, f(x,p) is locally equivalent of the (0,0,0) point of f 

(1)(x1,x2,p)=x1. The U function, generated from  f
 (1)(x,p) via (2.38) has a robust optimum at 

x=0 (Figure 2.26). At generic bifurcation points, 110
)1( xaT f =  vanishes and f(x,p) is locally 

equivalent to the (0,0,0) point of 
( ) 2

202
2
120121

)2( ,, xaxapxpxxf ++=  (2.41) 

The type of the emerging bifurcation depends on a20 and a02. The local shape of U(x1,x2,p) 
cannot be plotted but in a four dimensional diagram, however the bifurcation diagrams are 3 
dimensional, i.e. we can plot the latter ones. There are numerous typical patterns, some of 
them are presented in Figure 2.27. As the results suggest, there is a range of the parameters, 
where the bifurcation pattern contains asymmetrical optima, i.e. such optima are not atypical, 
in contrast with the case of D1-symmetry. 
 



Chapter 2   Structures 
─────────────────────────────────────────────────────────────────────── 

48 

 

x2 x1

p

x2 x1

p

x2 x1

p

 

                                  A                                                     B                                                    C 

Figure 2.27: Numerically determined bifurcation patterns at some values of the coefficients a20 and a02. 

A: both coefficients are positive B: 0<a20≈≈≈≈-a02 C: a02≈≈≈≈2a20<0. In all diagrams, red, green and blue points 
denote pessima, saddle points and optima, respectively. The figures show only half (p>0) of the 

bifurcations. Notice that B is of the same type as the bifurcation in Figure 2.13/A.  

 
 

2.7  EXCEPTIONAL STRUCTURES 

The results of the previous sections predict typical properties of optimisation problems. The 
exact behaviour of an example depends on the inner forces of the specific structure, e.g. the 
typical predictions on robust optimality of x=0 in Section 2.4.3 were in some cases modified 
by the exact value of the gradient g. At some of the numerical examples, the lack of checking 
the value of g yielded misleading results. Such difficulties have already emerged at the D1-
examples of Section 2.3. The exceptional cases can be classified into two distinct classes: 
 
1: The weakest points of S(0) are invariant to some (Example 4) or all (example of Figure 
2.3/A) elements of Γ. As shown in part 2.5.5, the typical predictions can be applied for 
these examples, provided that the structure is considered as only Γ* symmetric, where 
Γ*≡Γ\{ii} and ii denotes elements of Γ, to which some of the weakest points are invariant. 
If Γ≡{ii}, then Γ* is the trivial group, i.e. the structure has typically no robust optimum at 
x=0 even if optimised by only one variable. To recognise these exceptions, one has to find 
(one of) the weakest points of the perfect structure.  

2: The potential associated with the weakest point has a special property, which does not 
follow from the symmetry of the structure (such examples are that of Figure 2.3/B, where 
df/dx≡0 was a surprising identity or example 2/D, where we had ∂f/∂x2≡0). The general 
predictions often fail in these cases. Such exceptions are difficult to recognise: one has to 
determine the exact gradient of the potential function associated with one of the weakest 
points. 

 
As most outstanding property of exceptional examples, the local optimality of x=0 differed 
from the predictions. At the same time, there are examples, where the optimality of x=0 is 
unchanged, however atypical bifurcations emerge in the optimum diagrams. We mention the 
beam of Figure 2.20/C, which is a type 2 exceptional example: the potential of the weakest 
point satisfied d2f2/dx

2≡0. This identity did not change the robust optimality of x=0, but called 
forth a novel bifurcation pattern (the five-branch pitchfork). Thus, in this case the general 
prediction concerning potential improvability of the structure was correct, but the optimal 
improvability of the structural family changed. 
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2.8  SUMMARY 

In this section the improvability of symmetrical structures via small perturbations of their 
symmetry has been examined in cases where the quality of the structures was determined by 
the worst one of several smooth ‘local’ potentials associated with a set of weak points. 
 
 It has been shown that the symmetric configuration of such examples is often a ‘robust’ local 
optimum. Exact (based on the structure’s inner forces) and typical (based on the structure’s 
symmetry and the choice of variables) conditions of robust optimality have been derived. The 
latter ones are considered as the main results of the research. Since robust optima cannot be 
improved by small perturbations, these results are applied to formulate conditions of the 
‘potential improvability’ of symmetrical structures.  
 
We have showed necessary as well as sufficient conditions for the number of symmetry 
breaking variables, which make a symmetrical structure potentially improvable, these results 
were based on the type of symmetry of the structure. We have also determined if a given set 
of variables typically yielded local, potential improvability or not. Both conditions are much 
easier to handle than an explicit verification of optimality at specific examples. The latter one 
means practically the calculation of the exact potential of a wide family of structures (the 
members of which are determined by arbitrary x∈Rd). 
 
These results help to improve symmetrical structures with small perturbations of the 
symmetry. Using the typical condition, one can determine an adequate (and small) set of 
variables. After that, numerical analysis of the structures serves to decide if the given 
variables yield actual improvability and which combination of the variables should be applied 
to get improvement. Without preliminary verification of the variables, one would either have 
to choose many variables or one would risk choosing ‘hopeless’ variables. The former one is 
disadvantageous, because numerical computational time grows exponentially with the 
increased number of variables. 
 
‘Optimal improvability’ of a symmetrical structure was also examined. We demonstrated that 
slightly asymmetrical local optima are extremely rare among reflection-symmetrical 
structures: there are typically no such optima in a one-parameter family of examples if 
perturbed by one variable. (We did not show, although one can easily verify that there are 
typically finite number of such examples in a two parameter family.) This result puts further 
light on the widely-known observation that structures with imperfect reflection-symmetry are 
very rare. We also demonstrated that structures with higher symmetry groups may behave 
rather differently in this respect. Bifurcation analysis concerning another specific symmetry 
group as well as a numerical example showed that slightly asymmetrical optima may emerge 
in a typical manner in a one-parameter family of structures. 
 
All the shown results are ‘typical’ but exceptions are not excluded. Accordingly, we 
demonstrated the existence of exceptional examples in connection with all results. Most of the 
general statements were based on the first- or second-order terms of the Taylor-expansions of 
potentials associated with weak points of a structure. In cases where some of these terms had 
special values (e.g. they vanished), but their speciality did not follow from basic symmetry of 



Chapter 2   Structures 
─────────────────────────────────────────────────────────────────────── 

50 

 

the structures/variables, the ‘typical’ predictions failed. However, such exceptional cases are 
not too frequent, i.e. our results are applicable in most cases. 
 
We also showed several types of structures with detailed numerical analysis as illustration. 
We believe that the perspective offered by bifurcation and representation theory may be 
helpful in the understanding of optimisation problems related to symmetrical engineering 
structures. 
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CHAPTER 3 EVOLUTION 
 
 
  

3.1. INTRODUCTION TO EVOLUTION 

3.1.1 Problem statement 

Symmetry and asymmetry are central concepts in understanding both phylogeny and 
ontogeny of animals (Moore, 2001). Except for sponges, all animal taxa can be characterised 
either by ‘bilateral’ or by ‘radial’ symmetry of their basic body plan as already demonstrated 
in Chapter 1. This distinction is based on having one or several planes of reflection symmetry 
passing through the oral-aboral axis of the animal. The actual body structure is often less 
symmetric than the basic body plan, due to secondary loss of symmetry. In particular, the left-
right symmetry of the bilateral animals is rarely perfect. Different kinds of asymmetries 
emerge in different time scales of evolution. On the one hand, asymmetric locations of some 
organs, as the heart or the liver, are as old as the Vertebrates themselves. On the other hand, 
functional asymmetry of the human brain is probably very recent. While Chapter 2 was 
devoted to the role of structures with imperfect symmetry in optimisation problems (which 
was motivated by the lack of such solutions in the engineering praxis), now we are interested 
in understanding the bifurcation structure of evolutionary transitions from perfect to imperfect 
symmetry (which seem to occur often and to be the result of adaptation). For the sake of 
simplicity, we will replace the world ‘imperfect symmetry’ by simply ‘asymmetry’ in this 
chapter. 
 
Evolution is inherently related to optimisation. ‘Fitness functions’ of the first (which will be 
defined later) can be regarded as the analogues of the potential functions of the second. Some 
models (called ‘frequency independent’ in the biological literature) show complete analogy to 
engineering optimisation, however the mechanism of evolution is in general more than just 
optimisation: a pre-defined global fitness function would predict a single winner of selection; 
optimisation itself is unable to explain the origin of biological diversity. To account for the 
coexistence of parallel branches of the evolutionary tree, one should take into account 
‘frequency dependence’, i.e. the fact that the fitness function depends on the relative sizes of 
competing populations. In case of frequency dependence, evolution itself modifies the fitness 
function all the way. Consequently, one cannot rely on a global optimality criterion for 
predicting the outcome of evolution. According to the theory of adaptive dynamics or AD 
(Dieckmann et al., 1996; Metz et al., 1996; Geritz et al. 1997, 1998; Meszéna et al., 2005), 
directional evolution via small mutational steps still proceeds in the direction of the current 
fitness gradient. However, the ‘uphill’ evolution on the ‘fitness landscape’ is no longer 
guaranteed to end up at a local optimum, a local pessimum can be equally reached (Eshel, 
1983; Taylor, 1989; Christiansen, 1991; Abrams, 1993). In the latter case, the theory predicts 
branching in the evolutionary process (Geritz et al. 1997, 1998). 
 
Due to the possibility of frequency-dependence in biological systems, the mathematical 
background of evolution is more general than that of engineering optimisation. At the same 
time, this chapter will be more specific from another point of view: while engineering 
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structures with arbitrary finite symmetry have been objects of the investigations of Chapter 2, 
the evolutionary research is confined to the case of bilateral (i.e. D1-) symmetry, since the real 
species, which motivated this study (see e.g. 3.8) are all examples of imperfect bilateral 
symmetry. 
 
The primary goal of AD theory is to demonstrate the possibility of evolutionary branching, 
which can be initiated in two different ways (Metz et al., 1996; Geritz et al, 2004): 
I. In a constant environment evolution converges to a branching point and branches there 
immediately. 

II. The population evolves to an evolutionary stable strategy and waits there until an 
environmental change bifurcates this strategy to a branching point. Evolutionary 
branching occurs as a response to the modified conditions. 

Most AD models concentrate on Scenario I, however it is a general perception (cf. punctuated 
equilibrium, Eldredge et al., 1972) that the bulk of evolutionary change is restricted to short 
transitional periods, i.e. most of the time evolution stops, and is waiting for an environmental 
change which will trigger the new phase of rapid evolution. This implies that the seemingly 
more complicated Scenario II. is more relevant for the real process (cf. Geritz et al, 2004).  
 
Our present aim is to apply the adaptive dynamics framework to modelling the emergence of 
asymmetry instead of evolutionary branching. As we will see, asymmetry can emerge via, but 
also without branching. We want to get a deeper insight to the ecological types and 
background of symmetry as well as to decide whether environmental change is an important 
ingredient of this phenomenon or not (cf. the comments on evolutionary branching above). 
The final goal is to determine the generic evolutionary patterns of the emergence of 
asymmetry. 
 
In principle, there are three possible scenarios for the evolutionary loss of symmetry (Figure 
3.1). In the simplest case (a), an initially symmetrical population evolves to be asymmetric. 
This scenario does not contain branching and it can be fully described within the confines of 
the optimisation picture of evolution. 
 

 
Figure 3.1. Three fundamental patterns for the emergence of asymmetry (referred to as type (a), (b) and 

(c)). In each case, T means time (in evolutionary time-scale) and x is a scalar variable corresponding to an 

evolving phenotypic value of individuals. x=x0 corresponds to perfect bilateral symmetry, while x≠≠≠≠0 means 
an asymmetrical phenotype. 

 
In the second scenario (b), two asymmetric populations (which are symmetric mirror images 
of each other), emerge. If we assume a fixed potential (fitness function) then the slightest 
violation of the reflection symmetry between the two asymmetric populations would result in 
a temporary advantage of one of the populations and competitive loss of the other one. This 
scenario becomes robust only by assuming a frequency dependent fitness function. 
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The third scenario (c) assumes a different kind of evolutionary branching. A new, asymmetric 
form speciates away from he original, symmetric one, however, the symmetric one survives, 
as well. This scenario is inconceivable under the assumption of a fixed potential. On the one 
hand, the asymmetric form cannot appear while the symmetric form is optimal, while on the 
other hand, the symmetric form cannot survive when it becomes a local pessimum. 
Nevertheless, the scenario makes sense from the biological point of view: a new species 
acquires a new way of life and does not disturb its ancestor. Hence, frequency dependence is a 
necessary, however not sufficient ingredient of such situations. Any typical branching pattern 
is locally symmetric according to the conventional AD theory. Branching into an unchanged 
and an evolving branch is beyond the confines of the existing approach. As we will see, this 
type of evolution is possible due to the higher-order terms of fitness functions, which are 
usually neglected, but become relevant here, as a consequence of symmetry conditions. Thus, 
this work will conclude that all the three scenarios are likely to emerge in Nature. 
 

3.1.1. Principal results and the structure of Chapter 3 

Below I give the list of the principal results of this chapter. Standard concepts of Adaptive 
Dynamics are used in the formulations. I remark that a short overview on Adaptive Dynamics 
can be found in part 3.2 to enhance readability of the main text.  
 
I started with the identification of the types of symmetry-breaking, which are likely to 
produce significantly different behaviour. The role of frequency dependence in evolution and, 
in particular, in adaptive dynamics is widely known. Considering the evolution of symmetry, I 
found two sub-classes (called strong vs. weak symmetry) in the frequency-dependent case, 
which are, according to my knowledge, not present in the current literature. The 
corresponding research is summarised in the following principal result: 
 
IV:   I introduced a novel classification of symmetry in frequency-dependent ecological 

models, which I called strong/weak symmetry (cf. Section 3.4). I determined the 
corresponding symmetry constraints in the fitness functions (‘strong’ symmetry 
yielded a more specific constraint than ‘weak’ symmetry), and showed that the two 
cases produce different evolutionary behaviour (see further details in Principal Result 
V). I also demonstrated the difference between the two classes on several real 
examples (Section 3.8) 

 
After separating the qualitatively different cases (frequency-dependent vs. independent 
selection, strong vs. weak symmetry, changing environment vs. constant environment) I 
performed a systematic description of the patterns of the emergence of asymmetry in each 
case. My approach focused on the truncated Taylor expansions of the fitness functions in the 
light of the emerging symmetry-constraints.  
 
V:   Studying the evolutionary patterns of the emergence of asymmetry, 

V.1   I listed the generic patterns in adaptive dynamics models (all scenarios of 
Figure 3.1 occurred in some of the cases, see Section 3.5), I also determined the 
exact conditions of the emergence of each one.  

V.2   I demonstrated the possibility of a novel evolutionary bifurcation pattern, in 
which an asymmetrical evolutionary branch develops in a population with 
bilateral symmetry and the new branch coexists with the symmetrical ancestors 
(cf. Section 3.6). I also simulated this pattern numerically on a classical model of 
Levene (Section 3.7) 
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V.3  I showed that the novel pattern occurs only in case of changing environment 
Hence, environmental change is even more important ingredient than in the 
classical AD theory, where evolutionary branching can be demonstrated on 
autonomous models. 

 
Principal Results IV and V have been published in Várkonyi et al (accepted for publication). 
 
The necessary elements of AD for constant environment are summarised in Section 3.2, 
whereas Section 3.3 specifies the problem and the basic assumptions more precisely. Section 
3.4 introduces a distinction between ‘weak’ and ‘strong’ symmetry. Section 3.5 analyses the 
types of the emergence of asymmetry. Section 3.6 summarises the patterns of evolutionary 
branching, Section 3.7 provides a model example. In the last unit, a few real examples are 
reviewed. 
 

3.2. ADAPTIVE DYNAMICS IN CONSTANT ENVIRONMENT 

Here we summarise the essentials of AD theory in constant environment, following Geritz et 
al. (1997, 1998). 
 
We consider evolution of a continuous inherited trait x, referred to as phenotype or strategy. 
(Later we will identify this trait as the symmetry breaking parameter.) We assume that the 
investigated population is large, well-mixed, and it may consist of several sub-populations 
with different strategies x1,x2,…,xL . It is assumed that an underlying model specifies the joint 
dynamics of these strategies. We further assume that this dynamics reaches a unique, global, 
and ‘simple’ (i.e. fix point, periodic or quasi-periodic but not chaotic) attractor on the fast 
time scale, except in degenerate cases (such as the coexistence of identical strategies). 
 
From time to time, the dynamical system is perturbed by the emergence of a new, random 
‘mutant’ strategy y with a small initial number of individuals. The mutant strategy y is always 
similar to an already existing one, which is considered as the ancestor of the mutant. The 
mutants appear on a slower time scale, i.e. when the already existing strategies have already 
reached the global fixed point. 
 
The goal of AD is to understand the generic properties of the emerging evolutionary process, 
independently from the specific dynamical system governing the fast time scale changes of 
the populations. 
 
It is an ongoing debate in evolutionary biology whether AD is a proper description of the 
evolutionary process. (See, for instance, the target review by Waxmann et al. (2005) and the 
related commentaries.) This debate is about the relative importance of ecological and genetic 
factors in evolution (cf. Schluter, 2001). Adaptive Dynamics concentrates on the former 
aspect and strongly simplifies the latter one (through the assumptions of clonal reproduction 
and small mutational steps in x). Using this theory enables us to find similarities between 
structural optimisation and evolution, since the ecological process of adaptation carries a close 
analogy to engineering optimisation.  
 
As already mentioned, AD considers any evolutionary phenomenon in an asexual model, 
however AD-based models with complete sexual genetics (e.g. Dieckmann et al., 1999) seem 
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to support the possibility that speciation of sexual organisms is based on the phenomenon of 
AD-style evolutionary branching (Metz et al., 1996; Geritz et al., 2004). Analogously, a 
complete analysis of the emergence of asymmetry should include the consequences of sexual 
reproduction, but such an extension is beyond the confines of my work.  
 
The following three points introduce three main elements of AD: the concept of fitness 
functions (3.2.1), evolutionary behaviour at non-singular points of models (3.2.2), and 
behaviour at singularities (3.2.3) 
 

3.2.1. Fitness concept 

A standard definition of the fitness of a population is its logarithmic per-capita growth rate, 
i.e. the difference between the birth and the death rates under specific environmental 
conditions. A population grows when its fitness is positive, i.e. when its rate of births is 
higher than its rate of deaths. In particular, one can asses the fitness of a newly emerged, and 
still rare, mutant strategy y when the ‘resident’ strategies x1,x2,…,xL are in equilibrium. This 
fitness is the so-called ‘invasion fitness’ )(,..., 21

ys
Lxxx . There are three possible scenarios with 

respect to the fate of strategy y: 
− It spreads and the new equilibrium will contain this new strategy. (The transition may, 
or may not, involve extinction of some of the residents.) This case corresponds to 
positive invasion fitness, i.e. 0)(,..., 21

>ys
Lxxx . 

− It becomes extinct ( 0)(,..., 21
<ys

Lxxx ). 

− Finding the consequences of the case 0)(,..., 21
=ys

Lxxx  needs more detailed analysis. 

The mutant may spread, disappear or stay sparse according to higher-order effects in 
density. This situation appears generically if y is identical to xi or in case of a linear 
fitness function (e.g. evolutionary game theory, cf. Maynard-Smith, 1982, Meszéna et 
al., 2001 or resource competition with substitutable resources, see e.g. Schreiber et al., 
2003). The latter case is not relevant for us. 

 
Henceforth we will mainly concentrate on the invasion against a single resident, for which the 
invasion fitness )(ysx  trivially satisfies 

.xsx 0)( =  (3.1) 

As a consequence of Eq. (3.1), the Taylor expansion of sx(y) at (x,y)=(x1,x1), in the variables 
∆x=(x-x1) and ∆y=(y-x1),) can be written as  

...)()()( 3
30

2
0211

2
20011000, 1

+∆+∆+∆∆+∆+∆+∆+⋅∆−∆=≈ xayayxaxayaxaaxyys xyxx  (3.2) 

 
The sign of the function sx(y) can be conveniently plotted in a pairwise invasibility plot (PIP). 
(See Figure 3.2/A for an example.) In this plot, horizontal and vertical axes correspond to the 
resident (x) and the rare mutant (y) strategies, respectively. The dark region represents the 
strategy combinations for which the mutant can spread against the resident, i.e. sx(y)>0. 
Observe that the main diagonal is always a borderline between the black and white regions, 
due to Eq. (3.1) 
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Figure 3.2. A: An example of the pairwise invasibility plot (PIP) with two singular strategies. x1* is neither 

convergence stable (i.e. local attractor) nor ESS (i.e. evolutionary stable singular point), nor invasion 

stable. x2* is convergence stable, invasion stable, and ESS. (The stability properties are defined in 3.2.3) x 

decreases in evolution (i.e. the local fitness gradient is negative, see part 3.2.2) if  x>x2* or x<x1* and it 

increases (i.e. the local fitness gradient is positive) if x2*>x>x1* B: The grey area indicates the area of 

mutual invasibility.  

 
Figure 3.2/B represents mutual invasibility: gray region corresponds to strategy pairs (x,y) for 
which both 0)( >ysx  and .0)( >xs y  The joint dynamics of such strategies should have an 

internal stable fixed point corresponding to positive number of individuals for both strategies, 
i.e. such a strategy pair (x,y) is able to coexist. Conversely (since we assumed that an internal 
attractor is globally attracting) coexistence implies the non-negativeness of the two growths 
rates. If the degenerate cases (sx(y)=0 or sy(x)=0) are not considered (cf. the comments at the 
beginning of this subsection), coexistence implies mutual invasibility.  
 
In many evolutionary models there exists a potential function U(y) (also referred to as fitness 
in the biological literature), with the property that the strategy with the larger potential 
outcompetes any strategy with a lower potential. This potential-optimisation picture (which 
emerges also in structural optimisation) can be connected to the concept of invasion fitness 
via the identification 

),()()( xUyUysx −=  (3.3) 

i.e., the invasion fitness of a mutant corresponds to its advantage in potential-fitness. No 
mutual invasibility, i.e. no coexistence is possible in such models. 
 
Evolutionary problems, which are characterised by an invasion fitness of type (3.3), are 
considered as frequency-independent, because fitness advantages/disadvantages do not 
depend on the relative frequencies (abundances) of the competing strategies. In this case,  

0
)(

0110 =−=
∂∂

∂
aa

yx

ysx  (3.4) 

follows from (3.3). 
 
 

3.2.2. Directional evolution 

The direction of evolution via small mutational steps is determined by the ‘local fitness 
gradient’ 
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provided that it is non-zero. If D(x)>0, a mutant with strategy y>x invades the resident 
population with strategy x, whereas if D(x)<0, mutants with y<x can spread. Here we assume 
that xy −  is small enough to guarantee that the linear term dominates the fitness 

advantage/disadvantage of the mutant. Moreover, sx(y)≈D(x)⋅(y-x) >0 implies sy(x)≈D(y)⋅(x-
y)≈D(x)⋅(x-y)<0 in this context, i.e. the initial advantage of the mutant ensures that it ousts and 
replaces the resident, provided that 0)( ≠xD .  
 
As newer and newer mutants arrive and replace their ancestors, this ‘trait substitution process’ 
constitutes a more-or-less continuous evolution in the direction determined by the local fitness 
gradient. See Dieckmann et al. (1996) for the deterministic approximation of this stochastic 
evolutionary process. This ‘directional’ evolution proceeds until a ‘singular’ strategy x* is 
reached, for which D(x*)=0.  
 
In a PIP, evolution to the positive direction is represented by having a black region 
immediately above the main diagonal (strategies between x1* and x2* in Figure 3.2/A; see also 
Figure 3.3/B). Conversely, a black region immediately below the main diagonal represents 
evolution to the negative direction (strategies smaller than x1* or larger than x2* in Figure 3.2; 
see also Figure 3.3/A). Consequently, singular strategies are characterised by intersection 
points of the main diagonal and another borderline (Figure 3.3/C-J). 
 

3.2.3. Properties of singular strategies 

Three distinct kinds of stability can be associated with singular strategies. A singular strategy 
x* is a local attractor (or convergence stable) if and only if D(x), which determines the 
direction of evolution, is positive for x< x* and negative for x> x* in the vicinity of the singular 
point. In the generic case, this yields the condition  
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Note that a convergence stable singular strategy need not be a local fitness maximum. 
Strategy x* is a local fitness maximum (or evolutionary stable strategy, ESS) in the generic 
case, if 
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Finally, a rare x* strategist mutant can invade a population with slightly different strategy x 
(x* is invasion stable), if 0*)( >xsx , which yields generically the condition 
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(3.8) 

The three conditions coincide for frequency independent fitness by Eq. (3.4) (that is why there 
are only ‘stable/optimal’ and ‘unstable/pessimal’ points in a potential U(y)), but not in 
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general. For example, there are singular strategies, which are convergence stable, but 
evolutionary unstable (Eshel, 1983, Taylor, 1989; Christiansen, 1991; Abrams, 1993). 

 
Figure 3.3: Local PIP-s around the point (x,x) at non-singular (A, B) and typical singular (C-J)  x 

strategies. In all cases, grey/white colour corresponds to positive/negative fitness value. 

 
At a typical singular strategy, the fitness function is dominated by the a10 and a01 coefficients, 
thus the local PIP contains two intersecting lines (one of these is the main diagonal), which 
divide the plot into four regions. (Later we will encounter cases when the first nonzero term is 
of higher order.) Figure 3.3/C-J represent the possible local configurations of the PIP around a 
singular strategy. The singular strategy is an ESS, if the vertical line through the intersection 
point lies in white regions (cases G-J) and it is invasion stable if the horizontal line lies in the 
black part (cases C,D,I,J). Convergence stability is indicated by a black region above the main 
diagonal on the left side and below the main diagonal on the right (cases C,H-J). 
 
The really important singular points are the convergence stable ones, because an evolving 
population does not come close to a convergence-unstable strategy. At the same time, if a 
population’s strategy is already x*, the two other stability criteria determine its fate.  
− If x* is an ESS (cases G-J), it cannot be invaded by any similar mutant, i.e. it is a final rest 
point of the evolutionary process.  

− If it is neither ESS nor invasion stable (cases E,F), similar mutants spread in a population 
of x* strategists and the latter ones get extinct. (The overall result is generically 
divergence from x* because the E and F type singularities are not convergence stable.)  

− Finally, at an evolutionary unstable but invasion stable strategy (cases C,D), both the 
resident and the mutant are preserved and evolutionary branching occurs in such a way 
that both sub-populations diverge from the singularity. This branching process is discussed 
in Section 3.6. We remark that case D is usually not considered as a branching strategy, 
because its convergence instability prevents populations from converging to it, i.e. 
branching practically cannot occur. 
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3.3. BASIC ASSUMPTIONS 

My goal is to describe symmetry-breaking via the evolution of an inherited continuous scalar 
strategy x, in accordance with the introduced framework of AD. Similarly to the symmetry-
breaking optimisation variables of Chapter 2, the variable x should fulfil two restrictions, 
which are analogues of points (i) and (ii) in Section 2.2: 

(i) There is one and only one strategy x=x0, which corresponds to bilaterally 
symmetric body structure. The evolutionary development is assumed to start with 
a population with exact symmetry (i.e. with strategy x0). This condition enables us 
to simulate symmetry-breaking by the model. 

(ii) The set of strategies x∈R is invariant to reflection, i.e. for arbitrary x1∈R there 
exists x2∈R so that the mirror image of an x=x1 strategist is an x=x2 strategist. The 
lack of this property would mean that our simplified model violates the symmetry 
of the biological system. Furthermore- as a purely technical condition-we assume 
that the mirror image of an x0+∆x strategist is an x0-∆x strategist (cf. the case of 
reflection symmetry and one variable in Section 2.3). 

 
 

0 x  
Figure 3.4: An example of symmetrical strategies: x is the slope of the spiral axis of the shell. x>0 means 

dextral while x<0 means sinistral shell. 

If both conditions are fulfilled, we call x0 ‘symmetrical strategy’. As an illustration, consider a 
geometrical model of snail shell forms (Raup, 1962) with three parameters, one of which is 
the slope x of the spiral (Figure 3.4). If x=0, we have a curve in a plane, generating a flat 
shell, reflection-symmetric with respect to this plane. On the other hand, if x>0, the shell is 
peaked and asymmetrical (dextral). With a negative value of x, the result is a reflected 
(sinistral) shell. In such a situation x=0 is a ‘symmetrical strategy’. 
 
We assume in line with AD methodology (see more details in Section 3.2) that strategy x can 
be modified only by small (though not infinitely small) mutational steps. In particular, we do 
not allow such “macro” mutations, via which ‘left-handed’ offspring of a ‘right-handed’ 
parent appear. See the Discussion for the consequences of some different assumptions. 
 
We have to take into account that ontogeny of a symmetric body plan is simpler (and more 
ancient) than that of an asymmetric one. That is why we assume exact body symmetry, as a 
starting point. Then, emergence of asymmetry can be initiated in two ways (analogous to the 
two categories of evolutionary branching in the Introduction): 

I. A change in the developmental program allows body asymmetry and asymmetry 
proves to be advantageous. This scenario can happen in constant environment. 

II. The possibility for asymmetry is already present and an environmental change makes 
asymmetry advantageous. 

 
Beyond the above two categories, we will distinguish between the following types of 
symmetry-breaking from the ecological point of view: 
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− symmetry-breaking in frequency dependent models. Within this class, we 
introduce the following two subclasses (see Section 3.4) 
o case of strong symmetry: the model behaviour depends on the relative sizes of 

competing populations in general, but not on the relative sizes of “lefty” and 
“righty” populations, which are mirror images of each other. With other words, 
asymmetrical individuals and their mirror images are ecologically identical.  

o case of weak symmetry: asymmetrical individuals and their mirror images are 
not identical. 

− symmetry-breaking in frequency independent models. 
Due to the two types of classifications we will investigate 3×2=6 separate cases in Section 
3.5. 
 

3.4. TWO TYPES OF SYMMETRY-BREAKING  

The question of evolutionary advantage/disadvantage of symmetry breaking is relevant only if 
the environment itself possesses the symmetry in question, that is, if replacing all individuals 
of the model by the reflected ones does not affect the model behaviour. In the frequency-
independent models, this condition yields  

U(x0+∆x)= U(x0-∆x), (3.9)  

where ∆x denotes x-x0. According to eq. (3.9), the fitness of an individual is independent of its 
left/right handedness. This means that ‘left-’ and ’right-handed’ individuals are completely 
equivalent from the point of view of ecological interactions: if only a part of the individuals 
are replaced by reflected ones in a population, this change does not affect the model 
behaviour either. 
 
In the frequency-dependent case, the analogue of eq. (3.9) is 

)()( 00 00
yxsyxs xxxx ∆−=∆+ ∆−∆+

, (3.10
)  

which does not necessarily mean the equivalence of left- and right-handed individuals. Thus, 
two levels of symmetry can be distinguished in case of frequency dependence, i.e. when the 
interactions between the individuals affect the fitness function. We call a symmetrical strategy 
strongly symmetrical if all of the interactions are independent of left/right handedness. In this 
case, one can replace some (but not necessarily all) individuals by reflected ones and find the 
same model behaviour. In contrast, if the interactions depend on the handedness of the 
affected individuals, only the simultaneous reflection of all individuals is an invariant 
transformation of the model. The latter situation will be referred to as weak symmetry. 
 
The symmetry condition (3.10) implies that all terms of odd order vanish in the Taylor 
expansion of the invasion fitness function at point (x0, x0). Thus, in case of weak symmetry, 
the general form of the expansion is more specific than Eq. (3.2): 
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 (3.11) 

Since a00 vanishes, the symmetrical strategy x0 is always singular. Since the coefficients a10 
and a01 remain generically non-zero, the classification of the possible PIP-s for a weak 
symmetry remains the same as in Figure 3.3/C-J.  
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In contrast, the strong symmetry is characterised by a more restrictive condition: 

yxsyxsyxsyxs xxxxxxxx ∆−=∆+=∆−=∆+ ∆−∆−∆+∆+ 0000 ()()()(
0000

.
 (3.12) 

which corresponds to the fact that reflection of only the residents or only the mutants are 
invariant model transformations. In this case the general form of the invasion fitness function 
is: 

...)()()( 4
02

22
11

4
20

2
01

2
1000

22
, 0

+∆+∆∆+∆+∆+∆+⋅∆−∆=≈ ybyxbxbybxbbxyys xyxx
. (3.13) 

The expansion contains only the terms, which are even in both variables, due to the more 
restrictive symmetry condition. Comparison with (3.11) yields a01=a10=b00 and similar 
relations for the higher-order coefficients.  
 
For strong symmetry, b00<0 (Figure 3.5/A) implies convergence, evolutionary and invasion 
stability, because 
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Figure 3.5: Local PIP-s for strong symmetry. A, B: x0 is a generic 

strongly symmetrical strategy (b00≠≠≠≠0); C-H: x0 is a degenerate 
strongly symmetrical strategy (b00=0). Grey/white colour 

corresponds to positive/negative fitness values. 

 
Such a strategy is an attractive endpoint of evolution. Conversely, b00>0 leads to a singularity, 
which is unstable in all senses (Figure 3.5/B), i.e. it is a repellor.  
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 Later, we will also be interested in the case of vanishing b00. If b00=0, the character of the 
singular point is typically determined by b10 and b01 (Figure 3.5/C-H). The six emerging 
configurations are partly invasion stable (C,D,H), partly ESS (F-H), and the two properties are 
not equivalent. In particular, C and D are branching strategies.  
 
 Note the geometrical interpretation of the two kinds of symmetry. Weak symmetry is 
equivalent to the fact that the PIP is invariant under a rotation of 180° around the point (x0,x0). 
For strong symmetry, the PIP has a vertical and a horizontal symmetry axis at the point 
(x0,x0).  
 
As already noted, weak and the strong symmetry are equivalent in frequency independent 
models, because frequency-independence means that the strategy of the competitors 
(including the handedness) does not affect the fitness of a strategy. Moreover, we have in this 
case 
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3.5.  EMERGENCE OF ASYMMETRY  

In this Section we study the evolutionary loss of bilateral symmetry. We mentioned in Section 
3.3 that it can occur in constant environment (case I) or it can be induced by environmental 
change (case II). In the latter case, we suppose that, initially, the symmetrical strategy is 
evolutionary stable and the population assumes this strategy. The phenomenon will be 
discussed separately for models without frequency dependence (Section 3.5.1), as well as for 
weak symmetry (Section 3.5.2), and strong symmetry (Section 3.5.3). with frequency 
dependence  
 

3.5.1. Frequency independent models 

It has been demonstrated in Section 3.2 that evolutionary and invasion stability are equivalent 
in frequency independent models and branching cannot occur. Thus asymmetry can only 
emerge via type (a) divergence from the symmetrical strategy in constant as well as in 
changing environment. (Divergence can be realised at Figure 3.5/B type strategies.). This 
phenomenon is closely related to structural optimisation with a global criterion (yielding a 
smooth potential, see Sections 2.1.1-2). At the example of Figure 2.1/C, the symmetrical 
optimum bifurcates into a pessimum if a model parameter (p) is varied. The same 
phenomenon initiates the evolutionary emergence of asymmetry in case of changing 
environment (i.e. time-dependent model parameters). 
 

3.5.2. Weak symmetry 

It has been shown in Section 3.4 that the classification of generic weakly symmetrical 
strategies is the same as that of singular strategies without symmetry (see Figure 3.3). In 
constant environment (case I), asymmetry can emerge via type (a) divergence (cf. Figure 3.1) 
if the possibility of asymmetry develops when the population is at a repellor strategy (such as 
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Figure 3.3/E,F). Alternatively, type (b) branching may occur if asymmetry becomes reachable 
at a branching strategy (Figure 3.3/C,D). Notice that evolution starts exactly from the singular 
point, so convergence stability is irrelevant and Figure 3.3/D is also a branching point. The 
steps of this kind of branching process are summarised in Section 3.6 parallel with a different 
branching pattern. 
 
Changing environment (case II) can be described by a moving point in the a10-a01 plane 
(Figure 3.3), which is originally located in the ESS region. There are two generic possibilities 
for loosing evolutionary stability: reaching the border in a non-invasion stable or in an 
invasion stable state (Figure 3.6, case 1 and 2). In case 1, type (a) divergence from the 
symmetrical strategy occurs, while in case 2, an ordinary (type (b)) evolutionary branching is 
initiated.  

 

 

 

Figure 3.6: The parameter plane for weak 

symmetry (cf. Figure 3.3, eq. (3.11)). (3.13)). Our 

models are assumed to start from the ESS (grey) 

region. Arrows indicate the two generic ways (1, 2) 

of losing the ESS property in a time-dependent 

model.  

 Figure 3.7: The parameter line for strong 

symmetry (cf. Figure 3.5, eq. (3.13)). Our 

models are assumed to startfrom the ESS 

(grey) region. The arrow indicates the way of 

losing the ESS property in a time-dependent 

model. 

 

3.5.3. Strong symmetry in frequency dependent models 

Despite frequency-dependence, the ESS and the invasion stability conditions are generically 
equivalent at strongly symmetrical strategies. Thus, the common way of the emergence of 
asymmetry is of type (a), analogously to part 3.5.1. However, as the degenerate cases of 
Figure 3.5/C-H break the equivalence, a different and surprising scenario may be realised in 
case II (changing environment) in presence of slow variation of b00. The bifurcation process 
(Figure 3.7) has the following main steps: 

• Initially, b00<0 and the symmetrical strategy is Figure 3.5/A type (a stable 
evolutionary endpoint) 

• The coefficient b00 approaches zero and one of the configurations of Figure 3.5/C-H 
emerges temporarily 

• After some time, b00 gets far from zero on the positive side. The degenerate 
configuration disappears and the strategy becomes Figure 3.5/B type (repellor). 

If the mutation step was infinitesimally small, the higher-order terms would dominate the 
Taylor expansion (3.13) only for infinitesimally short period, not long enough to have any 
effect on the evolution of the population. However, we consider small, but finite steps in the 
strategy space. In this case the 4th-order terms dominate the quadratic ones in a finite interval 
of b00, which may correspond to a long time interval, if the environmental change is 
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sufficiently slow. Here evolutionary development of the population depends on the properties 
of the temporarily emerging, degenerate configuration:  

• If the degenerate state is neither invasion stable nor an ESS (Figure 3.5/E), type (a) 
divergence occurs as soon as the close-to-degenerate state is reached. 

• If the degenerate state is an ESS (Figure 3.5/F-H), the population stays symmetric, but 
later, as the degenerate state is replaced by a Figure 3.5/B type repelling strategy, 
divergence occurs again. 

• If the degenerate state is invasion stable but not evolutionary stable (Figure 3.5/C,D) 
an evolutionary branching occurs in the close-to-degenerate state. In Section 3.6, we 
describe this branching process in detail and show that it is of type (c).  

 

3.6. A NOVEL WAY OF EVOLUTIONARY BRANCHING 

The main goal of this section is to describe the details of the novel branching process of a 
population with strongly symmetric strategy, which was recognised in Section 3.5.3. (This is 
the situation b10<b00≈0<b01, see Figure 3.5). This process differs significantly from the 
generic pattern of branching without symmetry (Geritz et al., 1998). We describe the two ways 
of branching simultaneously to highlight the similarities and differences. Notice that the 
generic branching pattern in case of weak symmetry (Section 3.5.2) is the same as the latter 
one.  
 
The steps of the two processes are collected in the left (standard case) and right (strongly 
symmetric case) column of Table 3.1. In both cases, row 1 presents the fitness functions 
before branching, row 2 shows why two evolving branches coexist, and row 3 presents the 
corresponding fitness functions. It is demonstrated in row 4, that the number of coexisting 
branches cannot be more than two. Finally, the directions of evolution are determined in row 
5.  
 
In the standard case, the branching type evolution starts with the arrival of a mutant, which is 
located on the opposite side of the singularity x* than the ancestor (row 2, left column). The 
consecutive mutation events always end up with extinction of the middle strategy (row 5, left 
column), i.e. two sub-populations evolve away from each other, resulting in a type (b) 
branching. In the strongly symmetric case, branching starts with the coexistence of a new, 
asymmetric mutant and its symmetric ancestors (row 2). The sequence of mutation-extinction 
steps results in a branching, in which one of the strategies stays symmetric while the other one 
evolves away; that is, a symmetric-asymmetric pair emerges in a type (c) branching (row 5, 
right column). 
 
Evolution follows the introduced patterns as long as both sub-populations are close to the 
singular strategy. Later, the asymmetrical branch (at type (c) branching) or both branches (at 
type (b) branching) continue to evolve directionally according to their respective local fitness 
gradient, as demonstrated in Section 3.2.2 for a lone strategy. 



Chapter 3   Evolution 
─────────────────────────────────────────────────────────────────────── 

65 

 

 
 standard case (Figure 3.3/C) case of strong symmetry (Figure 3.5/C,D) 

1 
 
The fitness function sx*(y), as a 
function of y, has a minimum at 
y=x*. Locally, it can be 
approximated as (cf. Eq. (3.2), 
Figure 3.8/A). 

The fitness function )(
0
ysx , as a function of y, has a 

minimum at y=x0. Locally, it can be approximated as 
(cf. Eq. (3.13),  Figure 3.9/A) 
 

 ( )201* *)( xyaysx −≈                        
( )4001)(

0
xybysx −≈

                           (3.18) 
2 Two strategies near to, but at the 
opposite sides of the singularity (i.e. 
x1≤x*≤x2) mutually invade each 
other and, consequently, are able to 
coexist.  

If x1 is near to x0, x1 and x0 mutually invade each 
other, i.e. they are able to coexist 

3 If x1 and x2 are coexisting (cf. row 2) 
and both of them are near to x*, the 
invasion fitness is  
 

If the x1=x0+∆x1 and x0 strategies are coexisting (cf. 
row 2) and x1 is near to x0, the invasion fitness has a 
double root at x0 and two roots arranged 
symmetrically around x0: 

 ( )( )2101)(
21

xyxyays xx −−≈  ( ) ( )( )1010
2

001)(
10

xxyxxyxybys xx ∆+−∆−−−≈   (3.19) 

 (see Figure 3.8/B, eq. (3.2)), because 
x1,x2≈x* implies )()( *21

ysys xxx ≈  

and 0)()( 21 2121
== xsxs xxxx  by 

definition . 

(see Figure 3.9/B, eq. (3.13)), because x1≈x0 implies 
)()(

010
ysys xxx ≈  and 0)()( 10 1010

== xsxs xxxx  by 

definition, and finally =∆− )( 010
xxs xx )( 010

xxs xx ∆+  

for any ∆x, due to eq. (3.12). 
4 If more than two strategies 
coexisted, the corresponding fitness 
function would be 0 at each of them. 
The locally second-order invasion 
fitness function cannot have more 
than two zeros, i.e. coexistence of 
more than two strategies is 
impossible in the vicinity of x*. 

Generically only one strategy can coexist with x0, 
because the arrival of two strategies with exactly the 
same distance from x0 (x1=x0+∆x, x2=x0-∆x) is 
improbable and otherwise (x1=x0+∆x1, x2=x0+∆x2) the 
fitness function should have zeros at x0±∆x1 and 
x0±∆x2 and a double root in x0. This is impossible, 
because it has only four roots in the vicinity of x0. 

 
5 
If a new mutant emerges in presence 
of a coexisting pair, one of the three 
should become extinct by row 4. 
The strategy becoming extinct 
should have a negative growth rate 
when it has become rare already. As 
a01>0, this condition holds only for 
the middle strategy, i.e. if x1<x2<x3 
are the three strategies, x2 will 
become extinct independently of 
which of them was the mutant. 
(Figure 3.8/C.) 

When a new mutant appears at the equilibrium of x0 
and another strategy, one of the three strategies (ie. x0, 
x1=x0+∆x1 and x2=x0+∆x2) should become extinct by 
row 4. Assume that ∆x1<∆x2. Then x1 will 
become extinct, because the strategy becoming extinct 
should have a negative growth rate when it has 
become rare already (Figure 3.9/C). 

Table 3.1: The course of  the branching process at a generic branching strategy x* (standard case, left 

column), and the branching process emerging at a degenerate, strongly symmetric strategy x0 (right 

column). 
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Figure 3.8: Fitness of possible mutants at a standard branching strategy without symmetry. A: before 

branching B: after branching C : fitness functions related to the coexistence of all pairs of strategies from  

x1, x2, and x3.  
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Figure 3.9: Fitness of possible mutants at a degenerate, strongly symmetric branching strategy. A: before 

branching B: if x0 and another strategy coexist C: fitness functions related to the coexistence of all pairs of 

strategies from  x0, x1, and x2.  

 

3.7. A MODEL EXAMPLE 

In this Section we present a specific model to illustrate the type (c) branching. It is based on 
the examples of Levene (1953), Geritz et al. (1998). There are two parameters in the model, b 
and T, the latter representing the time-dependence of the model. 
 

3.7.1. Description of the model 

Consider a population of x1,x2,…,xn strategists, the number of individuals is N1,N2,…,Nn, 
respectively. The model assumes non-overlapping generations, which live in a spatially 
heterogeneous environment consisting of two different patches. A limited number of 
individuals, denoted by K1 and K2, live in each of the patches. The total number of individuals 
is constant:  

.2121 KKNNN n +=+++ K
 

(3.20) 

 
The lifecycle of each generation consists of three parts. 

− During dispersal, the offspring is distributed randomly in both patches; the 
frequency of a strategy xk among the offspring is proportional to the frequency of 
the parents with the same strategy, i.e. to Nk. 

− In the second phase, the offspring is subjected to frequency-independent selection, 
which changes the relative frequencies of the strategies in both patches 
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independently. The chance of an xk strategist in the i
th
 patch of surviving this phase 

is proportional to a given function fi(xk). 
−  In the third phase, the survivors spread in both patches until their numbers reach 

the capacities (K1 and K2) of the patches. The relative frequencies of the strategies 
in each of the patches are constant in this phase. 

In this model, the chance of surviving the second phase is 
422

12
1 )( xxbexf −⋅−= . (3.21) 

422
22

2 )( xxbexf −⋅= . (3.22) 

with b1 and b2 positive parameters (see also Figure 3.10). Since both functions are 
symmetrical, x=0 is a symmetrical strategy. Observe that this is an example of strong 
symmetry, hence there is no difference between x and –x strategists.   
 
The optimal strategy is ±b2 in the second patch, i.e. there is an asymmetrical optimum. In the 
first patch, there is a symmetrical optimum the ‘strength’ of which is determined by b1  
 

  
Figure 3.10: The functions f1(x) and f2(x). 

Consider a rare mutant with strategy y in an equilibrium population of x1,x2,…,xn strategists 
with equilibrium numbers Ñ1, Ñ2,…, Ñn. If Ny is the (small) number of mutants in a 
generation, the Ny’ number of mutants in the next generation can be approximated as 
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Consequently, the logarithmic per-capita growth rate of the rare mutants is   
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To reduce the number of model parameters, assume that b1=b2=b and let the parameter T be 
defined as 

21

2

KK

K
T

+
= . (3.25) 

We can determine the fitness function of rare mutants in this model in case of a monomorphic 
resident population (with strategy x): 

( ) ( ) ( )[ ]4422244222 22
1log)(

yxxybyxxyb

x eTeTys
−+−⋅−+−⋅− ⋅+⋅−= . (3.26) 

As it is expected, the fitness function satisfies the condition of strong symmetry (3.12). 
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The results for the dimorphic case (two resident populations) are more involved. First, the 
equilibrium densities Ñ1, Ñ2 of the two resident populations have to be determined from the 
following two equations:  
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Second, the results for Ñ1 and Ñ2 and Eq. (3.21), (3.22) and (3.25) are substituted into (3.24) 
to obtain the fitness function. The results are quite complicated and they have to be analysed 
numerically. 
 
The fitness function for three or more coexisting strategies is uninteresting, since our analysis 
(in Section 3.7.2) shows that the maximal number of strategies in stable coexistence is two.  
 

3.7.2. Singular strategies and coalitions in the model 

We investigated the behaviour of the model at different values of b and T. Analysis of the 
fitness function (3.26) yielded the following results: 

− x0=0 is singular strategy, since it is a symmetrical strategy. 
− We determined the fitness gradient (see Eq. (3.5)) by deriving Eq. (3.26) with respect 
to y. Solving D(x*)=0, we found another pair of singular strategies: 

2
1if12),( >−⋅⋅±=∗ TTbTbx . (3.28) 

− We analysed the stability properties of the singular strategies by substituting Eq. 
(3.26) into the conditions (3.6) and (3.7). The x0=0 strategy is ESS, invasion and 
convergence stable if 2

1<T , it is degenerate if 2
1=T and it is unstable in all senses if 

2
1>T . 

− The asymmetrical singular strategy is ESS invasion and convergence stable if b<2-1/4, 
or if b>2-1/4 and T>T* with   

48

1

4

1

2

1
)(

b
bT −+=∗ . (3.29) 

Otherwise it is a branching strategy (convergence and invasion stable but not ESS). 
− In the degenerate state ( 2

1=T ) state, the stability of the symmetrical strategy can be 

determined from fourth derivatives of (3.26) with respect to x and y, which determine 
the b10 and b01 coefficients (see Eq. (3.13) and Figure 3.5). The symmetrical strategy is 
ESS (Figure 3.5/H type) if b<2-1/4 and it is branching strategy (of type Figure 3.5/C) if 
b>2-1/4. 

 
Further, numerical computations showed that:  

− There exists a convergence stable and ESS coalition of symmetrical x1=0 and 
asymmetrical x2(b) strategists at appropriate parameter values.  

− The value of x2(b) is independent of T.  
− The coalition exists if Tmin(b)<T<Tmax(b). If T<Tmin(b), the asymmetrical strategy 
vanishes, while if T>Tmax(b), the symmetrical strategy gets extinct.   

 
The PIP associated to the fitness function (3.26) is illustrated in Figure 3.11 for some values 
of b and T. We can also construct an evolutionary bifurcation diagram of the model, which 
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shows the singular strategies and coalitions at specific values of b (Figure 3.12). We also 
plotted x2(1), Tmin(1) and Tmax(1) in Figure 3.12. For other values of b, the functions x2(b) and 
Tmin(b) can be determined numerically and Tmax(b) is the solution of x2(b)=x*(b,Tmax(b)) (cf. 
Eq. (3.28)). 

 
Figure 3.11: PIP of the model at specific parameter values (the grey region means positive fitness and the 

white means negative) 

 

Figure 3.12: Bifurcation diagram of the model at b=0.5 and b=1. 

 

3.7.3. Branching in the model 

As we already showed, the model has a degenerate, symmetrical branching strategy at 2
1=T  

and b>2-1/4. This means that a type (c) branching occurs at appropriate values of b (e.g. b=1), 
if the parameter T (representing the capacity of the second patch relative to the first one) 
slowly increases on evolutionary time scale and it reaches 1/2. Figure 3.13/A, illustrates this 
branching in numerical simulations.  
 
If the increase of T is faster, the model behaviour is different:  type (c) branching is replaced 
by type (a) divergence from the symmetrical strategy, followed by an ‘ordinary’ branching 
(Figure 3.13/B).  
 
If b<2-1/4, no branching occurs. If T is increased and it reaches 1/2, the population diverges 
from the symmetrical strategy (type (a)) and converges to the asymmetrical singular strategy 
(Figure 3.13/C), which itself slowly moves with the increase of T. 
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At our example the increased speed of environmental change modified the pattern of the 
emergence of asymmetry (the type (c) branching of Figure 3.13/A was replaced by type (a) 
divergence and a standard branching in an asymmetrical state, as seen in Figure 3.13/B), but 
not the final outcome. There are other models where the higher speed of environmental 
change prevents branching, and modifies the evolutionary outcome as well. 

 

Figure 3.13: Numerical simulations of the model. Thin lines indicate the singular strategies in the model as 

functions of T
 
. A-B: with b=1

 
and different speeds of environmental changes (T). In both cases, the two 

coexisting branches converge to the stable coalition (x1;x2)≈≈≈≈(0;±±±±0.953), cf. Figure 3.12/B.  C: with b=0.5. 
Branching does not occur, evolution converges to the stable singular strategy.  

 

3.8. BIOLOGICAL EXAMPLES OF SYMMETRICAL 
STRATEGIES 

Some illustrative examples of strongly and weakly symmetrical strategies based on real 
populations are summarised in this section.  
 
A widely known example of the secondary loss of bilateral symmetry is the beak of crossbills, 
which we introduce based on Benkman (1996), see also other works of the same author. The 
asymmetry of the beak is measured by the angle x of the lower mandible of crossbills: x=0, 
x<0 and x>0 correspond to straight, leftward curved and rightward curved lower mandibles, 
respectively. Needless to say, x=0 is a symmetrical strategy.  
 

 
Figure 3.14: Schematic upper view of a crossbill (head to the right) with lefty beak standing on a branch 

next to a conifer. The bird can pick seeds from the lower left quarter of the conifer (in grey colour). The 

bird could stand on the other side of the conifer as well, in that case it could reach the seeds in the upper 

right quarter (also grey). Seeds in the white quarters of the conifer are reachable only by a righty beak.  

  
Crossbills use their special beaks to pick out seeds from pinecones. Many of them, such as the 
White winged crossbill subspecies Loxia leucoptera megaplaca forage on pinecones, which 
cannot be twisted or removed from the trees (Figure 3.14). Individuals can pick out seeds 
from only a part of the conifers depending on the direction of their beak. Thus, ‘lefties’ and 
‘righties’ are ecologically different:  the rarer one has ecological advantage in comparison 
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with the more common one. The difference between lefties and righties is also indicated by 
the stable 1:1 ratio of the two morphs. This is an example of a weak symmetry. In contrast, the 
subspecies Loxia leucoptera leucoptera and bifasciata forage on different conifers, which are 
easily removed or twisted. In this case no ecological difference seems to exist between the 
two types of beaks. Accordingly, significant variance in the ratio of the two morphs was 
observed in different populations. This is an example for strong symmetry. 
 
Different species of Cichlid fishes in Lake Tanganyika provide another pair of examples. The 
scale-eating Perissodus microlepis attack other species from behind and try to byte scales 
from the left or the right side of the victim (Takahashi et al, 1994). They have two 
asymmetrical forms in correspondence with the hunting strategy: Some of them open their 
mouth to the left, while the other ones have right-sided mouths. If x is the angle of mouth 
opening (x=0 for symmetrical mouth, x<0 for left-sided and x>0 for right-sided mouth), x=0 is 
again a symmetrical strategy. It is weakly symmetrical, because a small group of –x in a big 
population of x strategists would have higher fitness than the frequent phenotype, because of 
the unexpected way of attacking the victims and the inequality sx(-x)>0, contradicting Eq. 
(3.12).  
 
The herbivorous species Telmatochromis temporalis has similar, asymmetrical mouth, used to 
bite weed from the side of rocks while swimming along them (Mboko et al., 1998). As the 
weed does not adapt itself to the ‘hunting strategy’ of the fish, the x and –x strategists are 
ecologically equivalent in this case. Thus, x0=0 can be considered as a strongly symmetrical 
strategy.  
 
More recent studies of Lake Tanganyika populations show, that the slightly asymmetrical 
body structure of many Cichlid species might have a different reason: it is an adaptive result 
of cross-predation in food chains. (Lefty predators tend to prefer righty victims and vice 
versa, see Nakajima et al., 2004). According to these results, all these species are examples of 
weak symmetry.  
 
Finally, the shell chirality of snails, introduced in Section 3.4, becomes important at mating 
(Asami et al., 1998). The mating strategy of some pulmonate land snail species, which have 
relatively flat shells, prevents mating with individuals of opposite chirality, while a different 
mating behaviour of other, tall-shelled species permits it. The different chirality has in the 
latter case only minor disadvantage according to experiments of Asami et al (1998). The first 
situation is a typical example of weak symmetry and the second is close to strong symmetry 
(which would be perfect if there was no disadvantage of cross-mating at all).  
 

 weak strong 
non frequency-
dependent 

 (a) 

frequency dependent 
(a) (b) 

(a), 
+(c) only in time-
dependent models 

Table 3.2: Types of emergence of asymmetry. Note that symmetry is always strong in absence of 

frequency dependence. (a), (b) and (c) refer to the scenarios of Figure 3.1. 
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3.9. DISCUSSION 

In this chapter, we examined the evolutionary patterns of the emergence of secondary (partial) 
asymmetry in species with bilateral symmetry in their basic body plan. Three distinct 
scenarios have been described, as illustrated in Figure 3.1. Two levels of bilateral symmetry 
(‘strong’ and ‘weak’) have been defined and the difference has been illustrated on biological 
examples. We determined the typical evolutionary patterns in different classes of models 
concerning symmetry.  
 
The results are summarised in Table 3.2: the type (a) emergence of asymmetry (when the 
superior asymmetrical form outcompetes the inferior symmetrical one) is possible in all three 
cases. Type (b) (when two asymmetrical variants emerge, avoiding competitive exclusion) 
requires weakly symmetrical frequency dependence. Finally, type (c) (when an asymmetrical 
form branches away from the unchanged and surviving symmetrical form) is restricted to the 
case of frequency-dependent strong symmetry. 
 
Type (c) is a novel way of evolutionary branching. It differs from the usual pattern since the 
initial speed of divergence is not equal for the two branches. It relies on the transient 
dominance of the higher-order terms in the evolutionary models, i.e. on a sufficiently slow 
change of the environmental parameters. We simulated this type of branching on a 
symmetrical version of Levene’s classical multi-patch model. 
 
Our study assumes that the degree and the direction of asymmetry (both determined by the 
phenotypic value x) are inherited from the parents and mutations cause small deviation in x. In 
some cases, the direction of asymmetry develops randomly at some stage of the individual 
development (see Brown et al, 1990, Govind, 1989). This different inheritance mechanism 
would leave type (b) unchanged, and modify type (a) or (c) in such a way that a second 
asymmetrical branch with opposite handedness also appears. 
 
It is also possible that, while handedness is inherited from parents, a special ‘reflected’ 
mutation (i.e. an offspring with opposite handedness) may occur with some probability. This 
is the case e.g. if the handedness is determined by a simple two-allele locus. If this type of 
mutation is frequent enough, again, the asymmetric variants will populate both asymmetric 
branches in types (a) and (c). However, if the reflected mutations are exceedingly rare, the 
relative frequencies of the lefties and the righties will change randomly. 
 
An interesting way to continue our research would be to detect the patterns of the emergence 
of asymmetry in Nature. Empirical study of speciation is very difficult: while it is too slow for 
direct observation, simultaneously it is too fast to leave a fossil record (Eldredge & Gould, 
1972). As a consequence, theoretical insight always played an important role in this field 
(Turelli et al. 2001). We contributed to this endeavor by investigating the bifurcation patterns 
of emergence of body asymmetry. We are intrigued to learn whether the novel way of 
evolutionary branching we uncovered is a part of the natural process of evolution. 
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CHAPTER 4 SUMMARY AND PRINCIPAL 
RESULTS 

 

 
 
In this work I studied the relation between symmetry and optima in two distinct fields of 
science. My main goal was to study the existence and emergence of objects with “imperfect” 
symmetry, i.e. objects with slight asymmetry. The structural topic was motivated by the 
apparent lack of engineering structures with imperfect symmetry, while the research 
concerning evolution was based on the numerous observations of imperfect symmetry in 
biology. Both tasks are connected to optimisation, although, as it has been shown, evolution is 
more than a simple optimisation process. In fact, both topics can be considered 
mathematically as generalisations of elementary catastrophe theory, classifying the 
singularities of families of smooth potentials. In structural optimisation, the non-smoothness 
of the potentials lead to the generalisation of the classical theory, while in case of  
evolutionary models the fitness functions can be regarded as a generalisation of potentials.  
 
Not surprisingly, generalisation of elementary catastrophe theory led to results, which are not 
predicted by the classical theory. In case of engineering structures I identified symmetrical 
optima surviving beyond bifurcation points while in case of evolutionary models I could 
identify scenarios where the symmetrical strategy survived after the emergence of a new, 
asymmetrical branch. These new phenomena not only proved to be physically relevant, the 
two mentioned examples also indicate a strong analogy between the two studied fields.   
 
In Chapter 2, I examined the local improvability of structures supporting a finite symmetry 
group Γ with respect to a number of symmetry-breaking scalar variables. If the global 
optimisation potential of the structures is determined by the upper envelope of several smooth 
local potentials (associated with points or elements of the structures) the symmetrical 
configuration tends to be local optimum, i.e. the perfect configuration cannot be improved by 
small perturbations of the symmetry in the majority of the cases. I introduced the concept of 
’potential improvability’ (which often implied actual improvability, see Definition 2.2 and the 
related comments) and determined the following typical condition, which is one of the 
Principal Results of my thesis:  
 
P.R. I: The sufficient and necessary condition of potential improvability is that the 

representation of the symmetry group Γ of the structure in the space of 

variables is not sub-representation of the regular representation of ΓΓΓΓ. (cf. 
Theorem 2.5, Theorem 2.3, and Definition 2.4). 

 
I illustrated the application of this algorithm on many structural examples (Subsections 2.5, 
2.6.2 and 2.7). My numerical computations show that potential improvability very often 
implies actual improvability.  
 
This condition yields an easy-to-handle algorithm to decide whether a given structure can be 
locally improved in a given set of variables, without performing detailed calculations of the 
structure. The application of this algorithm has been illustrated on many structural examples 
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My numerical computations confirmed that potential improvability often yields actual 
improvability. 
 
The above condition needs a short analysis of the representation of Γ emerging in the space of 
the variables (which was called induced representation). In some cases, the number of 
variables itself determines whether the structure is potentially improvable or not. In particular 
I proved the following two statements: 
 
P.R. II.1 The typically sufficient condition of potential improvability is d≥O(Γ) where 

O(Γ) denotes the order of Γ (Theorem 2.6). This condition yields for planar 
reflection symmetry d≥2, in case of Cm and Dm symmetry it yields d≥m and d≥2m, 
respectively.  

 
P.R. II.2 The typically necessary condition of potential improvability is d≥2dim(Γ), 

where dim(Γ) denotes the dimension of the smallest real-valued 

representation of Γ, which has no trivial component (cf. Theorem 2.7 in 
Subsection 2.4.3.2 and Definition I.19). The necessary condition yields d≥2 for 
Dm symmetry and C2k symmetry, in case of C2k+1 symmetry it yields d≥4. In case 
of C2 and D1, this condition agrees with both the necessary condition in Principal 
Result II.1 and the sufficient and necessary condition in Principal Result I. For C3 
symmetry, this result seems to contradict II.1 and I if the number of variables is 3. 
In fact this is not a contradiction, since an adequate set of variables cannot consist 
of 3 variables in this case. 

 
However, I also demonstrated the existence of exceptional, atypical structures where the 
above conditions fail:  

 
P.R. II.3 In case of D1 symmetry (e.g. planar reflection symmetry) there exist special, 

atypical structures which can be locally improved by using only d=1 variable 

(Theorem 2.1). I determined the exact criteria for these special cases. Based on a 
special example with D2 symmetry I demonstrated that there exist special, atypical 
cases (contradicting the general criteria) in other symmetry groups, as well.  

 
Chapter 2 investigated a modified version of the basic question, as well: if the symmetric 
configuration is improvable by a small perturbation, the perturbed configuration is still 
usually not locally optimal (i.e. the bigger the perturbation is, the better the structure 
becomes). However one can find slightly asymmetrical optima (cf. Definition 2.3) in a one-
parameter family of structures if asymmetrical optima bifurcate from the symmetrical 
configuration (x=0). In connection with such bifurcations, I proved 
 
P.R. III.1 In case of C2, D1 symmetries (e.g. planar reflection symmetry) and d=1 variable 

a typical, one-parameter family of structures cannot be optimally improved, i.e. 
the typical, necessary condition of optimal improvability is d≥2.(cf. Theorem 
2.8). In the proof I listed the possible optimum/pessimum bifurcations and 
provided structural examples for each listed case. 

 
Since the proof relies on the symmetry- and variable-specific bifurcation analysis of the 
optimisation diagrams, I could not extend this result to arbitrary symmetry. In addition, I 
found a case, which seems to contradict the potential generalisation of the above claim: 
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P.R. III.2 I provided an example for a structural family and a set of variables, which 

cannot be improved locally, however, it can be improved optimally. Thus, I 
showed that in case of some symmetry groups, optimal improvability can be 
achieved with a smaller number of variables than local improvability. (as opposed 
to D1 symmetry).  

 
The elements of Principal Result III put more light on the observation that imperfectly 
symmetrical structures are rare. At the same time, Principal Results I and II. can be applied in 
the engineering practice to improve a given symmetrical structure with a small number of 
variables. The results help to choose an adequate set of variables; this should be followed by 
numerical analysis, which decides if the potentially improvable structure is actually 
improvable or not. Although it is beyond the confines of the present work, it would be 
interesting to apply the method to real, large-scale engineering structures. This opens a 
challenging avenue of future research. 
 
Evolution is more complex than optimisation of engineering structures and it is a 
spontaneous, dynamical process. Despite these basic differences, temporal evolutionary 
patterns are analogous to structural optimisation diagrams. The second part of my Thesis 
deals with patterns of the emergence of imperfect symmetry in the course of evolution, which 
is motivated by the fact that animals with imperfect symmetry are (unlike structures with 
imperfect symmetry) common in Nature. 
 
The complex genetic background of evolution is strongly simplified by the method of 
Adaptive Dynamics. I applied this framework to the study of emerging asymmetry. While 
classifying the types of symmetry-breaking, 
 
P.R. IV: I introduced a novel classification of symmetry in frequency-dependent 

ecological models, which I called strong/weak symmetry. I determined the 
corresponding symmetry constraints in the fitness functions (‘strong’ symmetry 
yielded a more specific constraint than ‘weak’ symmetry), and showed that the 
two cases produce different evolutionary behaviour (see further details in 
Principal Result V). I also demonstrated the difference between the two classes on 
several real examples (see Section 3.8). 

 
Using the above classification, I performed a systematic approach to the evolutionary patterns 
of the emergence of asymmetry, and 
 
P.R. V.1 I listed the generic evolutionary patterns of the emergence of asymmetry in 

adaptive dynamics models (see Figure 3.1), I also determined the exact 
conditions of the emergence of each one. 

 
One of the emerging patterns proved to be especially interesting. More specifically,  
 
P.R. V.2 I demonstrated the possibility of a novel evolutionary bifurcation pattern, in 

which an asymmetrical evolutionary branch develops in a population with 
bilateral symmetry and the new branch coexists with the symmetrical ancestors. I 
also simulated this pattern numerically on a classical model of Levene in Section 
3.7. 
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The novel pattern occurs in case of strong symmetry, when a time-dependent evolutionary 
system moves through a degenerate state. While the model is degenerate only in a specific 
moment in time, the effect of the degeneracy extends over a finite time-interval, during which 
the model is close to be degenerate. This fact follows from the discreteness of adaptive 
dynamics: it consists of small but discrete evolutionary steps. Thus, degenerate evolutionary 
patterns may develop in the model if the environmental variation is slow, i.e. if the close-to-
degenerate state lasts adequately long. This phenomenon raises the significance of 
environmental change: 
 
P.R. V.3 I showed that the novel pattern occurs only in case of changing environment 

Hence, environmental change is an even more important ingredient in this context 
than in the classical AD theory, where evolutionary branching exists in 
autonomous models. 

 
The unfolded list of evolutionary patterns is a set of theoretical possibilities. We have no 
evidence of the physical existence of these patterns (in particular the novel pattern): such an 
evidence could be based only on fossil data, but according to many results, fast transitional 
phenomena of evolution (such as branching or the sudden emergence of asymmetry) seem to 
be too fast to leave a remarkable fossil record. Nevertheless, theoretical modelling plays an 
important role in this field, repeatedly predicting phenomena, which are later verified either 
by experiments or by collected data. 
 
Principal Results I, II, and III have been partially published in Várkonyi et. al. (in press). 
Publication of the rest of these results is in preparation (see more details in part 2.1.3). 
Principal Results IV, V have been published in Várkonyi et. al. (accepted for publication). 
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APPENDIX I REPRESENTATION THEORY  
 
 
 
This section contains a brief summary of some basic results of group representation theory. 
My aim is not a systematic description of the theory, rather the introduction of only the 
elements, which are necessary to understand the results of this work. More general 
descriptions can be found in text books such as Coxeter (1973), Jones (1998). The latter one 
served as source of sections I.1-5, with minor modifications in the notations and formulations. 
On the other hand, Sections I.4-7 contain  more specific results, which are according to my 
knowledge not of primary interest in representation theory, but play key role in this work. In 
these subsections sketchy proofs are also attached. 
 
Part I.1 is an introduction to groups, while the specific groups emerging in engineering 
problems are listed in I.2. Part I.3.1 defines representations. I.3.2 is devoted to the most basic 
results of representation theory, which allow to create a unique decomposition of 
representations to the direct sum of a few simple ones. In I.3.3 a special kind of representation 
is analysed, which plays important role in structural optimisation. Part I.4 deals with the orbit 
of vectors with respect to a representation. Orbits emerge explicitly in the conditions of 
improvability of structures (see Lemma 2.3). Finally, differences between complex- (for 
which classical results apply for) and real-valued representations (which emerge in the 
engineering problems) are collected in I.5. 
 

I.1 GROUPS 

Definition I.1: a group is a finite or infinite set Γ of elements and a binary operation * 
(‘group operation’), with the following four properties: 

− closure of group operation: if γ,η ∈Γ, γ*η∈Γ 
− associativity of group operation: if ϕ,γ,η ∈Γ, (ϕ*γ)*η=ϕ*(γ*η) 
− existence of identity element: there is an i∈Γ, so that for any γ∈Γ, γ*i=i*γ=γ 
− existence of inverse: for any γ∈Γ, there is a group element γ--1 satisfying γ*γ--1=i. 

 
The simplest (‘trivial’) group has one single identity element i and the corresponding group 
operation acts as i*i=i. There is one group with two elements {i,γ}, for which i*i=γ*γ =i and 
i*γ=γ*i=γ. Though a group might be infinite as well, we mainly study finite groups. A finite 
group can be conveniently characterised by a table, which contains the effect of the group 
operation on the group elements. This form of the two-element group and another one with 
four elements are shown in Table I.1. Notice that each row and column is a permutation of the 
group elements; the identity element of the group corresponds to an unperturbed row as well 
as an unperturbed column. 
 
Two seemingly different groups may have the same structure according to: 
 
Definition I.2: two groups Γ and Λ are isomorphic (Γ≡Λ) if there is a one-to-one 
correspondence between their elements γi ⇔λi so that γj*γk=γl if and only if λj*λk=λl 
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Isomorphic groups are often considered as identical. These classes of groups are called 
‘abstract groups’ and are fully defined by a group table. On the other hand, two isomorphic 
groups may consist of rather different elements and operators. A number of isomorphic 
groups (all belonging to the abstract group of Table I.1/B) are collected in Table I.2.  
 
Two further basic definitions of group theory are 
 
Definition I.3: The order r of a group Γ is the number of elements in the group. 
 
Definition I.4: An abstract group Λ={λi} is subgroup of the abstract group Γ={γi} if there is a 
homomorphism H: Γ→Λ, which satisfies H(γj)*H(γk)=H(γl) if and only if γj*γk=γl. A real 
group Λ is subgroup of the real group Γ if its elements are a subset of the elements of Γ and 
the two group operations have the same effect on the elements of Λ. 
 
. 

 
 a0 a1 
a0 a0 a1 
a1 a1 a0  

 
 a0 a1 b0 b1 
a0 a0 a1 b0 b1 
a1 a1 a0 b1 b0 
b0 b0 b1 a0 a1 
b1 b1 b0 a1 a0  

A B 

Table I.1.: Group tables of the two-element abstract group (A) and a four-element abstract group (B). 

 
 
elements group operation 

 



















1000

0100

0010

0001

,



















0100

1000

0001

0010

,



















0010

0001

1000

0100

,



















0001

0010

0100

1000

 

multiplication 

0,1,2,3 addition modulo 3 
1, -1, i, -i multiplication 
the invariant euclidean 2D transformations of a rectangle 
(identity, rotation by π, reflection with respect to two lines) 

product of transformations 

the invariant euclidean transformations of an oriented 
rectangle embedded in 3D space. (identity, rotation by π, 
reflection to the plane of the rectangle and reflection to the 
centre of the rectangle) 

product of transfomations 

Table I.2. Different groups, which belong to the four-element abstract group of Table I.1/B. The fourth 

one is a symmetry group called D2 (see Table I.3), the fifth one is also symmetry group. The first one is the 

regular representation of D2 (see Section I.3.3) 

 
In this work, we concentrate on symmetry groups, i.e. groups with euclidean transformations 
as elements and the product of these transformations as group operation. There are symmetry 
groups in many abstract groups, e.g. rotation by 180° around a point in 2D space and identity 
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transformation (called C2) belong to the two element abstract group of Table I.1/A. The last 
two examples in Table I.2 are also symmetry groups. 
 
Some geometric objects (such as structures) are called ‘symmetric’ (e.g. reflection 
symmetric). With group theoretical terms, this means that these objects are invariant to a set 
of euclidean transformations (e.g. reflection and identity in case of reflection symmetry). Such 
a set of invariant transformations always forms a symmetry group Γ. This yields a more 
precise definition of symmetry: 
 
Definition I.5: A geometrical object is ‘Γ-symmetrical’ if there is a symmetry group Γ, the 
elements of which are invariant transformations of the object Γ will also be referred to as the 
symmetry of the object in question. 
 

I.2 SYMMETRIES OF REAL ENGINEERING STRUCTURES 

In this part, we introduce the specific groups, which occur as symmetries of real engineering 
structures. Since our goal is to optimise structures with respect to their inner forces (generated 
by external loads), we modify the Definition I.5 as: 
 
Definition I.6: A load-bearing structure is ‘Γ-symmetrical’ if its geometry, loads and inner 
forces are invariant to the elements of a symmetry group Γ. 
  
Notice that real examples on ground are primarily subjected to gravitation, which determines 
the special ‘down’ direction. The symmetry transformations of such structures must preserve 
this direction (i.e. the image of a vertical vector pointing down is also pointing down). Among 
the euclidean transformations of the 3D space, this property is owned by transformations, 
which map a point (x,y,z) to (fx(x,y),fy(x,y),z+c) (z stands for the vertical co-ordinate, c is 
constant). In case of finite symmetry groups, c must be 0, otherwise repeating the 
transformation would never end up in identity transformation, i.e. it would generate infinitely 
many group elements. Thus, the symmetry transformation do not modify z, they are ‘2-
dimensional’. Hence, only the symmetry groups observed in two-dimensional space can 
emerge as symmetries of real structures. If we had e.g. a regular tetrahedron shaped 
framework (this kind of symmetry cannot be observed in 2D space), its internal forces 
(generated mostly by gravity) would break the symmetry of the tetrahedron. The resultant 
symmetry of the structure (in the sense of Definition I.6) would be reduced to a subgroup of 
the original one. Conversely, cosmic structures (such as satellites) are likely to have ‘3-
dimensional’ symmetries, like those of the Platonian solids.  
 
In the following, we introduce the finite symmetry groups of the two-dimensional space. The 
two dimensional euclidean transformations are  

− identity 
− shifting by an arbitrary vector 
− rotation by an arbitrary angle 
− reflection to an arbitrary line 

These transformations form two distinct types of finite groups (and many infinite ones which 
are not discussed here). Basic properties of the cyclic groups (denoted by Cn, n≥1) and the 
dihedral groups (Dn, n≥1) are collected in Table I.3. Two of these symmetry groups (C1 and 
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D2) are isomorphic, i.e. they belong to the same abstract group. From the point of view of 
structural optimisation, C2 and D1-symmetrical examples will behave in the same way. 
 
name of the group Cn (n≥1) Dn (n≥1) 

order n 2n 
notation of 
elements 

a0,a1,...,an-1 a0,a1,...,an-1 
b0,b1,...,bn-1 

meaning of 
elements in 2D 

space 

ai is rotation by 2iπ/n around the 
point (0,0) 

ai is rotation by 2iπ/n around a 
point (0,0); bi is reflection to the 
line ycos(πi/n) = xsin(πi/n) 

identity element a0 a0 
effect of group 
operation 

ai*aj=ai+j mod(n) ai*aj=ai+j mod(n) 
ai*bj=bj-i mod(n) 
bi*aj=bi+j mod(n) 
bi*bj=aj-i mod(n) 

planar objects 
with this 
symmetry 

for n=1: asymmetrical objects 
for n=2: paralelogramma; for n>2: 
oriented regular n-gon 

for n=1: deltoid for n=2: rectangle; 
for n>2: non-oriented regular n-gon 

Table I.3: The finite symmetry groups of the 2D space. The two columns correspond to two classes of 

groups. Row 3 determines the group elements (the exact transformations may appear different in different 

coordinate systems, the transformations in row 3 provide an example) Row 5 defines the group table of 

these groups in a condensed form. C1 is the trivial group, which corresponds to the lack of symmetry. We 

remark that C2 (180°°°° rotation symmetry) and D1 (reflection symmetry) are isomorphic, they belong to the 

same abstract group  

 

I.3 REPRESENTATIONS 

I.3.1 Definition, Basic properties 

In structural optimisation, the type of the symmetry-breaking variables is characterised by the 
representation of the symmetry transformations of the perfect structure in the space of the 
variables. A representation of a group Γ is defined as 
 
Definition I.7: a representation of group d is a homomorphism of the elements γi of Γ to 
complex square matrices γi→Di, for which γj*γk=γl implies DjDk=Dl.  
 
The dimension of a representation is straightforward: the order of the matrices in the 
representation.  
 
It can happen that the same matrix belongs to two different group elements in a 
representation. In particular, every group has  
 
Definition I.8: The trivial representation is the homomorphism γi→1, 
 
in which every group element is mapped to the to 1×1 identity matrix. On the other hand,  
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Definition I.9: a representation is called faithful if different group elements are mapped to 
different transformations.  
 
Notice that a faithful representation of Γ itself forms a group, which is isomorphic to Γ. The 
representations emerging in engineering optimisation problems are always faithful as a 
consequence of condition (i).  
 
Representations can be classified according to 
 
Definition I.10: Two representations are equivalent if there is a (complex-valued) unitary 
transformation, which transforms elements of one to the elements of the other one. We denote 
equivalence of two representations as D1≡D2. 
 
Equivalent representations can be considered as the same representation in different 
coordinate systems. Equivalence classes of representations can conveniently be characterised 
by  
 
Definition I.11: The character of a representation D1, D2,..., Dr is a vector of length r, namely 
[ tr(D1) tr(D2)...tr(Dr)], where tr(X) denotes the trace of the matrix X. 
 
The characters of equivalent representations are equal, because the trace of a matrix is equal 
to the sum of its eigenvalues, which are invariant to unitary transformations. On the other 
hand, it can be proven that two representations with equal characters are necessarily 
equivalent. Thus, the character itself determines the equivalence class of a representation. 
 
If we restrict ourselves to the representations of finite groups, we can define the most basic 
property of representations as 
 
Definition I.12: A representation D is reducible if there exists a representation D’ for which  
D≡D’ and D’ consists of block-diagonal matrices (each of which has the same block-
structure). Another equivalent definition of reducibility is presented later. Irreducible 
representations are often called simply irreps. 
 
According to Definition I.10, an appropriate unitary transformation decomposes a reducible 
transformation to the direct sum of irreps. What is more, the irreducible components in two 
different decompositions of a representation are equivalent, i.e. the decomposition is unique 
up to the level of equivalence classes. This situation is somewhat similar to the prime 
factorisation of integers. As an example of the decomposition, consider a unitary 
transformation of three rotating matrices (the middle ones on the left side of the equations), 
which are a representation of C3: 
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(I.1) 
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(I.3) 

 
The decomposition shows that this representation is reducible, namely the direct sum of two 
one-dimensional irreps. The technique of creating this kind of decomposition is introduced in 
the next part.  
 
Any group has infinite number of representations, but a restricted number of irreducible ones, 
according to 
 
Theorem I.1 (Dimensionality theorem): If a group of order r has nk equivalence classes of k-

dimensional irreducible representations, rnn =++ ...2
2

2
1 . 

 
The list of irreducible representations can be constructed for simple groups by techniques, 
which are not discussed here. For us, the symmetry groups of the 2D space are of special 
interest (see Section I.2). The lists of their irreps are collected in Table I.4. 
 

symmetry group irreducible representations 
name order name dimension character 
trivial 1 I0 1 {1} (trivial representation) 
Cn  n Il 

 
1 
 

{ ak: (-1)
2lk/n }  

 with 0≤l≤n-1 (trivial representation if l=0) 
Dn if n 
is even 

2n I0 
Il 
In/2 
In/2+1 
In/2+2 

1 
2 
1 
1 
1 

{ ak: 1, bk: 1} (trivial representation) 
{ ak: 2cos(2lkπ/n), bk: 0},  with 1≤l≤n/2-1 
{ ak: 1, bk: -1} 
{ ak: -1

k, bk: -1
k } 

{ ak: -1
k, bk: -1

k+1} 
Dn if n 
is odd 

2n I0 
Il 
I(n+1)/2 

1 
2 
1 

{ ak: 1, bk: 1} (trivial representation) 
{ ak: 2cos(2lkπ/n), bk: 0}, 1≤l≤(n-1)/2 
{ ak: 1, bk: -1} 

Table I.4: Irreducible representations of the 2-dimensional symmetry groups. The meaning of the 

notations ak, bk can be found in Table I.3. Notice that the characters might be complex numbers. 

 
 

I.3.2 Decomposition of representations 

The decomposition of reducible representation plays a primary role in our work. The process 
is introduced through the example of equations (I.1)-(I.3). As already mentioned, these three 
matrices are a representation of the group C3. The characters of the irreps of C3 are (cf. Table 
I.4): 

group elements a0 a1 a2 
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I0: χ0= [1 1 1     ] 
I1: χ1= [1 (-1)

2/3 (-1)4/3] 
characters 
 of the 
irreps I2: χ2= [1 (-1)

4/3 (-1)2/3] 

 
The character of the representation is the trace of the three matrices, i.e. χ= [2 –1 –1]. Hence 
the trace of a block diagonal matrix is the sum of the traces of its blocks, we only have to 
produce χ as a linear combination of χ0, χ1, χ2: 

     
2

0
∑
=

χ=χ
k

kkn  
(I.4) 

where the resulting coefficients nk∈N indicate the number of the three irreps in the 
decomposition of the representation (N stands for the set of natural numbers). The solution 
exists and it is unique. In our case [n0 n1 n2] =[0 1 1]. This is the awaited result, hence 
equations (I.1)-(I.3) already presented the decomposition of the representation to the direct 
sum of these two irreps. 
 

I.3.3 The regular representation  

All groups, and in particular symmetry groups, have a special representation. Consider the 
group table of a group Γ of order r (see for example Table I.1). The ith row contains a 
permutation of the group elements. The corresponding r×r size permutation matrices Ri form 
a representation of Γ.  
 
Definition I.13: The representation R, which consists of the above defined matrices 
R1,R2,...,Rr is called the regular representation of Γ. 
 
As an example see the regular representation of D2 (Table I.1/B) in the top row of Table I.2. 
One can show that each k-dimensional irrep of a group Γ appears k times in the 
decomposition of the regular representation of Γ. (This is in accordance with the 
Dimensionality theorem (Theorem I.1), since the regular representation is r-dimensional.) 
 

I.4  ORBITS 

In this part the orbit of a vector with respect to a representation is introduced. Notice that the 
typical condition of potential improvability (Lemma 2.3) applies to orbits, which are defined 
as: 
 
Definition I.14 : The vectors {D1v, D 2v,..., Drv} are called the orbit of v with respect to the 
representation D={D1, D2,...,Dr}. 
 
Before going into details, some new definitions are needed: 
 
Definition I.15: S is an invariant subspace of a representation D={D1, D2,...,Dr} if v∈∈∈∈S 
implies,  Div∈S for every 1≤i≤r. 
 
Definition I.16: Invariant points of a representation D={D1, D2,...,Dr} are the vectors v, for 
which Div=v for every 1≤i≤r. 
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These concepts are used to give another definition of reducibility.  
 
Definition I.17: A representation is reducible iff it has a non-trivial invariant subspace. 
 
The new definition is equivalent of Definition I.12: consider the block-diagonal form of a 
reducible representation {Di=diag(Di

(1),Di
(2)), i=1,2,...,r}, where the sizes of Di

(1)and Di
(2) are 

k×k and (r-k)×(r-k). If a vector is of the form v=[v1 v2... vk 0 0...0]T, then Div inherits this form, 
thus we have found an invariant subspace. Conversely, the existence of invariant subspaces 
yields the block-diagonality of the representation in an appropriate co-ordinate system. The 
proof of the latter statement is not discussed here. 
 
The following two subsections focus on two properties of orbits. 
 

I.4.1 Orbits and invariant points 

The point x=0 is the trivial invariant point of any representation, hence M⋅⋅⋅⋅0=0 for arbitrary 
matrix M. However, some representations have additional invariant points, as well. 
 
Assume that we have a v≠0 invariant point of D={Di, i=1,2,...,r}. Consider a transformation 
matrix T, which moves v into Tv=[1 0 0...0]. This vector is an invariant point of 
TDT−1={TDiT

-1, i=1,2,...,r}. Consequently the matrices TDiT
-1 are all of the form 



















=−

***0

***

***0

001

1

M

L

TTDi , (I.5) 

i.e. there is a trivial representation among the irreducible components of the representation 
TDT-1, which is equivalent of D. Conversely, a trivial component implies the existence of 
invariant points. Thus we can formulate 
 
Lemma I.1: A representation has non-trivial invariant points iff it has a trivial component.  
 
Now we can continue with some properties of orbits. The sum of the elements of an orbit is an 
invariant point, hence 

vDvDvDvDDvDDvDD
riiiriii +++=+++ ......

2121 , (I.6) 

where i1,i2,...,ir are a permutation of 1,2,...,r. Thus,  
 
Lemma I.2: If a representation D={D1, D2,...,Dr}  has no trivial component, the sum of the 
elements of the orbit of any vector v is  

0...21 =+++ vDvDvD r , (I.7) 

 
As a consequence of Lemma I.2, 0 is convex combination (linear combination with positive 
coefficients) of the vectors Div, which gains importance in structural optimisation. However, 
the same property is usually not true for representations with trivial components. To 
demonstrate this, consider a representation with a trivial component, which has the form of 
the right side of eq. (I.5) and a vector v=[v1 v2...vr], with v1≠0. Each element of the orbit of v is 
of the form Div=[v1 *...*]. Thus, 
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Lemma I.3: If v is a vector, representation D={D1, D2,...,Dr} has  a trivial component, and the 
constants c1,c2,...,cr satisfy c1+c2+...+cr ≠ 0, then  

02211 ≠+++ vDvDvD rrc...cc , (I.8) 

 typically. 
 
According to Lemma I.3, zero typically cannot be generated as a convex combination of the 
vectors Div in this case.  
 

I.4.2 Dimensionality of orbits 

In this part, we focus on the question, under which conditions the orbit of a d-dimensional 
vector v spans the d-dimensional complex space Cd. The first, trivial fact is that the orbit 
consists of r vectors, thus r≥d is a necessary condition. Another trivial requirement is that 
v≠0. We find more precise conditions in the following. 
 
The orbit of a vector either spans Cd or an S subspace of it. Assume the latter one. Then, any 
vector w∈S can be generated as the linear combination of the elements of the orbit, i.e.  

∈=∑
=

k

r

k
kk cc          

1

vDw C (I.9) 

If w is multiplied by any element Di of the representation, the result 

∈=∑
=

k

r

k
kiki cc          

1

vDDwD C (I.10) 

is again a linear combination of the orbit elements, hence {DiDk k=1,2,...,r} is a permutation 
of {Dk k=1,2,...,r}. Thus, Diw∈S, which means that S is an invariant subspace of the 
representation. Hence irreducible representations have no non-trivial invariant subspaces in 
C
d
 (cf. Definition I.17) 

 
Lemma I.4: If D is an irreducible d-dimensional representation and v≠0 is a d-dimensional 
vector, the orbit of v with respect to D spans Cd. 
 
In the following we study reducible representations. Consider the irreducible decomposition 
of D. We prove  
 
Lemma I.5: If there exists a d1-dimensional irreducible component D

(1), which emerges at 
least d1+1times in the d-dimensional representation D, then the orbit of an arbitrary real 
vector v with respect to D does not span Cd. 
 
Proof of lemma: let the elements of D and D(1) be denoted by Dj and Dj

(1) j=1,2,..,r, 
respectively. Without loss of generality, we can assume that Dj is in block-diagonal form, i.e.  
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Consider an arbitrary d-dimensional vector in the form  

[ ]TT
d

TT **121 1+
= vvvv L , (I.12) 

where the vj-s are d1-dimensional vectors. Hence d1+1 d1-dimensional vectors are linearly 
dependent, they have a non-trivial zero linear combination: 

Ccc...cc idd ∈=++ ++ 0112211 11
vvv , (I.13) 

This equation yields 

jccc djdjj arbitraryany for  0... 1
)1(

12
)1(

21
)1(

1 11
=++ ++ vDvDvD . (I.14) 

The elements of the orbit of v are 
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 (I.15) 

 
Due to equation (I.14), every element of the orbit is in the subspace 

[ ] [ ] [ ] 0... 22121432211 111
=++ +++ ddd xxcxxcxxc , (I.16) 

where xi∈C denotes the ith coordinate of a point in the d-dimensional complex space. Q.e.d.  
 
Notice that Lemma I.5 does not apply to the regular representation of a group, because it 
contains each irreducible d1-dimensional representation exactly d1 times (see before). Now we 
show 
 

Lemma I.6: Let R denote the regular representation of a group Γ of order r. There exists a 
vector v, the orbit of which with respect to R spans Cr. 
 
 
Proof of Lemma I.6: Hence the regular representation consists of permutation matrices, each 
element of the orbit of v=[1 0 0...0]T is a vector with one ‘1’ and r-1 ‘0’-s. Each element 
contains the ‘1’ in a different positions, due to the fact that every column of a group table 
contains each group element only ones (cf. the definition of the regular representation). Thus, 
the orbit of v is a permutation of the following vectors: [1 0 0...0],[0 1 0....0],...,[0 0...0 1]. 
These vectors span Cr. Q.e.d. 
 
We remark without exact proof, that Lemma I.6 states practically more than the existence of 
one adequate vector v: it also yields  
 
Lemma I.6/A: Let R denote the regular representation of a group Γ of order r. The orbit of a 
typical vector v with respect to R spans Cr. 
 
The statement of Lemma I.6/A is somewhat obvious if we consider the orbit of v as rows of an 
r×r square matrix O(v). The orbit does not span Cd if and only if peig[O(v)]=0, where peig() 
means product of eigenvalues. Such an equation is either identity (i.e. true for arbitrary v) or it 
is typically not true. Because of Lemma I.6, only the latter one is possible. 
 
Using  
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Definition I.18: If D and E are representations of a group Γ, we call E sub-representation of 
D, if their irreducible decompositions contains d1,d2,...,dk and e1,e2,...,ek examples of the 
irreducible representations of Γ and for every 1≤i≤k, ei≤di. This an analogue of the divisors of 
integers. 
 

we can generalise Lemma I.6/A as 
 
Lemma I.7: Let R denote the regular representation of a group Γ of order r and let R’ be a d-
dimensional sub-representation of R. The orbit of a typical vector v’ with respect to R’ spans 
C
d. 
 
Proof of Lemma I.7: Let Ri and Ri’ denote the elements of R and R’. Then, Ri can be 
transformed by a unitary transformation to the following block-diagonal form: 









=−

*

'1 i
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R
TTR , (I.17) 

An arbitrary vector v∈∈∈∈Cr can be decomposed as 
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
=
*

'v
v , (I.18) 

where v’ is d-dimensional. The orbit of Tv with respect to TRT-1 typically spans Cr (Lemma 
I.6/A). Since 
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'1 vR
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TTvTTR

ii
i , (I.19) 

the vectors Ri’v’ also span C
d typically. Q.e.d. 

 
Lemma I.5 and Lemma I.7 can be united in  
 
Lemma I.8: Let D and R denote a d-dimensional representation and the regular 
representation of a group Γ, respectively. The orbit of a typical vector v with respect to D 
spans Cd, iff D is a sub-representation of R. 
 

I.5 REAL-VALUED REPRESENTATIONS 

All results of representation theory introduced so far, hold for complex-valued 
representations, however, in structural optimisation problems, the emerging representations 
are necessarily real-valued. Some of the results can be applied in a different form for real-
valued representations. As main difference, some representations are reducible, however any 
of their decompositions contains complex entries. This is the case obviously at the example of 
equations (I.1)-(I.3), because the characters of its two components are complex-valued, 
however the traces of real-valued matrices are always real. Such a representation is 
irreducible among real-valued representations.  
 
Definition I.19: A (real-valued) representation is called half-irreducible if it is either 
irreducible or any of its decompositions contains complex elements. 
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This definition is again equivalent of having no non-trivial invariant subspace, but this time in 
R
d. The list of half-irreducible representations of a finite group is again finite, although the 
Dimensionality theorem does not hold for the number and dimensions of half-irreducible 
representations. These representations of the symmetry groups of the 2D space are collected 
in Table I.5. 
 
If we are restricted to real representations, Lemma I.4 can be improved in a straightforward 
manner:  
 
Lemma I.9: If D is a half-irreducible, d-dimensional, nontrivial real representation and v≠0 is 
a d-dimensional real vector, the orbit of v with respect to D spans Rd. 
 
Similarly, one could replace the word ‘irreducible’ to ‘half-irreducible’ in Lemma I.5, 
however this would weaken its statement. Thus, we apply Lemma I.5 and the consequent 
Lemma I.8 in their original form for real-valued representations.  
  

symmetry group half-irreducible representations 
name order name dimension character 
trivial 1 I0 1 {1} (trivial representation) 
Cn if n 
is even  

n I0 
Sl 
In/2 

1 
2 
1 

{ak: 1} (trivial representation) 
{ak: 2cos(2klπ/n) } with 1≤l≤n/2-1 
{ak: (-1)

k} 
Cn if n 
is odd 

 I0 
Sl 

1 
2 

{ak: 1} (trivial representation) 
{ ak: 2cos(2klπ/n) } with 1≤l≤(n-1)/2 

Dn if n 
is even 

2n I0 
Il 
In/2 
In/2+1 
In/2+2 

1 
2 
1 
1 
1 

{ ak: 1, bk: 1} (trivial representation) 
{ak: 2cos(2lkπ/n), bk: 0},  with 
1≤l≤n/2-1 
{ ak: 1, bk: -1} 
{ ak: -1

k, bk: 1} 
{ ak: -1

k, bk: -1} 
Dn if n 
is odd 

2n I0 
Il 
I(n+1)/2 

1 
2 
1 

{ ak: 1, bk: 1} (trivial representation) 
{ ak: 2cos(2lkπ/n), bk: 0}, 1≤l≤(n-1)/2 
{ ak: 1, bk: -1} 

Table I.5: Half-irreducible representations of the symmetry groups of Table I.3. The meaning of notations 

ak, bk can be found in Table I.3. Notice that the only difference compared to Table I.4 is that some pairs of 

one-dimensional irreps of the cyclic groups are replaced by two-dimensional half-irreps. The names of the 

representations is I if they are irreducible (cf. Table I.4) and S if they are reducible but half-irreducible. 

 


