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Abstract

ABSTRACT

This thesis is devoted to the relation between imperfect symmetry (i.e. slight asymmetry) and
optimisation in two distinct fields of science. The first part is motivated by the observation
that engineering structures with imperfect symmetries are extremely rare, however both
perfectly symmetrical and strongly asymmetrical structural solutions are frequent. It is
demonstrated that perfectly symmetrical configurations are typically local optima in some
class of structural optimisation problems, supporting the above observation. However,
improving such configurations is often possible by introducing an adequate set of small
perturbations. It is shown how to choose such a set, without performing detailed structural
analysis of the structures. This result helps to improve symmetrical structures by minor
perturbation of their symmetries. The emergence of local optima with imperfect symmetry is
also investigated in structural optimisation. The second part of the thesis is based on the fact
that imperfectly symmetrical body plans are common in the flora and fauna, in contrast to the
world of structures. Such biological organisms are results of evolutionary development, which
suggests their optimality. The aim of this part is the theoretical modelling of the loss of
perfect symmetry in evolutionary development within the framework of Adaptive Dynamics:
the ecological types of symmetry-breaking as well as the generic evolutionary patterns of the
emergence of asymmetry are presented.



Abstract in Hungarian

ABSTRACT IN HUNGARIAN
MAGYAR NYELVU OSSZEFOGLALO

TOKELETLEN SZIMMETRIA MEGJELENESE A
SZERKEZETOPTIMALIZALASBAN ES AZ
EVOLUCIOBAN

1.1 A DISSZERTACIO TEMAJA, ALAPKERDESEK

A szimmetria kitiintetett szerepet jatszik az emberi kultura és megismerés minden teriiletén.
Az ember 6sidOk 6ta a szimmetria szamos megjelenési formdjat figyelte meg az 6t koriilvevo
természetben a hopihék formdjatdl kezdve egy virag felépitéséig, és a szimmetriara régtol
fogva, mint a harmonia, tokéletesség szimbolumara tekintenek. Az okori gordg miivészetben
csakligy, mint a tudomanyos vilagképiikben, a szimmetria f6 szervezdelemként jelentkezik.
Szamos példa mutatja ugyanakkor, hogy tékéletlen szimmetridgju (vagyis a szimmetrikustol
csak kismértékben kiilonb6z0) kompoziciokkal is kisérleteztek, példaul a szobraszatban vagy
a templomépitészetben. A késObbi miivészeti stilusok, azon beliil is talan legjobban az
épitészeti stilusok, eldnyben részesitették a tokéletes, illetve tokéletlen szimmetridju
kompozicidkat. A modern stilus volt az elsd, amely elvetette a szimmetria kitiintetett voltat,
sOt tudatosan keriilte azt. A miivészetekhez hasonldéan kézponti szerepet kapott a szimmetria a
tudomanyok fejlédésében, elég, ha a kvantumfizika csoportreprezentaciokon alapuld
elméletére gondolunk.

A mérnoki szerkezetek kozott is gyakoriak a szimmetrikus formak, de az épitészettel
ellentétben tokéletlen szimmetriat csak elvétve latunk ezek kozott. A mérndki alkotasok
tervezésekor altaldban célszerliségi szempontok az elsddlegesek, ezért a fenti megfigyelés azt
az intuiciot sugallja, hogy egy tokéletlen szimmetridju szerkezet nem lehet optimalis, sot,
rosszabb, mint a tokéletesen szimmetrikus forma. A disszertacio egyik fele ennek az okat
kutatja. Bemutat egy egyszerli optimalizalési feladat-tipust ahol ez az intuicid helyesnek
bizonyul. Ezen tulmenden két kérdést vizsgal: meg lehet-e a szimmetridt mégis zavarni gy,
hogy az a szerkezeten javitson, illetve egy tokéletlen szimmetridju szerkezetalak lehet-e
optimalis.

Az ¢l6 természetben az evoluciora gyakran ugy tekintenek, mint egy Onszabalyozo
optimalizalasi folyamatra, amely sordn a legéletképesebb ¢életformak kifejlddnek és
kiszoritjak a kevésbé tokéleteseket. Ilyen értelemben az evolicio analdgnak tlinik a mérnoki
optimalizalassal. Az evolucio soran az ¢€l6lények testfelépitésének szimmetridja is valtozik
(pl. a gerincesek altaldban kétoldali, mig a csalanzok sugaras szimmetridval rendelkeznek). A
szimmetria altalanos az allatvilagban, de gyakran tékéletlen. A véletlenszertien kialakulo
hibakon kiviil szdmos ¢€l6lény szimmetridjaban genetikusan Oroklott tokéletlenségek
talalhatok, ilyen példdul az emberi jobb/balkezesség €s a hozza kapcsolodd agyi aszimmetria,
amely egyértelmiien elényosebb, mint a tokéletesen szimmetrikus felépités. A dolgozat



Abstract in Hungarian

masodik része az aszimmetria kialakuldsanak lehetdségeit vizsgalja az Adaptiv Dinamika
eszkoztaranak felhasznaldsaval: f6 célja annak felderitése, milyen tipusai vannak az
aszimmetria megjelenésének ¢és ezekhez milyen evolucids mintazatok kapcsolddnak.

A dolgozat tehat két jelentdsen eltérd tudomanyteriileten vizsgdlja a szimmetria és optimum
viszonyat. A mérnoki részben a tokéletlen szimmetridju szerkezetek hidnya motivalta a
kutatast, mig az evolucids fejezet alapfelismerése a tokéletlen szimmetria gyakori volta az
¢lovilagban. Mindkét teriilet szorosan kapcsolddik az optimalizalds témakoréhez, bar az
evolucid szamos aspektusa nem érthetd meg, ha pusztdn optimalizalasi folyamatnak tekintjiik.
Valgjdban a két téma matematikai szempontbol a sima fiiggvénycsaladok (potencialok)
szingularis pontjaival foglalkoz6 elemi katasztrofaelmélet kdzismert eredményeinek két eltérd
jellegli altalanositasa €s alkalmazasa. Mig a szerkezetoptimalizalasi részben a potencial nem
sima volta jelenti a tobbletet, az evollcios rész az ,altalanositott potencidlként” is felfoghato
fittnesz-fliggvények szingularis pontjait vizsgalja. Mindkét esetben olyan eredményeket
lathatunk, amelyek az elemi katasztrofaelméleti ismeretek alapjan szokatlanok: a
tartoszerkezeti részben olyan bifurkaciok jelentkeznek, ahol a szimmetrikus megoldas
optimalitdsa a bifurkdcidés pontban nem valtozik, mig az evolucids kutatds eredményei azt
mutatjadk, hogy szimmetrikus ¢él6lények kozott egy uj, aszimmetrikus forma el tud terjedni
anélkiil, hogy kipusztitana a szimmetrikus format.

A két témakdrhoz kapcsolddod vizsgalatokat részletesebben a kovetkezd két pontban foglalom
0ssze.

1.2 SZERKEZETOPTIMALIZALAS

Szerkezetoptimalizalasi feladatokban gyakori, hogy egyes szerkezeti elemek josaga kiilon-
kiilon van definialva, és a legkedvezbtlenebb elem hatarozza meg a teljes szerkezet josagat,
azaz potencialjat. A fejezet gondolatmenete abbol a felismerésbdl indul ki, hogy a fenti
feladattipusndl egy tengelyes vagy egyéb szimmetriaju szerkezet szimmetridjat megzavarva a
tokéletes szerkezet altalaban lokalis, “robusztus” optimum, azaz ilyen feladatokban a
szimmetria kis mértékli megzavardsa ront a szerkezeten, mégpedig a romlds mértéke a
zavarassal linearisan nd, ellentétben egy sima optimummal, ahol a mindségcsokkenés csak a
zavaras négyzetével lenne ardnyos. A lokdlis optimum természetesen nem zarja ki mas,
erésen aszimmetrikus lokélis optimumok 1étét. Ez a tény egyrészt hozzdjarulhat annak az
alapvetd felismerésnek a magyardzatahoz, hogy miért olyan ritka a tokéletlen szimmetria
mérnoki szerkezetek geometriajaban, masrészt egyenesen kovetkezik beldle a kérdés, hogyan
lehetne mégis javitani egy szimmetrikus szerkezeten, a szimmetria kismértékii zavarasaval.

Ha egy helyett tobb szimmetria-sérté valtozot vezetiink be, akkor a szimmetrikus
konfiguracio javithatdésaga szempontjabol az alabbi esetek fordulhatnak elo:
A: aszimmetrikus konfigurdcié robusztus optimum
Bl: a szimmetrikus konfigurdcié optimum, de nem robusztus, azaz van a
valtozoknak olyan kombinacidja, amellyel a szerkezet mindsége nem linedrisan
romlik.
B2: a szimmetrikus konfiguracié nem optimum, azaz a valtozéknak van olyan
kombindacioja, ami javit a szerkezeten.
Javithat6sag szempontjabol a B2 tipus van kitiintetett helyzetben. Ugyanakkor az, hogy egy
példa B1 vagy B2 tipusba tartozik-e, csak részletes erdtani szamitasok alapjan donthetd el,
mig az A és a B tipusok kozott pusztan a szerkezet szimmetriaviszonyai €s a valtozok
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ismeretében is kiilonbséget tehetiink. Definidltam ezért a potencialis javithatosag fogalmat,
ami annyit jelent, hogy a tokéletes szerkezet B tipusu, €s a klasszikus reprezentacidelmélet
eredményeinek felhasznalasaval adott valtozéhalmazra és szimmetriatipusra a potencialis
javithatosag egyszeriien ellendrizheto feltételét hataroztam meg (I. tézis). Ennek
segitségével konnyen kivalaszthatok olyan valtozok, amelyekkel egy szerkezetet kis
zavarassal potencialisan javithato, ezen beliil a tényleges javithatosag kérdése részletes erdtani
szamitasokkal donthetd el. A potencialis javithatésagra olyan sziikséges, illetve elégséges
feltételeket is meghataroztam, amelyek kizarolag a valtozok szamara vonatkoznak (II.
tézis).

A javithatésag mellett tovabbi kérdésként meriilt fel, lehetséges-e, hogy a szimmetriat kis
mértékben megzavarva (lokdlis) optimumot kapunk, azaz a szimmetrikus szerkezet
optimalisan javithato. Majdnem szimmetrikus optimumokat egy p paraméter bevezetésével
eldallitott feladatcsaladban talalhatunk a paraméter azon p, értéke kornyezetében, ahol a
szimmetriatord valtozok x vektoranak optimalis értékeit p fliggvényében abrazolva az
(x,p)=(0,p9) pontbol aszimmetrikus (x#0) optimumok 4agaznak el. Ezért az optimalis
javithatésag kérdése a potencialfiiggvények bifurkdcidanalizisére vezet. Nem sima
figgvényekrdl 1évén sz, az elemi katasztrofaelmélet eredményei nem alkalmazhatoak, a
sima, szimmetrikus potencidlok szokasos villa-eldgazdsa helyett mas bifurkaciés mintazatok
jelentkeznek tipikusan. Tengelyes szimmetridju szerkezetekre a vizsgalatot elvégezve
megallapitottam, hogy egy szimmetriatoré valtozo esetén specialis kivételektdl eltekintve
a szerkezetcsaladban nincsenek optimum-elagazasok (III.1 tézis), ez az eredmény azt
mutatja, hogy a majdnem szimmetrikus szerkezeti optimumok rendkiviil ritkak. Ugyanakkor
példat mutattam olyan, mas szimmetriaval rendelkezo szerkezetek csaladjara, ahol a
szimmetrikus szerkezetek potencialisan nem javithatok, a szerkezetcsaladban mégis
vannak optimalisan javithato elemek (II1.2 tézis). Ezekben az esetekben, meglepd mddon,
az optimadlis javithatosdghoz kevesebb szimmetria-sértd valtozd bevezetése sziikséges, mint a
potencialis javithatosdghoz, annak ellenére, hogy a természetes intuicid szerint az eldbbi
tulajdonsag tlinik specialisabbnak.

1.3 ASZIMMETRIA AZ EVOLUCIOBAN

A dolgozat masodik része azzal az evolucios jelenséggel foglalkozik, amikor kétoldali
szimmetriaval rendelkezd ¢l61ények testfelépitésében valamilyen 6roklott aszimmetria jelenik
meg, azaz szimmetridjuk tokéletlenné valik az evoluci6 soran. Az evolucid sok szempontbol
tekinthetd optimalizalodasnak, de valdjdban tobb anndl, hiszen nem egy ,,optimalis” faj
egyeduralkodova valadsdhoz vezet, hanem a természetben tapasztalt sokfé¢leséghez. Ennek
megfelelden az evolucids folyamatok modellezése mutat ugyan matematikai hasonlosagokat a
szerkezetoptimalizaldssal, de az analogia csak részleges: az optimalizalasi feladatok egy adott
megoldéas josagat kifejezd potencidlon alapulnak, ezzel szemben a bioldgiai modellekben
ennek megfeleld fittnesz-fliggvény egy €lolény ¢életképességét adott kornyezetben adja meg. A
kornyezeti viszonyokra az adott életkdzosségben egylitt €16 Osszes ¢161ény hatdssal van, tehat,
egy ¢ldlény ,,josdgat” onmaga mellett a vele egylitt €16 versenytarsak gyakorisaga €s tipusa is
befolyésolja. Ezt a tulajdonsagot gyakorisagfiiggésnek nevezik.

Az aszimmetria kialakuldsdnak vizsgéalatdra az adaptiv dinamika eszkoztarat hasznaltam,
amely az evolucio fenti aspektusat figyelembe veszi, de szamos, matematikailag nehezebben
kezelhetd tényezodt (pl. az evolucio részletes genetikai hatterét, dsszetett populaciddinamikai
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jelenségeket, nagy valtozassal jard evolucids 1épések lehetdségét) elhanyagol, igy aranylag
konnyen alkalmazhat6 szamos evolucios jelenség modellezésére.

Az aszimmetria megjelenésének tipusait két szempont szerint osztalyoztam. A megjelenést

kivalté ok szempontjabol:

— Egyszerlibb ¢l6lények genetikai rendszerei gyakran nem teszik lehetévé az aszimmetria
kodoléasat. Az evolucios fejlédés soran a genetikai rendszer komplexebbé valik, és igy
lehetséges lesz az aszimmetria kialakuldsa. Ha az adott kornyezeti feltételek mellett
elényos, ki is alakulnak aszimmetrikus ¢€l61ények. Ezzel leegyszertisitett modon egy olyan
tényezot vesziink figyelembe (a genetikai korlatokat), amelyekkel az adaptiv dinamika
altalaban nem foglalkozik.

— Az aszimmetria kialakuldsa genetikailag lehetséges, de dkoldgiailag nem eldnyds, majd a
kiils6 kornyezet megvaltozasa miatt eldnyossé valik. Ennek modellezéséhez idofiiggd
adaptiv dinamikai modellt kell vizsgalni.

A szimmetriatorés 0kologiai jellegét tekintve pedig az alabbi tipusokat kiilonitettem el:

(A) A modell gyakorisagfiiggd. Ezen beliil két, az irodalomban nem targyalt altipust
vezettem be (IV. tézis):

(A1) ha két aszimmetrikus ¢€l6lény egymas tiikorképe, akkor egymadssal
felcserélhetoek, a modell viselkedésének megvaltozasa nélkiil. Ezt erds
szimmetrianak neveztem el.

(A2) ha két aszimmetrikus €l0lény egymas tiikdrképe, akkor sem azonos a
szerepiik. Ezt gyenge szimmetrianak neveztem el.

(B) A modell nem gyakorisagfliggd (tehat a vizsgalt evolucios folyamat optimalizalasi
feladatra vezethetd vissza). Ekkor a tiikkorkép ¢él6lények sziikségképpen
felcserélhetdek.

A dolgozatban mind a hat esetre felsoroltam az aszimmetria kialakuldsinak tipikus
mintazatait, 6sszesen harom kiilonbo6zét (V.1 tézis). Id6fliggé modellben, az (A1) esetben
kimutattam egy szokatlan elagazas-tipus lehetdségét is: egy szimmetrikus populacioban
megjelenhet és elterjedhet egy uj, aszimmetrikus tipus, amely egyiitt él a szimmetrikus
6sokkel (V.2 tézis). Ez jellegében kiilonbdzik az adaptiv dinamikéban szokvanyos evolucios
elagazasoktol, amelyek soran az elagazas elotti Ostipus mindig eltlinik. Az j mint4zat annak
koszonhetden alakul ki, hogy erds szimmetria esetén az id6fiiggd modell fittnesz-fliggvénye
diszkrét idOpillanatokban degeneraltta valhat, ugyanakkor a mutacids 1épések véges (nem
infinitezimalisan kicsiny) mérete miatt a degeneralt modellre jellemzd viselkedés hosszabb
ideig is fennall, és azalatt néha szamottevd evolucids fejlodés is lezajlik. Ez az eset azt is
mutatja, hogy az aszimmetria megjelenésében a Kkiilsé kornyezeti valtozasok fontos
szerepet jatszanak (V.3. tézis).

Az er0s ¢és a gyenge szimmetria kozti kiilonbséget valodi példakon, mig az 4 tipust evolucios
mintdzatot egy klasszikus modellen szemléltettem.
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CHAPTER1 INTRODUCTION

“Yet each in itself- this was the uncanny, the anti-organic,
the life-denying character of them all-each of them was
absolutely symmetrical, icily regular in form. They were too
regular, as substance adapted to life never was to this
degree - the living principle shuddered at this perfect
precision, found it deathly, the very marrow of death - Hans
Castorp felt he understood now the reason why the builders
of antiquity purposely and secretly introduced minute
variation from absolute symmetry in their columnar
structures.”

(Thomas Mann: The magic mountain, 1928)

The identification of ‘symmetry’ and ‘perfectness’ is probably as old as aesthetics itself and it
is fundamental part of human art, science, and philosophy. This idea probably originates from
multiple empirical observations of symmetry in the physical world.

The symmetries emerging in natural patterns, such as crystal structures, snowflakes, or water
waves (Weyl, 1989) are widely considered as representative examples of beauty and harmony
of Nature. This idea was already present in the ancient Greek culture where the word
“symmetry” originates from. In fact, symmetry was considered as a main organising principle
of the world. One of the first structured cosmic models of Anaximander describes the world
as a system with spherical layers (Couprie et al, 2003), while the widely known theory of
Platon identified four of the platonic solids with the four basic elements of the world (Cooper
et al, 1997). Though models of the material and the universe have changed radically during
the past millenia, symmetry still seems to play central role in understanding the physical
world. In the 20" century many fields of science were built on group theory. The
corresponding literature is huge, we only mention some general books on symmetry, Rosen,
1995, Hargittai et al., 1994) and a book on its application in quantum physics (Jones, 1998).

A B C

Figure 1.1 Examples of body plans with different symmetries: quasi-spherical body of mezosoans (A), a
cylindrical earthworm (B), radial symmetry of anemones (C)

Symmetry seems to be a strong feature of the living world, as well (Purves et al, 2003). The
majority of animals and also many plants have some kind of symmetry (Figure 1.1). The
quasi-spherical symmetry of the most ancient multi-cellular creatures (mesozoans), the
cylindrical symmetry of filamentous algae or various worms (e.g. earthworm), the radial
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symmetry of anemones or the bilateral symmetry of the most vertebrates all show the
presence of symmetry in common body plans. Evolution seems to reduce symmetry in most
cases, i.e. more complex body plans usually have lower-order symmetries, even though there
are examples of secondary symmetries as well (e.g. the secondary radial symmetry of sea
urchins and starfish, which evolved from a bilateral body structure). At the same time, we can
find a few completely asymmetrical animals (e.g sponges) as well as many creatures with
genetically inherited imperfectness of symmetry. The handedness or the position of the heart
in the human body, are nice examples of the latter category, where the symmetrical basic
body plan is preserved despite the imperfectness.

Figure 1.2 Ancient Greek sculptures of different ages A: ‘Cycladian goddess’, Amorgos, 2000 BC; B:
‘Kyros’, Anavissos, 520 BC.; C: ‘Youth of Anitikitera’, Anitikitera, 340 BC.; D: ‘Aphrodite’, Myrina,
2" century AD. Photos are taken from Petrakos, 1993 (A,B,C) and Kunze et al, 1992 (D).

Beyond Nature and Science, symmetry gains main role in all fields of human creativity. In the
ancient Greek culture symmetry was an aesthetical category rather than a pure mathematical
definition, which emerged as an unavoidable ingredient of art and philosophy, as well. As an
example, ancient Greek sculpture shows perfect symmetry, while gradual emergence of
asymmetry can be observed in later representations of the human body, cf. Figure 1.2
(Marétzy, 2005). In accordance with the hint of Thomas Mann, architecture also preferred
symmetry in the ancient times and later. All historical styles of architecture considered
symmetrical forms as perfect. Accordingly, early works of a style usually show rigorous
symmetry, while imperfectness (i.e. slight violation) of symmetry is a frequent indicator of the
claim for renewal during the disintegration of architectural styles (Figure 1.3). The modern
movement of the early XX™ century was the first one to reject the aesthetical superiority of
symmetry (Preziosi, 1998).

While architectural forms are strongly determined by aesthetical considerations, engineering
structures, such as bridges, towers, or shells of major size are developed primarily by virtue of
practical optimality criteria. Still, engineering structures tend to be symmetric as well, see
Figure 1.4 for examples of several types of dihedral symmetries, all of which are common
among tower-like structures. At the same time, we can find many asymmetrical engineering
structures as well: Figure 1.5 shows two bridges of Seville, one of which is a classical form
with reflection symmetry, while the other one is a popular asymmetrical structural solution.
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Figure 1.3 Example of the imperfect symmetry in architecture: the late-renaissance Castle of Chambord,
France (Domenico da Cortona, 1537). Notice the difference in the number of windows of the left and the
right wing and several other ‘imperfect’ details.

Figure 1.4 Left panel: Eiffel tower, Paris, France with D, symmetry. Right panel: Water tower in Siofok,
Hungary with Dg symmetry.

Figure 1.5 Left panel: El Alamillo bridge, Seville, Spain (designed by S. Calatrava, 1992). Right panel: La
Barqueta bridge, Seville, Spain (designed by Juan J. Arenas and Marcos J. Pantaleén, 1992).

10
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As already shown, imperfect symmetry seems to be a distinct category in evolution as well as
in arts and aesthetics. It is plausible to pose the question, whether this category may emerge as
an optimal design among engineering structures. Needless to say, among existing structures
such constructions are extremely rare. This observation is in tune with the engineer’s general
intuition, which suggests that small perturbation of the symmetry yields an imperfect, i.e.
worsened structural configuration.

One of our goals is to find arguments supporting the engineer’s intuition, i.e. we would like to
understand why slight perturbation of the symmetry of an engineering structure offen weakens
the quality of the structure. On the other hand, it is also our goal to pinpoint cases where the
engineer’s intuition fails, i.e. to find cases where imperfect symmetry proves to be optimal.
This idea leads naturally to the construction of unusual, though optimal structural shapes with
imperfect symmetry, which are, not in the geometric but in the structural sense, more perfect
than their symmetric counterparts. Chapter 2 of my work is devoted to these questions.

The heart of structural optimisation is a ‘goodness measure’, which allows to distinguish
between better/worse configurations. Similar potentials emerge in various fields of scientific
research where some kind of optimisation is dealt with. According to the Darwinian theory,
evolution is ruled by natural selection, which can be considered as a self-optimisation process
of biological systems. Thus, optimal structural shapes carry a close analogy to the form of
biological organisms created in evolutionary processes, such as the human body. In particular,
evolutionary development in changing environment can be considered as downhill motion of
an evolving variable x (scalar or vector) on a U(x,f) time-dependent ‘potential-landscape’.
Motivated by the similarity between evolution and engineering optimisation, Chapter 3 of my
work deals with the evolutionary modelling of the emergence of bilateral asymmetry, which is
a common evolutionary phenomenon and usually results in a body plan with imperfect
symmetry. The main goal of this part is to determine the generic temporal patterns of the
emergence of new, asymmetric branches of the evolutionary tree within the framework of
Adaptive Dynamics.

Despite the obvious analogy between engineering optimisation and evolution, two basic
differences need to be outlined. First, simplifying evolution as optimisation is misleading: this
point of view cannot explain the diversity in Nature. To solve this contradiction, evolutionary
biology adopted the basic idea of game theory, namely that one’s fitness (potential) depends
on its own strategy and also on the competitors’ strategy (Hofbauer et al, 1998). With other
words, coexisting populations modify the environmental conditions (e.g. the abundance of
food sources), and this way they influence each other’s fitness, which may stabilise their
coexistence. Thus, the ‘fitness functions’ of many biological models are generalised
‘potentials’ of the form s([c],x,f), where the meaning of x and ¢ are the same as in case of
optimisation potentials, while the new argument [c] symbolises data on the number and types
of competitors.

Furthermore, the mathematical analogy of optimisation and evolution hides a major physical
difference between the two tasks. Evolution is a dynamical process, which develops in time,
while structural optimisation is a static procedure. In the latter case we can (and also we will)
introduce a parameter (quasi-time), however this will result in families of separate
optimisation examples, rather than one complex task of optimisation. By introducing a
parameter, we can create optimum diagrams yielding bifurcation patterns of optima, which
are mathematically somewhat analogous to evolutionary patterns (generated by the real time
parameter). At the same time, the latter ones are spontaneous bifurcations, which can be

11
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observed in Nature in temporal data-series, while the former ones do not emerge
spontaneously, they just serve to give a broader view on structural optimisation.

The link between the two fields of my investigations is more than just the common basic
concept of optimisation: the applied techniques and the aims of the two parts also show
remarkable similarities. In the structural part, generic results on the optimality/improvability
of a symmetric structural configuration against a given number or a given set of perturbing
variables is investigated, based on the fruncated Taylor expansion of its potential function.
The aim of the investigations is to derive conditions of improvability, which do not call for
detailed analysis of the specific potential functions. Analogously, the evolutionary part
operates with the truncated Taylor-expansions of fitness functions to find generic evolutionary
patterns without working out detailed ecological models and exact fitness functions.

12
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CHAPTER 2 STRUCTURES

2.1 INTRODUCTION TO STRUCTURAL OPTIMISATION

2.1.1 Problem statement

This chapter of the thesis deals with the role of symmetry in structural optimisation. As
discussed in Chapter 1, engineering structures are often symmetric, which may have objective
cause, i.e. the symmetrical form may often be the optimal solution of a design problem. In the
engineering praxis symmetrical forms are considered to be better than their perturbed, slightly
asymmetrical variants. A small asymmetry is usually regarded as an imperfection of the
structure; almost symmetrical design is extremely rare. In this section we will determine exact
criteria for the local optimality of symmetric shapes. In particular, we will be interested in
general conditions and an algorithm to determine whether a symmetric structure may be
improved via small geometric perturbations.

Optimisation is often based on a scalar ‘goodness measure’, which is determined for all
possible solutions of a problem and the biggest/smallest value corresponds to the best
solution. We will follow this tradition and associate optima with minima, ‘pessima’ with
maxima of a scalar potential. The literature for shape optimisation is extremely rich, for
reference we mention Hemp (1973), Rozvany (1989), Banichuk (1990) and Sokolowski et al
(1992). Optimising structural topology is also a popular field of research (see e.g. Bendsoe,
1995, Allaire, 2002). It is remarkable that almost all examples discussed in the literature
exhibit some degree of symmetry. We do not intend to challenge the validity of these results;
on the contrary, they illustrate one side of the landscape we are interested in. Our goal is to
draw attention to the existence of the other side, i.e. optimal structural solutions with slight
asymmetry.

In this work we will study one-parameter (p) families of structures, depending on a vector of
“symmetry-breaking” scalar variables x=[x; x,...x;]. we will investigate the optimal value of
the variables according to an arbitrarily chosen scalar measure of quality U(p,x), associated
with the weakest point of the structure. This implies that U is an upper envelope of the
individual, smooth potentials, associated with the weak points of the structure. (Alternatively,
one may look for an optimum based on a single, global criterion, e.g. minimisation of the
total mass of a structure. Such problems typically lead to a single, smooth potential. Although,
mathematically the latter one is undoubtedly a much simpler scenario, it does not fit to many
real-life engineering problems: optimality of a structure consisting of several, identical
elements, leads to the above-discussed concept of weak points. The next subsection will
illuminate in detail the difference between the two approaches, based on a simple example.)

We will assume that for all values of the parameter p, the structure associated with x=0
possesses a finite, non-trivial symmetry group /" and furthermore we will assume that none of
the other, individual (x#0) structures is /-invariant, however, the total, d-dimensional set of
structures is I -invariant. (For more detail, see conditions (i) and (ii) in Section 2.2). Since U

13
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is generated as an upper envelope of smooth functions, the symmetrical, x=0 configuration
falls typically into one of the following categories:

(A) Non-smooth (robust) optimum (minimum)
(B) Partially or completely smooth optimum, pessimum (maximum) or saddle.

An optimum is called robust if U is growing linearly in every direction. Partial smoothness
means that a smooth submanifold is passing through x=0. A rigorous definition of these
categories will be given in Section 2.2, see Definition 2.1.

A symmetrical structure at x=0 will be called potentially locally improvabe if it falls into
category (B) (cf. Definition 2.2). In particular, pessimum or saddle, correspond to actual
improvability. Whether a potentially locally improvable structure is actually locally
improvable, one has to perform structural analysis of internal forces and stresses. We will
show examples of such computations in subsections 2.5, 2.6.2, and 2.7.

A one-parameter (p) symmetrical structure family will be called optimally improvable at p=py
if the symmetrical optimum at x=0 bifurcates at p=p, as the parameter p is varied (cf.
Definition 2.3, Section 2.2). Structures, which are either actually improvable or optimally
improvable, fall into the category of ‘imperfect symmetry’ discussed in Chapter 1.

Before stating the principal claims, some of the above key concepts (e.g. optimum based on
global criterion vs. weak points, smooth optimum vs. robust optimum, potentially locally
improvable vs. actually locally improvable) are illustrated on a simple example.

2.1.2 An illustrative example: bifurcation of the symmetric optimum

The symmetry of structures corresponds to the symmetry of the optimisation potentials.
Smooth potentials (studied extensively in Golubitsky et. al., 1992) are adequate to model
many optimisation problems in engineering, however, the classical pitchfork bifurcation of
smooth, reflection-symmetric potentials predicts that the optimal symmetric solution will
become pessimal, beyond a critical parameter value of a one-parameter family of optimisation
problem.

This prediction may be correct in some cases, but apparently not in each one: the diagram of

the optimal/pessimal values of x versus p match the general predictions if the total mass is
minimised assuming constant safety against buckling in a one-parameter family of three-
hinged structures (Figure 2.1/A). This is an optimisation problem based on a global criterion
(cf. the optimisation diagram of Figure 2.1/C). However, if we assume that the two bars have
given, equal cross-sections and the safety against buckling is investigated, the symmetrical
(x=0) configuration proves to be (locally) optimal for all values of parameter p, despite the
bifurcation in the optimum diagram (cf. Figure 2.1/B). The latter optimisation problem is
based on the concept of weak points.

14
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Figure 2.1 A: A simple three-hinged model loaded by the concentrated force N. V;, and /; stand for the
internal forces, and the lengths of the bars, respectively. B: Optimisation diagram of safety against
buckling if the cross sections are equal and independent of x C: Optimisation diagram of total mass if the
cross-sections of the bars are circles (each of them with necessary diameter) and constant safety against
buckling is demanded. (continuous line: optimum, dashed line: pessimum).

The discrepancy between the classical model’s prediction and the actual behaviour of the
second example can be explained if we try to define a suitable ‘potential’ for the optimisation
problem. The safety of both bars (defined as the compressive force in the bar divided by its
critical force) behaves smoothly but the envelope of these ‘local potentials’ will be, in
general, non-smooth. In our case, the two local potentials: fi(p,x) and f2(p,x) are

_Nl(xapaN)_llz(xap)_ _N'(l_x)_ 2 2 /2

fipn) = =y N ) =+ 107 @.1)
_Nz(xapaN)_lzz(xﬂp)_ _ N(l“r‘X) 2 _ 2 P/2

fulpi) = S = e N = ] 2.2)

where N;, N, denote the compressive forces in the members, N, N; stand for the

corresponding Euler buckling loads, /;, /» are the lengths, and E7 is the flexural rigidity of the
bars. Observe that f>(p,x)=f1(p,-x). If p is constant, the ‘optimisation potential’ U(x) of the
structure can be generated from f{x) as

U(x) = max(f (x), f(=x)) (2.3)

(see also Figure 2.2). It is easy to see that U(x) has a (non-smooth) local minimum at x=0 for
almost all values of p, thus this simple example suggests that the symmetric configurations of
engineering structures are robust (non-smooth) optima, whenever the global optimum is
determined by the worst of a discrete assembly of ‘weak points’.

N

Ulx,p)

f-x.p) x.p)

/ \

Figure 2.2: The reflected potential U(x,p) at p=0.5, generated via (2.3) from (2.1).
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This type of potential is rather common in engineering practice: load-bearing structures are
the most often designed based on strength conditions of the form s <'s,, where s and s, are,
respectively, the design and ultimate value of an internal force or stress. Since all parts of a
structure have to meet these conditions, a straightforward choice of potential is max(s/s,) for
the whole object, which is often of type (2.3).

We can also introduce two or more perturbing variables. We will discuss later the example of
Figure 2.4, which is the same as the previous one (Figure 2.1/A,C) with one additional
symmetry-breaking variable. If only one of the variables is considered, x;=0 or x,=0 proves to
be local optimum (see the x,=0 and x;=0 planes in Figure 2.4/B,C). However, for
simultaneous optimisation of both variables, robust optimality vanishes, because the potential
is typically either a partially smooth optimum (Figure 2.4/B) or a saddle point (Figure 2.4/C).
In neither of the cases is it a robust optimum. According to our previous definition, it falls into
category (B), i.e. it is potentially, locally improvable, however only the saddle point (Figure
2.4/C) corresponds to actual improvability.

This simple example illustrates that some symmetrical structures are potentially, or even
actually improvable, other structures are robustly optimal in the symmetric configuration and
cannot be improved with the given set of variables.

Our aim is to investigate this type of optimisation problems with principal focus on the
question, under which conditions proves the symmetrical configuration to be a non-smooth,
robust optimum (similar to the first introductory example). The answer is used to throw light
on some questions of practical interest: the optimality of x=0 means that any minor
perturbation of the symmetrical structure makes it worse. However, if one can find adequate
variables where the optimality vanishes, the structure can be improved via a small
perturbation. This way we can create unusual structural configurations with ‘imperfect’
symmetry, which are better than the usual, symmetric ones. However, if a small perturbation
results in improvement, a bigger perturbation is likely to make the structure even better, i.e.
the optimal configuration is usually strongly asymmetric. Thus, a further question is whether
an optimal structure might or might not have ‘imperfect’ symmetry, i.e. slight asymmetry.

2.1.3 Principal results and structure of Chapter2

My main goal is to give simple algorithms determining the potential or optimal improvability
of structures without actually performing structural analysis, i.e. without computing internal
forces, stresses, etc. Below I give the list of my principal results, with references to the exact
sources. Standard concepts of group and representation theory (see the Appendix for a
summary or Jones, 1998) are used in the formulations.

First I state the most general criterion, which provides an easy-to-handle algorithm to decide
whether a given structure can be locally improved in a given set of variables:

I. I have proved that the sufficient and necessary condition of potential local
improvability is that the representation of the I' symmetry group of the structure in
the space of variables is not sub-representation of the regular representation of /.
This statement is based on Theorem 2.5, Theorem 2.3, and Definition 2.4. The
representation in the space of the variables is rigorously defined by eq. (2.4). I illustrated
the application of this algorithm on many structural examples (Subsections 2.5, 2.6.2 and

16



Chapter 2

Structures

2.7). My numerical computations show that potential improvability very often implies
actual improvability.

My next goal was to determine weaker criteria of potential improvability.

II. 1 have determined both the sufficient and the necessary criteria for potential local
improvability, based solely on the number d of variables. In particular,

1.1

1.2

1.3

I proved that the typically sufficient condition of potential, local improvability
is A>0(I") where O(I') denotes the order of I. This condition yields for planar
reflection symmetry d>2, in case of C,, (cyclic groups) and D,, (dihedral groups)
symmetry it yields d>m and d>2m, respectively. This condition is based on
Theorem 2.6 in Subsection 2.4.3.2

I have proved that the typically necessary condition of potential local
improvability is d>2dim(I'), where dim(/') denotes the dimension of the
smallest real-valued representation of I, which has no trivial component (cf.
Theorem 2.7 in Subsection 2.4.3.2, and Definition 1.19). The necessary condition
yields d>2 for D,, symmetry and C» symmetry, in case of Cu+; symmetry it yields
d>4. In case of C; and D), this condition agrees with both the necessary condition
in Principal Result II.1 and the sufficient and necessary condition in Principal
Result I. For C; symmetry, this result seems to contradict II.1 and I if the number of
variables is 3. In fact this is not a contradiction, since an adequate set of variables
cannot consist of 3 variables in this case.

I have also proved that in case of D; symmetry (e.g. planar reflection symmetry)
there exist special, atypical structures which can be locally improved by using
only d=1 variable. This statement is based on Theorem 2.1, Subsection 2.3.2. I
determined the exact criteria for these special cases. Based on an example with D,
symmetry (Example 3/D in Section 2.5) I demonstrated that there exist special,
atypical cases (contradicting the general criteria) in other symmetry groups, as well
(cf. Section 2.7).

[I. I proved the following statements regarding optimal improvability:

1.1

IIL.2

I have proved that in case of D; or C, symmetry (e.g. planar reflection
symmetry) and d=1 variable a typical, one-parameter family of structures cannot be
optimally improved, 1i.e. the typical, necessary condition of optimal
improvability is d>2(cf. Theorem 2.8). In the proof I listed the possible
optimum/pessimum bifurcations and provided structural examples for each listed
case (cf. Section 2.6).

I have provided an example of a structural family and a set of variables, which
cannot be improved locally, however, it can be improved optimally. Thus, I
have showed, that in case of some symmetry groups, optimal improvability can be
achieved with a smaller number of variables than local improvability (as opposed to
D) symmetry). This statement is based on Subsections 2.5.5, 2.6.3.

Principal Results 11.3, III.1, and a special case (reflection symmetry) of Principal Results I,
I.1-2 have been published in Varkonyi et al.(in press). The publication of the rest of the
results is in preparation.

Section 2.2 specifies the problem and the questions more precisely. The analysis of local
optimality of the perfect configuration is investigated in parts 2.3 and 2.4. Section 2.5
illustrates the results via a number of numerical examples. In 2.6, the question of optimal
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improvability is examined, while 2.7 shows and classifies exceptional cases. Finally the
results are summarised in 2.8. Appendix I presents some elements of representation theory,
which serves as mathematical background of Section 2.4.

2.2 GENERAL DEFINITION OF THE PROBLEM

The example in the Introduction (cf. Section 2.1.2) is generalised in two ways. First, the
symmetries of structures are allowed to be different from reflection-symmetry; second, the
number of symmetry-breaking variables can be arbitrary. Thus, in general, the object of our
investigation is a structure, which is invariant under the elements of a finite symmetry group
I Such objects will be referred to as ‘7/-symmetrical’. In practical engineering problems, /”is
usually a cyclic or dihedral group or the trivial group, which corresponds to the lack of
symmetry (see the arguments in Section 1.2 in the Appendix). It is required that the loads, the
internal forces, and, in fact, any external condition which has an effect on the optimisation
process, support the ‘/-symmetry’ of the structure.

The optimisation is based on a scalar potential, which corresponds to some structural
property, e.g. risk of buckling, total mass, maximum of bending moment, etc. Structures with
lower potentials are considered as better.

The symmetry of the structure should be disturbed by some geometrical variables x=[x;
X2..X%], xeR" (R stands for the set of real numbers). These variables represent the set of
structures, which are considered as possible solutions of the optimisation problem. The
structure corresponding to x=x, is referred to as §(xg). The variables have to fulfill two
restrictions:

(1)  $(x)is /-invariant if and only if x=0.
(i) the set {§(x), xeR"} is /-invariant.

Condition (i) is a consequence of the fact that our investigation relies to the optimality of the
[*symmetrical configuration x=0 compared to non-symmetrical ones, 1i.e. disturbed
configurations should not be /-symmetrical. Condition (ii) means on the level of the
engineering problem that if an asymmetrical configuration §(x) is a potential solution then the
transformed configuration v,(8(x)), y;€/ is also potential solution. Since the set of possible
solutions is limited primarily by external conditions, which should not break the /-symmetry,
(i1) is a natural symmetry condition. Finally, we require that all group elements y,e/”
(i=1,2,...r) should be represented by real-valued matrices D; (i=1,2,...r) in the space of the
variables x, i.e. the symmetry transformations correspond to simple matrix multiplication:

Yi($(x))=8(D;x), (2.4)
In fact, the set D of matrices D; is a representation of 7 in the mathematical sense (see 1.3); it
will be referred to as the ‘induced representation of /7 ’. The above requirement is purely
technical, which makes the application of representation theory on our problem easier.
According to our experience, this condition does not preclude any optimisation problem of
practical interest.

It is worth remarking that /" also has a representation in the physical space of the structure,
since the elements of /” correspond to matrix transformations in an adequate physical co-
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ordinate system. The latter representation of 7" will not gain importance during the following
investigations.

As shown in the introductory part, the structural optimisation example based on a local
criterion (Figure 1.1/A,B) yielded unexpected results, namely local optimality of the
symmetrical configuration, which did not vanish at bifurcation points. We want to extend this
result to other optimisation problems, where local goodness measures f; correspond to
elements/points of the structure (called weak points) and the worst of the weak points
determines the global goodness (i.e. the potential U(x)) of the structure:

U(x)=max, f,(x) i=12,.,k (2.5)

The functions fi(x) are supposed to be analytic, which allows approximating them by
truncated Taylor-expansions if |x|<<I.

The symmetrical configuration x=0 in the first example was not only a local optimum, but it
was a “robust” one, i.e. for x<<1, we had U(x)-U(0)=c|x| (where ¢>0 is a constant). (At
smooth optima we have U(x)-U(0)~c|x|*, for x<<1.) As we will see, this kind of non-smooth
optimum is a characteristic property of similar examples. Before going into details, we give
an exact definition of robust optima, which applies for problems with arbitrary number of
variables:

Definition 2.1: The point x=0 is a robust local optimum (or minimum) of the scalar function
U(x), xeR" if there exist scalars 6,&>0 such that |x|<6 yields U(x)-U(0)> &|x|. (|x| denotes
the [,-norm of the vector X.

Based on Definition 2.1, symmetrical structures can be classified according to the following,
simple scheme:

(A) x=0 corresponds to a robust optimum. In this case, $(0) cannot be improved via small
perturbations.

(B) x=0 does not correspond to a robust optimum. Then we have two possibilities:
(B1) $(0) cannot be improved via small perturbations.
(B2) $(0) can be improved via small perturbations

As we will show, one can decide whether $(0) belongs to (A) or (B) without computing
structural behaviour, solely based on the symmetry group 7/ and the variables x;. Here, the
main goal of the thesis is to describe this algorithm and also, to formulate sufficient and
necessary criteria for §(0) belonging either to (A) or to (B).

If $(0) belongs to (B), one can decide only after performing structural computations on the
individual structure whether it belongs to (B1) or (B2). Although we will provide specific
examples of such computations, we do not give any general method to distinguish between
structures in (B1) and (B2), hence structures in category (B) are called “potentially
improvable”. This concept is formalised in

Definition 2.2: A symmetrical structure is called ‘potentially locally improvable’ or simply
‘potentially improvable’ in a given set of variables X, if Xx=0 is not robust, local optimum.

In case of a one-parameter family of structures $(p,x) (where for each value of p criteria (i)
and (i) are satisfied) one can look for bifurcations of optima resulting in “slightly
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asymmetrical optima”. This concept will be also defined via the notion of “optimal
improvability”, in the following manner:

Definition 2.3: A one-parameter family of symmetrical structures is ‘(locally) optimally
improvable’ in a given set of variables x at p=py if for any 6,6>0 there exist x;, p; so that
|x/|<0, |p1-po|<e and Sp;,x;) is locally optimal in x.

Obviously, Definition 2.3 does not mean that $(po,0) can be optimised with a small
perturbation of the symmetry, but it means that there are $(p;,0) members of the family close
to 8(po,0), which own this property. In fact, Definition 2.3 implies the existence of
asymmetrical optima bifurcating from the x=0 line (which is always a critical point, i.e. local
optimum, pessimum, or saddle due to the symmetry of the potential) at p=py. For smooth
potentials, such branches emerge in classical pitchfork bifurcations (e.g. Figure 2.1/B). On the
other hand, bifurcations from non-smooth, robust optima seem to emerge in unusual
bifurcation patterns (cf. Figure 2.1/C) where the bifurcating branches do not carry optimal
solutions. Thus, “optimally improvable” structures are likely to be even rarer as locally
improvable structures. This property will be investigated later via bifurcation analysis of
optimum diagrams.

In the next unit, we start the examination of potential, local improvability in the simplest case
of reflection-symmetrical structures.

2.3 REFLECTION SYMMETRY

In case of reflection symmetry (D; group), the elements of 7/ are 7yp=identity, and
yi=reflection, which will be represented by the real-valued matrices Dy and D, in the space of
the variables: Do=I; (kxk identity matrix) and y;y=yo yields D12=Ik. Thus, if there is one
perturbing variable, then D=1, D;=t1. Since D;=1 contradicts condition (i), the only
possibility is: Dy=-D;=1. Similarly, one can derive Dy=-D=I; from condition (i) in case of
several variables. Thus, if D;-symmetrical structures are optimised with the given conditions
(1),(i1), reflection of the structures corresponds to changing the variables from x to —x. Notice
that the example of Figure 2.1 also had this property.

We remark that the group C; is isomorphic to D;, i.e. the results of this section are valid for
C,-symmetry, as well.

2.3.1 Optimisation with one variable

The optimisation potential of a D;-symmetrical example is either of the form of (2.3), or if the
structures have more than two local weak points, it is of the form

U(x) = max(Ui (x)), i=1,2,...,n, (2.6)

where the functions Uy(x) are defined by (2.3). Examples of the latter type are presented later,
in subsection 2.6.2.

As demonstrated in the Introduction, potentials of type (2.3) (and, in fact, also (2.6)) have
robust optima at x=0, unless df/dx|,—o=0. Thus, reflection-symmetrical structures are typically

20



Chapter 2 Structures

locally non-improvable with one perturbing variable. This property is generalised later to
arbitrary symmetry and stated in Principal Result II.

2.3.2 Exceptional cases

There are special types of structures where x=0 is not a robust optimum, because df/dx|,—¢=0.
We show two examples in Figure 2.3. In both cases, U is defined as the maximum of the
bending moment along the beams.

In case A, the global moment maximum (i.e. the weakest point) of the symmetrical structure
is at the middle of the beam if p is adequately big. The weakest point is invariant to the
reflection of the structure, thus, the corresponding potential is symmetrical (f2(x)= f2(-x)), its
first derivative is always 0 and U(x)=max(f2(x), f2(-x)) is smooth at x=0. §(0) is potentially
improvable in the sense of Definition 2.2 (and, in this case, it actually is improvable).

In case B, the weakest point is not in the middle, i.e. the above ‘symmetry argument’ does not
apply. Still the structure proves to be locally improvable, due to a specific property of its
moment diagram: if small displacements are assumed (i.e. the secondary effect of the
deformations on the loads is neglected), the emerging moment diagram happens to be
symmetric, even if x#0. Thus, fi(x)=f1(-x) again holds. Here again, potential improvability
implies actual improvability. We conclude with

Theorem 2.1: There exist exceptional reflection-symmetric structures, which are potentially
improvable with one variable. Examples where the weakest point is invariant to reflection as
well as some structures with atypical potential functions belong to this category.

e Ty

1-x p V1+xv IL i i L Ip
£(x) S()=f1(~x) @ S0 (x)

S (=x) S(X)=(=x)
U(x) IK U(x) 0.5
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filx . Si(x)=A(x) (x
A B

Figure 2.3 A: A beam, its moment diagram and the corresponding potential U=max(f;) if p=4. The
symmetrical configuration is potentially, locally improvable, because the weakest point of the beam is
invariant to reflection. B: another example, where the symmetrical structure is locally improvable,
because f(x)=f;(x) holds for this specific example
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Notice that the behaviour of the example “A” follows from simple symmetry-considerations.
Identifying such a case needs only partial analysis (i.e. finding the weakest point of the perfect
structure). However case “B” is completely example-specific, it could not be recovered but
via determining the inner forces of the structure for all values of x. More details about types of
exceptions are presented in part 2.7. Other exceptional examples are discussed in subsection
2.6.2 (D-symmetry) and 2.5 (other symmetries).

2.3.3 Several variables

One also can introduce two or more perturbing variables. The example of Figure 2.4 is the
same as our first example (Figure 2.1/A,B) with one additional symmetry-breaking variable.
The variables fulfil conditions (i)-(ii). If only one of them is considered, x;=0 or x,=0 proves
to be local optimum (see the x,=0 and x;=0 planes in Figure 2.4/B,C). For simultaneous
optimisation of the two variables, robust optimality vanishes, because the potential of the
form U(x)=max[f(x),/(-x)] has a smooth subspace across the point x=0 (the ‘wedge’, where
f(x)=f(-x)), consequently x=0 is typically either optimum (Figure 2.4/B) or a special type of
saddle point (Figure 2.4/C). In neither of the cases is it a robust optimum (because of the
smooth subspace). According to Definition 2.2, it is potentially, improvable, however only the
saddle point (Figure 2.4/C) corresponds to actual improvability. Detailed numerical analysis
of the two-variable example is discussed in part 2.5.2.

We would like to remark here that this kind of saddle is ‘almost’ an optimum in the sense that
an infinitely small random perturbation of the symmetry typically makes the structure worse
(Figure 2.4/D). This property is true for arbitrary symmetry group and number of variables
provided that gradf(x)|x=0#0 (‘grad’ denotes the gradient vector of scalar functions).

X Ut (X)
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B D

Figure 2.4 A: A simple three-hinged model with two perturbing variables. B: optimisation potential of the
structure if p=0.15. The symmetrical configuration is wedge-like (i.e. not robust) optimum. Notice that
optimisation with only one of the variables (white sections of the surface) would result in robust optimum.
C: optimisation potential if p=2. The symmetrical configuration is a wedge-like “saddle” i.e. not optimum.
D: The grey domain indicates values of x, for which U(p,x)<U(p,0) if p=2. Notice that a randomly chosen
small (|x|<<1) value of x is typically out of this range. Thus, a small, random perturbation of the symmetry
typically spoils the structure.
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2.4 GENERAL SYMMETRY

2.4.1 Introduction

The previous subsection investigated optimality of reflection-symmetrical structures in
problems where we had a set of local optimality criteria and the worst one determined the
global ‘goodness’ of the structure. We have also demonstrated in the introduction that this
kind of optimisation problems is rather general in the engineering practice.

Planar structural models with reflection symmetry are often called simply ‘symmetric’. On the
other hand, spatial structural models have many different types of symmetries. The goal of the
forthcoming part is to generalise the assessments of Section 2.3 for structures with arbitrary
symmetry. Several concepts and results of group and representation theory are used in this
part. These are summarised in Appendix L.

As primary result for reflection symmetry, it has been demonstrated that in case of
optimisation with one variable x, the symmetrical configuration x=0 was a local, ‘robust’
optimum. Conversely, when two (or more) variables were optimised simultaneously, robust
optimality of the x=0 configuration vanished. The order of the group D;, associated with
reflection symmetry, is 2, which yields the primary intuition that structures with r-order
symmetries are potentially locally improvable if and only if the number d of variables is equal
or more than r. The next subsections will show that only the ‘if’ part of the previous
conjecture is true, however we can still determine sufficient and necessary conditions of
potential local improvability, based on symmetry considerations.

First, in subsection 2.4.2 we derive an exact, however example-specific sufficient and
necessary condition of robust optimality. This is further developed in subsection in 2.4.3 to
find #ypical conditions, which are based solely on symmetry considerations. The latter
conditions are the primary results of this part of the thesis.

2.4.2 Exact condition of robust optimum

In this part we derive a necessary and sufficient condition of the robust optimality of §(0),
which is based on the knowledge of the inner forces of the specific example. Later we will
show that in non-degenerate, typical cases this result can be generalised to structures with
unknown inner forces, yielding the principal results of the thesis.

The potential of the whole structure is of the form of (2.5). Local properties of U(x) at x=0 are
only influenced by the weakest points of the perfect configuration §(0), i.e. those fi(x)
functions for which f(0)= U(0). At the same time, the perfect structure $(0) has usually more
than one ‘weakest’ points due to its symmetry.

Let fi(x), i=1,2,...,k denote the potentials associated with the set of weakest points of §(0):
The linear approximation of U is

U@ =U®)+max, (g'x)+ox’) i=12,..k if[x<<1 2.7)
where gi=gradfi(x)|x=o. With these notations,
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Theorem 2.2: The configuration $(0) is a robust optimum if and only if x=0 is an internal
point of the convex hull of the endpoints of vectors g;, i=1,2,...,k (points at the border are not
considered as internal points).

Proof of the “if”” part of Theorem 2.2: Assume that x=0 is inside the convex hull. In this case
1t can be written as a convex combination of the nodes of the convex hull:

k k 2.8
0=Zcig[ where ¢, >0, Zci =1 (2-8)
i=1

i=1

Transposing both sides of eq. (2.8) and multiplying them by a unit vector (veRd, [v[=1) yields
k 2.9
0= zcigiT v 29)
i=l1

In the above sum, either all components are 0 or some of the components are positive. If there
exists a v=vq, for which all terms are zero, then v, is orthogonal to the vectors g; i.e. the
vectors do not span the d-dimensional space of the variables R? which means that their
convex hull has no internal point at all in R’ This is in contradiction with the initial
assumption. Thus, there must be a positive component in (2.9) for arbitrary v:

max (ngV)> 0 for arbitrary |V| =1, (2.10)

1<j<k

The function on the left side of eq. (2.10) is continuous in v and the set {VERd, [v[=1} is
compact. According to the Extreme Value Theorem (see e.g. Malik, 1992), such functions
have a global minimum, which is positive, due to eq. (2.10)

max((ng)T V)j >0, (2.11)

I<j<r

m = min
|v=1

Eq. (2.7) can be rearranged as
U(x)=U(0) + max{(g,"x)- x| + olx”). (2.12)

where X = x/|x| and |i| =1.From (2.11) and (2.12) we have

U(x)2U(0)+m-|x|+ OQX|2 ) (2.13)
which means that x=0 is robust optimum of U(x) (cf. Definition 2.1). Q.e.d.

Figure 2.5: Illustration to the ‘only if’ part of Theorem 2.2 if d=2 (left panel) and d=3 (right panel). Grey
colour denotes the convex hull of the gradient vectors. The vectors themselves are hidden in the 3D case.

Proof of the “only if” part of Theorem 2.2: Instead of a rigorous proof, we show an
illustrative sketch of proof, which is easy to imagine if d<3 and applies for arbitrary d. (See
also Figure 2.5) Assume that x=0 (denoted by “O”) is not in the convex hull! Consider the
nearest point O’ (in sense of /;,-norm) of the border of the convex hull to O (This might be O
itself). For every border point P of an arbitrary d-dimensional convex object, we can find a
‘tangent’ d-1 dimensional hyperplane 4 (4 is a plane if d=3,it is a line if d=2), which contains
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P and has the whole convex object on one side. Consider a tangent hyperplane of the convex
hull at O’. Let x be the normal vector of 4, which is on the opposite side of 4 than the convex
hull. In this case, g;'x<0 for arbitrary 1<i<r. According to (2.12), U(X)SU(O)Jro(\X\z), i.e x=0
cannot be robust optimum: the symmetric structure is potentially improvable. Q.e.d.

2.4.3 Application of representation theory to optimisation problems

In the following part, the #ypical conditions for the robust optimality / potential improvability
of the symmetric configuration §(0) are derived. These conditions refer to the number and
type of the perturbing variables. As we will see, the results are #ypical but not exact in the
sense that they do not hold for degenerate types of potential functions (e.g. in the reflection-
symmetrical part, U(x) potentials were exceptional if generated from f{x) with zero derivative
at x=0). We use many results of representation theory, which are summarised in Appendix L.

In this subsection we will use the following notations (in accordance with previous ones) :
vector x for the perturbing variables and d for the number of variables, $(x) for the
corresponding structures, /={yy,y2,...,Y,} for the symmetry group of $(0), D={D;, D »,..., D,}
for the elements of the induced representation in the space of the variables, fi(x) (i=1,2,...,k)
for the potentials associated with the weakest points of §(0), P for one of the weakest points,
fr(x) for the corresponding potential and finally g=gradfi(x)|x=0 and g=grad/»(x)|x=o.

In subsection 2.4.3.1, we outline that the set of weakest points can typically be generated from
one such point P as the orbit of P with respect to /7~ (i.e. {y{P), i=1,2,...,r, see more about
orbits in part 1.4). This way we find a simple connection between the functions fi(x), which
yield a characterisation of the convex hull of the endpoints ofvectors g; (Subsection 2.4.3.2).
Thus, we can apply Theorem 2.2 without detailed computation of a specific example.

2.4.3.1 Orbits in the optimisation problem

Let P denote one of the weakest points of §(0) (such as the left bar of the introductory
example of . Figure 2.1/A). Due to the /-symmetry of $(0), each weak point y,(P) is identical
to P, thus their potentials are equal if x=0 (in the introductory example yo(P) and y,(P) are the
left and the right bar, respectively). It is possible, however atypical, that some additional
points have the same potential.

If the potential associated with P is fp(X), then the potentials of other weakest points are
Si(x)= 1, » (&)= fp(D,x). Thus, the resultant optimisation potential U(x) of the structure is

typically of he form

UX)=max f,(Dx) i [x|<<1, (2.14)

and >’ emerges in eq. (2.14) instead of ‘=" atypically. (This is the case at the example of
Figure 2.3 if p is chosen so that f1(0)=£>(0)).

Let g denote grad(fp(x))lxeo. With this notation, g=grad(fy(D:x))x==D;'g. Notice that the
vectors g,~=D,~Tg are the orbit of g with respect to the representation D'= {D,~T j=1,2,...,r}. Thus
from eq. (2.14) and Theorem 2.2, we have

Lemma 2.1: Let g denote the gradient of the potential associated with one of the weakest
points of $(0). If x=0 is an inner point of the convex hull of the orbit of g with respect to
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DTE{DjTj=1,2,...,r}, x=0 is a robust optimum. Vice versa, if Xx=0 is a robust optimum, x=0 is
typically inside the convex hull.

The application of Lemma 2.1 still assumes the knowledge of g, which is example-specific. In
the next subsection, an improved version of Lemma 2.1 is derived, which is based solely on
the type of the induced representation. We will use the fact that matrix transposition is a
unitary transformation, i.e. D" is equivalent to the induced representation D (cf. Definition
1.10).

2.4.3.2 Analysis of the induced representation

Now we can formulate the most general theoretical results. The goal of this part is to give
typical predictions on the optimality/improvability of a symmetrical structure (x=0), based
solely on the symmetry group 7/ and the induced representation D. We show first that the
analysis of /" and D indicates if an example violates condition (i). Second, we derive the
typical, necessary and sufficient conditions of potential improvability of $§(0) based on /7 and
D, and finally we give separate necessary and separate sufficient conditions for the potential
improvability based only on the number d of perturbing variables.

The forthcoming statements are based on classical results of representation theory, which are
summarised in Appendix I. One of the basic elements of the theory is the decomposition of
representations to the direct sum of irreducible components, which is unique and easy to
construct for representations of finite groups. The technique of creating such a decomposition
is also discussed in the Appendix. The only remarkable difference between the classical
theory and the structural applications is that the former one applies for complex-valued
representations, however the representations emerging in structural optimisation are
necessarily real-valued. Thus, some results are modified to apply for real-valued
representations (Subsection 1.5). Among others, we define the notion of ‘half-irreducibility’,
which means irreducibility among real-valued matrices (Definition 1.19). The half irreducible
decomposition of a representation is also unique and simple to create.

We remark that two special types of representations play an important role in structural
optimisation: one is the trivial representation (Definition 1.8), in which every group element is
represented by the scalar 1, and the other one is the regular representation of 7~ (Definition
1.13), which consists of »x7 matrices and which has among others a trivial component in its
irreducible decomposition.

Effect of condition (i)

Condition (i) excludes the /-symmetry of $(x) if x#0. The structure $(x) would be /-
symmetric if and only if we had $(x)=#(8(x))=8(Dx) for every 1<i<r. This would imply that
Dx=x for every 1<i<r, i.e. the induced representation would have a nontrivial invariant point.
Such points occur if and only if D has a trivial component in its irreducible decomposition
(see a summary on the decomposition of representations in 1.3.2 and also Lemma 1.1 in 1.4.1).
Hence,

Theorem 2.3: Condition (i) is satisfied iff the induced representation has no trivial
component.

Although problems violating condition (i) are not subject of this research, we remark that
there is no technical difficulty of analysing such optimisation problems. In that case one can
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prove (see Lemma 1I.3), that x=0 is usually not inside the convex hull of the endpoints of
vectors D,~Tg , 1=1,2,...,r, thus Lemma 2.1 yields

Lemma 2.2: If the induced representation has a trivial component (i.e. condition (i) is not
satisfied), the unperturbed configuration x=0 is typically not a robust optimum.

Example 2/B in Subsection 2.5.3 is a numerical illustration of this case.

Typical conditions of potential improvability

If condition (i) is satisfied, the induced representation has no trivial component (cf. Theorem
2.3) and x=0 is a convex combination of the orbit of g (the coefficients in eq. (2.8) are c~=1/k
according to Lemma 1.2). Hence, x=0 is inside the convex hull of the orbit of g unless the
convex hull is degenerate (Degeneracy means that the elements of orbit do not span RY, in
which case their convex hull has no “inside”, only border points). Thus, Lemma 2.1 yields:

Lemma 2.3: If the orbit of g with respect to the representation D' spans RY and D" (or,
equivalently, D) has no trivial component, the symmetrical configuration x=0 is a robust
local optimum. Otherwise, x=0 is typically not a robust local optimum.

The ‘otherwise’ part of Lemma 2.3 also follows from Lemma 2.1 if the induced representation
has no trivial component (i.e. condition (i) is not violated); it is a consequence of Lemma 2.2
if D has a trivial component.

Lemma 2.3 reduces the question of robust optimality to deciding whether the orbit of g spans
R? or not, which depends primarily on the type of the induced representation D. If D is half-

irreducible, the condition of Lemma 2.3 is true for arbitrary g#0 (see Lemma 1.9). Thus we
have:

Theorem 2.4: If the induced representation is half-irreducible but it is not the trivial
representation and the gradient g is non-zero, then x=0 is a robust local optimum of potential
U(x), i.e. 8(x) is not potentially improvable.

It is also shown in the Appendix (Lemma I.8) that if the induced representation is not half-
reducible but it is a sub-representation of the regular representation of 7 (these basic concepts
are defined in the Appendix), then the orbit of a typical vector g spans RY. Since the regular
representation has one “forbidden” trivial component, it is worthwhile to introduce

Definition 2.4: A representation is called cyclic if it is a sub-representation of the regular
representation of I, and it has no trivial component.

Based on Lemma 2.3 and the above results, we can now formulate
Theorem 2.5: §(0) is typically robustly optimal iff the induced representation is cyclic.

“Typically” means on the one hand that an adequately chosen gradient g may make $(0)
potentially improvable if D is cyclic, but with randomly chosen g, the chance of getting robust
optimum at x=0 is 1. On the other hand, robust optimality of §(0) is possible although atypical
if D is not cyclic. The latter option originates from the possibility of inequality in eq. (2.14).
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Weakened results based on the number of variables

The conditions of the previous unit (Theorem 2.4, Theorem 2.5) need only the decomposition
of the induced representation as input, which is much more simple to perform than detailed
structural analysis. At the same time, we can often predict optimality/improvability of §(0) if
only the number of variables is known.

The regular representation of the group / of order » is r-dimensional (i.e. it consists of rxr
matrices). At the same time, it has one trivial component. Thus, cyclic representations in the
sense of Definition 2.4 are at most -1 dimensional, i.e. Theorem 2.5 yields

Theorem 2.6: If d>r, then $(0) is typically potentially improvable.

At the same time, half-irreducible representations are always sub-representations of the
regular representation of 7/, i.e. they are cyclic (except if trivial, which is excluded by
condition (i)). A one-dimensional representation is obviously irreducible (i.e. also half-
irreducible), thus the perturbation of a structure’s symmetry with one variable does not yield
potential improvability due to Theorem 2.5. At the same time, some groups have only k or
more dimensional half-irreducible (non-trivial) representations, where £>2. In these cases a
non-cyclic representation is at least 2k-dimensional, i.e.

Theorem 2.7: If d<2dim(T') (where dim(T") means the dimension of the smallest non-trivial,
half-irreducible representation of I and d is the number of perturbing variables) and
condition (i) is satisfied, $(0) is typically robustly optimal.

In practical optimisation problems, /" is a cyclic (C,) or dihedral (D,) group (see the meaning
of the notations and the origin of this fact in Section 1.2). Among these groups, C, has only
two-dimensional half-irreducible components if #z is odd (see in part 1.5), thus in this case $(0)
is typically a robust optimum if it is perturbed by less than 4 arbitrary variables. (It follows
from the same fact that the number of variables satisfying (i) and (ii) can be 2 but cannot be 1
or 3) In case of dihedral symmetries and cyclic ones of even order, only optimisation with one
arbitrary variable yields robust optimality.

Notice that Theorem 2.6 (necessary condition of potential improvability), Theorem 2.7
(sufficient condition) and Theorem 2.5 (necessary and sufficient condition) are equivalent in
case of C; and D;-symmetries. The latter one imeans reflection-symmetry. Hence it is not
surprising that predictions about the potential improvability of reflection-symmetrical
structures were based only on the number of variables.

2.5 NUMERICAL OPTIMISATION EXAMPLES

This part contains the detailed analysis of several structural optimisation problems. The main
steps of the investigations are described below (part 2.5.1). After the general description, the
examples are presented in 2.5.2-2.5.5. Example 1 is a reflection-symmetrical structure, the
rest are D, or D3 symmetrical. The two versions of Example 2 illustrate the analytical results.
Example 3 has four variants, one of which proves to be exceptional according to the
numerical results. Finally, Example 4 illustrates another exceptional case.
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2.5.1 Main steps of the analysis

The analysis starts with prediction of the potential improvability of $(0) based on the results
of Section 2.4. After that, detailed numerical analysis follows in each case. Details of the steps
are described below.

Analytical part

It 1s decided analytically whether x=0 is typically a robust optimum or not. Steps of the
analysis are the following:

Step I. Determination of the induced representation of the problem. This is an intuitive but
not difficult step. Notice that this step requires the fulfilment of condition (ii) and
also that the elements of the group [/ are represented by linear matrix
transformations in the space of the variables.

Step II. Construction of the irreducible and half-irreducible decompositions of the induced
representation. (The technique is summarised in Section 1.3.2).

Step III. ,Categorisation of the optimisation problems according to Theorem 2.3, Theorem 2.4,
and Theorem 2.5 (1: condition (i) does not hold; 2: robust optimum is atypical; 3:
robust optimum is typical; 4: robust optimum is sure unless g=0).

For exact results concerning the robust optimality of x=0, further steps could follow:

Step IV. Selection of one of the weakest points (denoted by P so far). Some exceptional
structures (similar to the example of Figure 2.3/A) can be detected this way.

Step V. Determination of the gradient g of the potential fp(x) at x=0, to check robust
optimality directly. Atypical but possible results as well as further exceptional
structures (such as that of Figure 2.3/B) can be detected this way.

The benefit of the last two steps is the recognition of atypical results (e.g. where g happens to
be 0) and exceptional cases. Further information on types and handling of exceptions can be
found in part 2.7. In case of simple examples, steps IV, and V. can be performed analytically,
however, in case of more complicated structures they may include numerical work as well.

Numerical part

Beyond the local, analytical investigation at x=0, global numerical optimality analysis
yielding all local minima, maxima, and saddle points (i.e. all critical points) of the potential
function U was performed in case of some of the examples. These calculations have been
done on a PC in MATLAB environment using the Simplex Method (Allgover et al, 1990).
Most of the examples have two symmetry-breaking variables (d=2), and one symmetry-
preserving parameter, thus the results are plotted in 2+1 dimensional optimum diagrams. The
parameter was included to get an overview on a family of structures and the number of
variables was restricted because increasing the number of variables results in exponential
growth of computational time. According to my experience, computing structural families
with three or more variables would need more sophisticated tools (e.g. path following
algorithms, see Domokos et al, 1995 or parallel processing in clusters, see Domokos et al,
2001) and developing an ‘optimising software’ was not a primary goal of this work.

The bifurcation diagrams show the location and types of the critical points of the potential

function. Since non-smooth potentials of type (2.5) are not everywhere differentiable (e.g.
usually at x=0), we need a generalised interpretation of critical points. Critical points of a
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smooth /(x) function are the solutions of the grad(4(x))=0 equation. The first derivatives
Ui(x)=dU(x)/dx; of U(x) suffer discontinuities of the first kind at some points, i.e. the left-
hand and right-hand derivatives exist but are not identical. To overcome this problem, we
apply the concept of interval derivative, (see e.g. Korn et al, 1968) which results in the
interval [U; 1e1(X), Ui rignt(X)]. (For example, the interval derivative of f{x)=|x| at x=0 is the
interval [-1,1]. At smooth points the interval derivative gives a scalar, identical to the classical
derivative. With this concept, the generalised gradient is a ‘vector’, the entries of which are
intervals and

Definition 2.5: A point of U(X) is called critical if each entry of the generalised gradient
contains zero as an element.

In case of optimisation with 2 variables (d=2), there are three distinct kinds of critical points
(see also Figure 2.6):
— smooth critical points of U are also critical points of some of the generating
functions fi(x). where x=[x; x,]. These can be determined from the equation

grad(f,(x))=[0 07", (2.15)

which should be solved for every 1<i<n (n denotes the number of weak points of
the structure). As supplementary condition, one should also check that the
solutions x=x, really emerge in U, i.e. that f(x¢)= max[f,(xo) #=1,2,...,n]

— wedge-like (i.e smooth in one direction, non-smooth in the other) critical points
emerge where two intersecting functions f; and f; form a ‘wedge’ and the bottom of
the wedge (which is a smooth line) has a critical point. These are determined from

the
{ f,(x)=f,(x) (2.16)
grad(f; (x))x grad(, (x))= 0

equations, which should be examined for every pair 1<i,j<n. In the second
equation, ‘x’ denotes vector product and this equation corresponds to the
condition that the line of intersection of the two functions (the bottom of the
wedge) has zero slope. The supplementary condition grad[ﬁ(x)]T-grad[}j(x)]<0
ensures that the line of intersection of the functions is really a ‘wedge’;
fi(x)=max[f,(x) h=1,2,...,n] should also be checked.

— robust (i.e. sharp in all directions) optima may emerge when three (or more) of the
generating functions coincide. The corresponding equations are

£,(x)=1,(x)= £, (x), (2.17)
which should be solved for every triple 1<i,j,k<n. The functions enclose a robust

optimum, if and only if the point x=0 is inside the convex hull of their gradient
vectors (cf. Theorem 2.2); fi(Xo)=max[fy(xo) h=1,2,...,n] should also be checked.
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Figure 2.6: Generic types of critical points at functions of the form of (2.5). Symbolic pictograms of each
type are also presented. We use these later to identify the critical points in the bifurcation diagrams.

AN

2.5.2 Example 1

As first example, the structure of Figure 2.4 is analysed. It has been pointed out in Section 2.3
that there is typically no robust optimum at reflection-symmetric examples with two or more
variables. We can regain these results with the general tools based of representation theory
(Section 2.4): the symmetric structure has two invariant transformations: y¢=identity and
yi=reflection to the y axis; it is D;-symmetrical. The corresponding elements of the induced
representation are Dy=<1 1> and D;=<-1 -1>, where <*> denotes a diagonal matrix with
elements *. The irreducible decomposition of this representation consists of two [;
components (see the notations of Table 1.4). Since the regular representation of D; contains

only one example of /;, the induced representation is not cyclic, x=0 is potentially locally
improvable.

Numerical analysis was also performed for arbitrary positive value of p (Figure 2.7).
According to the results, x=0 is typically wedge-like optimum or saddle, i.e. either potentially
or even actually improvable.
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Figure 2.7: Optimum diagram of example 1. Blue and green points denote local minima and saddle points
of the U(xy,x,) functions. Small pictograms indicate the local shape of U (wedge-like or smooth) at these
points using the notations of Figure 2.6.
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2.5.3 Example 2

The second example (Figure 2.8/A,B) is shown to illustrate the role of the regular
representation in structural optimisation problems. We concentrate on the analytical
investigation and we will see that the numerical results are trivial in this case.

The bars of the D;-symmetrical perfect structure have equal cross-sections of unit area, their
ultimate normal forces are also assumed to be unit. The structure is optimised for maximal
safety in the strength of the bars i.e. the potentials associated with the bars are the quotients of
their internal forces and the ultimate force. The cross-sections of five bars are perturbed (so
that the areas are 1+x;,1+x,,...,1+x5 in Figure 2.8/C), while the total mass of the structure is
constant (i.e. the cross-section of one bar is 1- xj- x3-...- x5). The steps of the analysis follow

section 2.5.1:

Step I. The elements of the induced representation are collected in Table 2.1. Notice that the
symmetry transformations simply permute the six perturbed legs. Accordingly, the
elements of the induced representation are almost permutation matrices.

Step II. We follow the technique of creating the irreducible decomposition discussed in 1.3.2:
the character of the induced representation is x =[-1 -1 5 -1 -1 -1]. Group D3 has 3
irreducible representations (Table 1.4), their characters are yo=[1 1111 1], 3;=[1 1
1-1-1-1], xo=[-1 -1 2 0 0 0]. The solution of eq. (1.4) is ny=0, n;=1, n,=2, i.e. there
is no trivial (/p) component and there is one example of /; and two examples of I,
irreducible component in the decomposition of the induced representation. The
regular representation of D3 has 1, 1, and 2 examples of the three components,
respectively. The half-irreducible decomposition of D is the same as the irreducible
one.

Step I1I. According to the previous results of the decompositions, condition (i) is satisfied; the
induced representation is not half-irreducible, but it is cyclic, i.e. robust optimum is
typical although not true for arbitrary g+O0.

Step IV. At the given geometry, the weakest points are the six perturbed legs.(Calculations are
omitted here, we just mention that the structure is statically determinate, i.e. the
internal forces can be determined from equilibrium equations of the bars and
hinges.) The bar with area 1+x, is one of the weakest points of the perfect structure.

Step V. The perturbation has no effect on the equilibrium equations, i.e. it does not modify
the internal force N in the weakest point. The ultimate force of this bar is
proportional to the cross-sectional area, i.e. N,;(x)=1+x;. Consequently the gradient
of the corresponding potential f;(X)=N/N,(x) is g=[N 0 0 0 0]". The orbit of g is [N 0
0001, [ON000],[00NOO]",[000NO]",[0000NT[-N-N-N-N-N]", which
span R’. Thus we conclude that there is robust optimum at x=0 (cf. Lemma 2.3).
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Figure 2.8: Upper (A) and 3D (B) view of Example 2, with two different perturbations (C, D). Each of the
perturbations refer to the cross-sectional areas of the C;B; bars.

ay a) a;
[ 1 I 1]][1 ]
1 -1 -1 -1 -1 -1 1
1 1 1
-1 -1 -1 -1 -1 1 1
|1 1L 1 I 1
by b, b;
1 -1 -1 -1 -1 -1 1
1 1 1
-1 -1 -1 -1 -1 1 1
1 1 1
i 1 1L 1 -1 -1 -1 -1 -1

Table 2.1: The induced representation (second row) corresponding to symmetry transformations (first

row) of Example 2/A. The elements of the D; symmetry group are the following: a; is rotation by 2in/n
around the line OA (see Figure 2.8). b; is reflection to the plane OAB;

The last result is not surprising, since an arbitrary xeR’ perturbation weakens at least one of
the six bars due to the total mass constraint, but does not modify the internal forces. Thus, in
this case x=0 is a unique and global optimum. Notice that D5 is of order 6, while the induced
representation is cyclic and 5-dimensional. According to Theorem 2.6, this is the maximal
number of variables, which might yield robust optimum. In this case, the induced
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representation is a ‘truncated’ version of the regular representation of Ds, from which only the
trivial component has been removed.

We could analyse the same problem without the total mass constraint (Figure 2.8/D). In this
case the areas of the six perturbed legs are 1+x;, i=1,2,....,6. Since the symmetry
transformations of the perfect structure permute the six legs, the induced representation
consists of 6x6 permutation matrices, it is the regular representation of Dj. According to
Theorem 2.3, this example does not satisfy condition (i), which is again not surprising: if
X1=X2=...=X¢, the D3 symmetry is preserved. Despite the violation of (i), local optimality of the
perfect configuration could be investigated: x=0 is typically not a robust optimum according
to Theorem 2.5. In our specific case, this is again trivial, no deeper analysis is needed, since if
all variables are positive, all legs are strengthened, i.e. the structure is improved.

2.5.4 Example 3

In this part, the structure of Figure 2.9 is optimised with four different perturbations The
perfect configuration is D,-symmetrical. This structure is statically indeterminate of degree
one, i.e. its inner forces can be determined from equilibrium conditions and one additional
compatibility equation on the deformation of the bars. This time, safety against buckling is
optimised and the cross-sections of the bars are assumed to be equal (similar to the example
of Figure 2.1/A,C). The potential associated with one of the bars is

N(x)I*(x) (2.18)

fX)=NX)/N,(X)=——=5—,
Eln

where N and N,, are the internal force and the critical force in the bar, E, / and / stand for the
modulus of elasticity, minimal inertia, and length of the bar, respectively.

Figure 2.9: Example 3 with four different perturbations.

The analytical results are the following:

Step L.& II: The decompositions of the induced representations (Table 2.2) show that all
examples are reducible; A, B, D are cyclic but C is not (it contains too many
examples of the /3 component).

Step I1I. According to Theorem 2.5, x=0 is typically robust optimum in examples A, B,
and D but it is not a robust optimum in example C.

Step IV. is trivial (all bars are weakest points).
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Step V. has not been performed.
Numerical analysis of the four examples was also executed (Figure 2.10). The results match
the expectations at examples 3/A,B,C:

— At C, §(0) is potentially improvable (it is a ‘wedge-like’ optimum if p<0.5 or p>3,
or saddle otherwise).

— At A and B, §(0) is typically not potentially improvable, though there are
exceptional points (e.g. the bifurcation point [p,x;,x2]=[0.9 0 0] at example B),
where the gradient vector g assumes an atypical value and the robust optimum
vanishes.

The numerical results of example 3/D do not match the predictions: as the optimum diagram
shows, x=0 is not a robust optimum. Instead, it is typically a wedge-like optimum (if p>1.8
approximately) or saddle point (if p<1.8). The unexpected result indicates a special property
of the optimisation potential, which cannot be derived from simple symmetry conditions
(similar to the example of Figure 2.3/B). We can simply verify this hypothesis: if x;=0, the
structure is invariant under rotation by m around the z-axis. The displacement of the middle-
hinge E due to the load is also invariant under this transformation, i.e. it is vertical. Consider
one of the bars (Figure 2.11) and let the displacement of its upper end be denoted by Az
(Az<<1). The potential associated with this linear, elastic bar is (cf. (2.18))

POo) g EA () Ap EA () _ Apd
Eln? [ (x,) EIz*> I(x,) I(x,) EIz*> Iz’ ’

J(x)=N(x,) (2.19)

which is independent of x,. (N, Al, A, E denote compressive force, shortening, area of cross-
section and modulus of elasticity of the bar, respectively.) Thus, 0f/0x,=0 at x=0. The gradient
of /is of the form g=[* 0]". Vectors of this form happen to be an invariant subspace of the
transposed induced representation (i.e. D,~Tg=[* O]T for i=1,2,3,4), thus the convex hull of the
orbit is degenerate and there is no robust optimum at x=0 according to Lemma 2.3. However,
if the same structure was optimised with a different kind of potential (e.g. safety of
compressive strength) we would find robust optimum in accordance with the initial
prediction.

irreducible/half-ireducible components of | Iy |1} |1 |/
D,

number of components in the regular|1 |1 |1 |1
representation of D,

. Example 2/A |0 |0 |1 |1

number of components in
the induced representation Example2/B 10 10 |1 |1
of Example 2/C [0 [0 [0 |2
Example2/D |0 |1 |0 |1

Table 2.2: Irreducible/half-irreducible decompositions corresponding to examples 2/A-D. The technique of
creating the decompositions is discussed in part 1.3.2. Names of the representations are taken from Table
1.4. Neither of the induced representations has trivial components (Iy); C is not cyclic (because it has two I;
components).
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Figure 2.10: Optimum diagrams of examples 2/A-D (see Figure 2.9). Blue, green and red points denote local
minima, saddle points and maxima of the U(x;,x;) functions. Small pictograms indicate the local shape of U (sharp,
wedge-like or smooth) at these points. Notice that sharp critical points are always robust optima and wedge-like
points are optima or saddles. For better clarity, only the domain x;, x,>0 has been plotted in A and D.

A

Figure 2.11: Deformation of a bar  Figure 2.12: Example 4 with two different perturbations. A;AA; is a

of example 3/D if x;=0. As it has regular triangle. There are two variables at A, while at B, the
been shown, the displacement of number of perturbations is 4; x; and x, refer to the cross-sectional
the upper end (Az) is vertical. areas of the bars.
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2.5.5 Example 4

The structure is similar to example 3, but now it has only three legs and $(0) is Ds;-symmetric.
The optimisation potential is the same as before, see (2.18). Two variables perturb the
structure at example 4/A (similar to example 3/A), while the number of variables is four at
4/B: x; and x; are displacements of the middle hinge, while x3 and x4 perturb the cross-
sections of the bars assuming constant total mass and constant shape of the cross-section.
Conditions (i) and (ii) are satisfied in both cases; the decompositions of the induced
representations are shown in Table 2.3. Example 4/A has a half-irreducible induced
representation, while the other one is reducible but cyclic. In both cases, robust optimality of
x=0 is predicted.

The structure has only three bars, all of them are weakest points of §(0). However, notice that
the D3 group is of order 6, i.e. the perfect structure should have 6 weakest points! This
contradiction emerges because each of the weak points are invariant under one of the
symmetry transformations of the perfect structure (bar A;B is invariant to reflection to the
plane OBA,). The situation is similar to the case of Figure 2.3/A, where the weakest point was
invariant under reflection and the resulting potential did not match the general predictions.
Analogously, the predictions might prove incorrect at this example: the invariance of a weak
point under some of the symmetry-transformations (e.g. y;,) means that the gradient of
corresponding potential satisfies g=DjTg, which is an unexpected degeneracy and might
change the typical results. As the most remarkable difference, the orbit of g consists of 6
vectors, but only 3 non-identical ones. Better predictions can be obtained if the structure is
considered as only Cs- instead of Ds;-symmetric (i.e. the symmetry transformations, for which
some of the weakest points are invariant are neglected). In this case the number of weakest
points (and the corresponding gradient vectors) is predicted correctly by equation (2.14). This
means a new decomposition of the induced representation (Table 2.4). The result predicts that
4/B is not cyclic, i.e. x=0 is typically not a robust optimum. On the other hand, 4/A is half-
irreducible, the prediction is unchanged in this case.

The numerical results support the improved predictions. Example 4/B has too many variables
to determine its optimum diagram with the existing software, but we can determine the
diagram of restricted versions of the problem. In fact, 4/A is a restricted version of 4/B (with
x3=x4=0, see Figure 2.13/A) another possibility is the restriction x,=0 and x3;=xs (Figure
2.13/B). At Example 4/A, x=0 is typically robust optimum, while at the other one, it is not. It
follows from the latter result that there is no robust optimum in the original problem 4/B,
either.

Irreducible/half-irreducible components of | Iy |1} | L
Ds
number of components in the regular|1 |2 |1
representation of Ds
number of components in Example 3/A [0 |1 |0
the induced representation Example 3/B [0 |2 |0
of

Table 2.3: irreducible/half-irreducible decompositions corresponding to Examples 3/A-B. (The two kinds
of decompositions are identical.) The technique of creating the decompositions is discussed in part 1.3.2.
Names of the representations are taken from Table 1.4. Neither of the induced representations has trivial
components; both are cyclic.
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irreducible components of Cs | Iy | [, | I half-irreducible components of | Iy | S)
G

number of components inthe | 1|2
regular representation of Cs

number of components inthe |1 |11
regular representation of Cs

number of Example | 011 number of Example |0 |1
compgnents in the 3/A components in the 3/Ap

induced Example | 0|22 induced Example |0 |2
representation of 3/B representation of 3/Bp

Table 2.4: irreducible (left panel) and half-irreducible (right panel) decompositions corresponding to
Examples 3/A-B, considered as only C;-symmetric. The technique of creating the decompositions is
discussed in part 1.3.2. Names of the representations are taken from Table 1.4, table 6.

Figure 2.13: Optimum diagrams of example 4/A and a restricted version of 4/B. (Blue, green and red
points denote local minima, saddle points and maxima of the U(x;,x,) functions. Small pictograms indicate
the local shape of U (robust, wedge-like or smooth) at these points.

2.6 BIFURCATION ANALYSIS OF OPTIMUM DIAGRAMS

Until now, individual structures have been investigated and predictions concerning their
potential improvability have been derived. In this part, the object of our research is extended
to one-parameter families of structures, which allows investigation of optimal improvability
with small perturbations of the symmetry.

As defined in the introduction (Definition 2.3) optimal improvability corresponds to slightly
asymmetrical optima bifurcating from the x=0 line. Such lines often appear at bifurcations of
smooth functions with one variable (e.g. Figure 2.1/B), where the symmetrical optimum
switches to pessimum. Similarly, bifurcating asymmetrical optima often emerge at examples,
where the optimality of x=0 is not typical, i.e. the optimum may change to another type
(saddle or pessimum), see Figure 2.7, Figure 2.10/C,D, Figure 2.13/B. On the contrary, if x=0
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is typically optimal, there are usually no bifurcating optima (Figure 1.1/A, Figure 2.10/C,D),
although we have an exceptional diagram (Figure 2.13/A).

It seems rather hopeless to decide in general whether a one-parameter family of structures
with a given kind of symmetry and a given set of perturbing variables may or may not yield
bifurcating optima. Such a result would need either a general statement about this property or
the bifurcation analysis for all finite groups (infinite number!) and each of their
representations. Due to the probable difficulties, we confine ourselves to the case of D
(reflection) symmetry: in the forthcoming part, we take a systematic approach to the
bifurcations associated with potentials of the form (2.3) and (2.6), which we refer to as
“reflected potentials” and “multiple reflected potentials”, respectively. Section 2.6.2 provides
structural engineering examples for each bifurcation, and finally the bifurcation analysis
connected to the exceptional diagram Figure 2.13/A is presented in 2.6.3.

Elementary catastrophe theory (Poston et al, 1978) determines the bifurcations of smooth
potentials. Bifurcations associated with special non-smooth potentials can also be found in
Poston et al (1978), Section 16, where a generalisation of Thom’s theorem is introduced in
case of the so-called conditional catastrophes, however symmetrical potentials are not
investigated. The forthcoming part is analogous to these ones, although its significance is
much more modest. Elementary catastrophe theory has many other applications to
engineering problems, e.g. Thompson et al (1973, 1984). Similarly to former works, we are
looking for the Taylor series expansion of the generating, smooth potentials f(x) at x=0. In our
case, this provides a classification of bifurcation points for the non-smooth optimisation
potential U(p,x), containing both ‘classical’ cases as well as new ones.

2.6.1 Typical bifurcations in case of D, symmetry

Our goal is to give a local classification of one-parameter (p) classes of reflected (part 2.6.1.1)
or multiple reflected (2.6.1.2) potentials U(x,p) at x=0; this is an analogue to Thom’s theorem
for smooth functions. The local classification of U is reduced to the local classification of the
smooth f generating potentials.

2.6.1.1 Reflected potentials
Thom’s theorem shows that the local classification of a smooth function is usually determined

by the lowest order non-vanishing term(s) of the function’s Taylor expansion. Let T’ f(.”) denote
the truncated Taylor series of the function f{x,p) up to the n"™-order term.

At a general point on the p axis (x=0) T’ f“) does not vanish typically. At the same time, there
exist typically a finite number of isolated points along the x=0 line, where T f(.” vanishes, and
there is typically no point where 7 f(z) vanishes.

It 7 f“) does not vanish, f(x,p) is, according to Thom’s theorem, locally equivalent of the (0,0)

point of the £"(x,p) function:
f(l)(x,p) =X. (220)

Consequently, the (0,0) point of the reflected U(x,p) function generated from f via (2.3) is
locally equivalent to the (0,0) point of U'"(x,p) generated from the / potential in (2.20).

This type of point is analogous to non-degenerate critical points of smooth functions, but it is
non-smooth (Figure 2.14), more specifically it is robust minimum (cf. Definition 2.1).

39



Chapter 2 Structures

If 7" vanishes but 7> does not, U(0,p) is locally equivalent of U*(0,0) generated from one

of the following two f” functions:
P, p)=p-xtx’ (2.21)

Figure 2.14: Generic point of reflected functions Figure 2.15: Unstable-X catastrophe

The (0,0) point of U'® is analogous to a fold catastrophe point of a smooth function. It has two
dual forms, the corresponding bifurcations are the unstable-X (Figure 2.15) and the point-like
“bifurcation” (Figure 2.16). They appear different because the different role of maxima and
minima in case of reflected functions. Figure 2.1/B, associated with the three-hinged example,
also shows an unstable-X type bifurcation. As already introduced, higher degeneracy of f{x,p)
is atypical and there are no more typical catastrophes of one-parameter families of reflected
functions.

Notice that neither the X- nor the point-like bifurcation contains bifurcating asymmetrical
optima. Thus,

Theorem 2.8: If a one-parameter family of D, symmetrical structures is optimised with one
variable, there is typically no value of the parameter where the structure is optimally
improvable.

At the same time, there are applications, where f(x,p) is, for some reason, odd or even (the
even or the odd terms of the Taylor expansion vanish) and some other catastrophes are
typical. We have already seen two examples of the latter case (cf. Figure 2.3).

In the case when f{x,p) is odd (i.e. f{x,p)+c=-(f(-x,p)+c)), the typical robust optimality of x=0
is unchanged, but there exist isolated points, where U is locally equivalent of U®)(0,0)
generated of /©):

P p)=p-x+x’ (2.22)
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Figure 2.16: Point-like catastrophe Figure 2.17: Five-branch pitchfork

This corresponds to a ‘five-branch pitchfork’ (Figure 2.17), which has no dual form. This
pattern contains bifurcating optima, i.e. optimal improvability is not atypical in this special
case, as opposed to Theorem 2.8.

In the case when f{(x,p) is even (i.e. f{x,p) = f(-x,p)), U is a smooth, symmetric function. The
two emerging classes are well-known: the first (typical) one is equivalent of U(4)(0,O)
generated of /¥

UY(x,p)= P, p)==%x" (2.23)
which is a one dimensional Morse-saddle, i.e. a smooth, non-degenerate critical point. Beyond
g%is, there are typically isolated points where U is locally equivalent of U)(0,0) generated of f

U, p)=f%x,p)=p-x*£x* (2.24)

These are the well-known standard and dual cusp catastrophe points (Figure 2.18), producing
the ‘stable’ and ‘unstable’ symmetric bifurcation. This is the typical bifurcation occurring in a
one-parameter family of symmetric, smooth functions. In the following, this bifurcation will
be called ‘three-branch pitchfork’. Here again, bifurcating optima emerge, but this is not
surprising, since x=0 changes from optimum to pessimum at bifurcation points.

2.6.1.2 Multiple reflected potentials
Among this kind of functions (see (2.6)), the typical bifurcations are the same as those of
reflected potentials: the bifurcations of U are a subset of the bifurcations of the individual U;
functions. A bifurcation of Uy at (x,p)=(0.po) appears in U, if

U, (0,p,) = max;, (Ui (0’p0 )) (2.25)

At the same time there are isolated points V" at the x=0 axis where

U,(0,p)=U (0, p), i#f (2.26)
At these points, no bifurcation emerges if U; and U; are not exceptional, i.e. both have robust
minima at V. However, a special ‘wedge-bifurcation’” may appear (there is an example in
Figure 2.19), if U; has a local minimum, and U; has a local maximum at V. The latter can
occur if U; is generated from even f function (i.e. it is of type UY or U®)
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2.6.2 Examples in engineering: optimisation of structures

In this part we provide a list of examples (Figure 2.20), illustrating all the bifurcations
described in part 2.6.1. Our goal was to make this illustration homogeneous and easy to
follow in the sense that each bifurcation type is demonstrated on the same type of structure
(continuous beam with four supports). As a result, some illustrations are somewhat artificial.
Including a larger variety of structures yields other illustrations, however, their description
would be more lengthy. Similar examples have been studied in Buella (2002), Alkér (2001).

Structures similar to our beams are usually designed based on strength conditions of the form
f <f., where fand f, are, respectively, the design and ultimate value of the bending moment.
Such conditions have to be met by all parts or points of the structure. If the design variable x
is optimised for this kind of condition, it is plausible to define an ‘optimisation potential’
Ux,p) as the maximum of f{x,p) for all points of the structure, a ‘better’ structure
corresponding to smaller values of U(x,p). As already shown previously, if

— aone-parameter (p) family of structures is examined,

— f(x,p) is a smooth function at all points or parts of the structure,

— x satisfies condition (i)-(ii), which means in our case that y;(8(x))= 8(-x) (with

yi=reflection)

U(x,p) is typically a multiple reflected potential, thus the examples are likely to produce the
bifurcations in question.
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Figure 2.20 A-F: various parameterised beams and loads; G: qualitative moment diagram of the
structures A-D

2.6.2.1 Unstable X bifurcation.

Consider the uniform, linearly elastic beam in Figure 2.20/A with four supports, subjected to
uniform vertical load. Our goal is to optimise the position x of the hinge, making the
maximum U of the bending moment as small as possible.

Calculating the support and hinge reactions under the assumption of small deformations
(linear theory) is a common structural engineering problem. Solution techniques are available
in advanced undergraduate textbooks; most easily it can be solved by the force method (cf.
Gere et al., 1990), yielding finally the internal bending moment acting at an arbitrary point of
the beam. The qualitative moment-diagram is illustrated in Figure 2.20/G. There are three
pairs of local maxima in the moment diagram denoted by f; and f; ; i=1,2,3. So U(x,p) is now
the maximum of three pairs of local maxima:

U =max(U,,U,,U,), (2.27)

where the U;’s are reflected functions as defined in (2.3):
U, =max(f,,f), =123 (2.28)
In our example the f; functions can be determined analytically (cf. Gere et al, 1990) as:

(p+2)- [ +4plp® +2° +(p X +(p-x)°) (2.29)
fz(x p)_ g. (p +3px +p Ty )
KW= f,up) i folx,p) < /} (2.30)
hen= { it f,(x,p)>)
_ fxp)-fiap) | (2.31)
J@(x,p)—é{w - }

We computed the bifurcation points of the U; functions as the solutions of the dfi(x,p)/dx=0
equation analytically and found that there is an unstable-X bifurcation in U,(x,p) at point

P= ( 19+3\/_y 19+3J_) j (0,0.420)

(2.32)
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Since U,>U, at P, this X-bifurcation of U, occurs in the U function as well (cf. (2.25) and the
corresponding remarks). A representative domain of the bifurcation diagram is plotted in
Figure 2.21. At point V=(O,\/3 —1) on axis p, we have U;=U,, so we could expect a wedge-
bifurcation based on equation (2.26). However, since both U; and U, have local minima at V,
no bifurcation occurs (cf. the comments after equation (2.26)).

p p
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Figure 2.21: An example of the X-bifurcation Figure 2.22: An example of the point-like
bifurcation

2.6.2.2 Point-like bifurcation

In the previous example, equation (2.30) provides a simple relationship between f; and f5,
which shows that the critical points of U; and U, typically coincide. Furthermore, the
following form of (2.30) (where ﬁz is approximated by its truncated Taylor expansion)

V- )+ 2 00p) M+ O - i) (1-2-4,0.p)  (233)
2 2

fi(x,p)=

shows that an unstable-X bifurcation point of U, corresponds to a dual, point-like bifurcation
point of U, if f,(0,p)<1/2 (which is true for p<l). So U, has a point-like bifurcation at
P~(0,0.420) (cf. Figure 2.21), however, it is hidden, because U=U; at point P. In order to
make the point-like bifurcation at P appear in U, we change the geometry of the structure
slightly.

The new geometry is illustrated in Figure 2.20/B: the two inner supports are both
symmetrically moved down by the distance a (this could be the result of soil settlement). This
modification causes, according to our computations, the following effects:

— moves the critical point P downward in the bifurcation diagram ,

— does not change the position of point V' because the moment diagrams are

unchanged if x=0.

If, e.g. a=0.003, the new bifurcation point P’ is under V, and the point-like bifurcation of U,
appears in U (Figure 2.22).
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2.6.2.3 Five-branch pitchfork bifurcation

The example of Figure 2.20/C is similar to the previous ones, but the position of the middle
supports is optimised instead of the position of the hinge. Analysis is done in the same way as
at the first example.

The bending moment f,,;4s at the middle of the structure is zero at arbitrary (x,p) values, since
there is a hinge. On the other hand f,,;; can be expressed from f, and £, as:

Sowia =(f2+f2|)/2-p2/2 (2.34)
Combining (2.34) with f,,;,; =0 yields
P’ =06+ f(x6p) = f,(xp) + fo(-x, p) (2.35)
p p
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Figure 2.23: An example of the five-branch pitchfork.  Figure 2.24: An example of the ‘stable’ three-branch
pitchfork.

According to (2.35), f> is an odd function of x (the non-vanishing constant term does not
influence the critical points), so at the bifurcation point P= (0,\/5 / 2) it is locally equivalent to
/% (defined in (2.22)), thus the bifurcation of U, is a five-branch pitchfork. In the

neighbourhood of P, U,>Uj, so, based on (2.25), this bifurcation occurs in U as well (cf.
Figure 2.23.)

2.6.2.4 Three-branch pitchfork bifurcation

The beam of Figure 2.20/D is again slightly different from the previous ones: the hinge is
missing. This structure is statically indeterminate of the second degree, so two compatibility
equations are needed beyond the equilibrium equations. The solution is constructed in the
same way as at the other examples.

As f3 occurs at the symmetry axis of the structure, we have:

S50, p) = f3(-x, p) (2.36)

and

f56p)=f; (xp)=U,(x,p) (2.37)
Since U; is always a smooth, symmetric function of x, the typical bifurcation of Uj; is the
(stable or unstable) three-branch pitchfork. In our example, U; has a stable pitchfork at point
P~(0,0.4805). (The second co-ordinate of P has been computed numerically as a root
of f;'=0, leading to a sixth-order polynomial equation.) Since Uj; is not the global maximum
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of the bending moment at P, the structure has to be modified in order to have the pitchfork in
U as well. One example of such a modification is adding the loads of Figure 2.20/E to the
structure. This load has the following properties:
— it leaves the moment diagram in the outer spans invariant and only changes the
moment diagram in the middle span: it increases U3 and does not influence U, and
U,. If N is chosen appropriately, U; becomes global maximum.
— the effect of the load is independent of x, so the character of the bifurcation
remains unchanged.
Figure 2.24 shows the bifurcation diagram for N=1. At this value of N we can observe the
‘stable’ symmetric bifurcation in U.

2.6.2.5 Wedge bifurcation

Let us regard Figure 2.20/F. The structure is the same as the one in Figure 2.20/D, however,
the load on the outer spans is now zero. At point V=(0,1) we have U,=Us. At this point, U,
has a local minimum and Us (which is a U type potential, cf. (2.23)) has a local maximum.
The two functions form a wedge-bifurcation, which appears in U. The corresponding
bifurcation diagram is illustrated in Figure 2.25.

1.05-

<~ local optimum of U,
1 AV

X\ "wedge": Uy =U2

0.95% local pessimum of U 3

09 +

-0.1 0.1

Figure 2.25: An example of the wedge-bifurcation.

2.6.3 Bifurcation analysis at different symmetries

The analysis of part 2.6.1 showed that there are typically no bifurcating, asymmetrical optima
in a one-parameter family of D;-symmetrical examples, at which x=0 is robust optimum (cf.
Theorem 2.8). The only exception was a special case where the generating function f had the
odd property as an example-specific degeneracy.

This fact suggests that bifurcating optima might be atypical in one-parameter families of
structures with arbitrary symmetry, in which x=0 is robust optimum. (In other words: the lack
of potential improvability implies the lack of optimal improvability.) However, we have
found a Ds-symmetrical counter-example (example 4/A, Figure 2.13/A), which indicates
either that the counter-example has a specific degeneracy or that the above generalisation
fails.

To decide this question, we performed a partial bifurcation analysis based only on the
symmetry and the induced representation of example 4/A, regardless to the inner forces of the
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specific structure to find some generic bifurcation patterns. The technique of the examinations
is analogous to that of part 2.6.1.

We consider a one-parameter family of potential functions U(x;,x,,p). According to eq. (2.14),
U is generated from a smooth function f(x;,x,,p) (i.e. the potential of bar A|B) via

Ux,p)= n}%x [f(DiX’p)]’

where x=[x; xz]T and the matrices D; are elements of the induced representation of example

4/A., i.e.
1 0 1 _A3 _1 A3 (2.39)
— _ 2 2 _ 2 2
D°_L o} Pi=ly o Pls
2 2 2 2

The local classification of U is derived from the classification of f(x,p). The truncated Taylor
expansion of f{x;,x,) up to the second-order term is the following:

(2.38)

Tf(.z) =a,, + X, +ayx, + azoxl2 +a,, x,x, + aozxz2 (2.40)

As already shown in part 2.5.5, bar 1 is invariant under reflection to the OBA; plane (see
Figure 2.13/A). Due to this symmetry, the potential of the bar satisfies f{x,x2)= f(x1,-x2), i.e.
ag=a;1=0 in (2.40). Beyond that, we can assume ao=0 because the constant term is
indifferent from the point of view of bifurcation analysis.

U(x)

|
|

|

|

|
W
’

Figure 2.26: typical local configuration of the U(x) function at x=0

At typical points,T;” does not vanish, f{x,p) is locally equivalent of the (0,0,0) point of f
M x1,x2,p)=x1. The U function, generated from M X,p) via (2.38) has a robust optimum at
P g P p

x=0 (Figure 2.26). At generic bifurcation points, T;" =a,,x, vanishes and f{x,p) is locally
equivalent to the (0,0,0) point of

f? (Xlaxzap) =px + azoxlz + a02x22 (2.41)
The type of the emerging bifurcation depends on a,y and ap,. The local shape of U(x;,x2,p)
cannot be plotted but in a four dimensional diagram, however the bifurcation diagrams are 3
dimensional, i.e. we can plot the latter ones. There are numerous typical patterns, some of
them are presented in Figure 2.27. As the results suggest, there is a range of the parameters,

where the bifurcation pattern contains asymmetrical optima, i.e. such optima are not atypical,
in contrast with the case of D-symmetry.
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X, /\.xl X X, % X

A B C

Figure 2.27: Numerically determined bifurcation patterns at some values of the coefficients a,, and a,.
A: both coefficients are positive B: 0<a,y=-ay, C: ap~2a,)<0. In all diagrams, red, green and blue points
denote pessima, saddle points and optima, respectively. The figures show only half (p>0) of the
bifurcations. Notice that B is of the same type as the bifurcation in Figure 2.13/A.

2.7 EXCEPTIONAL STRUCTURES

The results of the previous sections predict typical properties of optimisation problems. The
exact behaviour of an example depends on the inner forces of the specific structure, e.g. the
typical predictions on robust optimality of x=0 in Section 2.4.3 were in some cases modified
by the exact value of the gradient g. At some of the numerical examples, the lack of checking
the value of g yielded misleading results. Such difficulties have already emerged at the D;-
examples of Section 2.3. The exceptional cases can be classified into two distinct classes:

1: The weakest points of §(0) are invariant to some (Example 4) or all (example of Figure
2.3/A) elements of 7. As shown in part 2.5.5, the typical predictions can be applied for
these examples, provided that the structure is considered as only 7* symmetric, where
I*=I'\{i;} and i; denotes elements of 7/, to which some of the weakest points are invariant.
If 7={i;}, then I'* is the trivial group, i.e. the structure has typically no robust optimum at
x=0 even if optimised by only one variable. To recognise these exceptions, one has to find
(one of) the weakest points of the perfect structure.

2: The potential associated with the weakest point has a special property, which does not
follow from the symmetry of the structure (such examples are that of Figure 2.3/B, where
dfldx=0 was a surprising identity or example 2/D, where we had 0f/0x,=0). The general
predictions often fail in these cases. Such exceptions are difficult to recognise: one has to
determine the exact gradient of the potential function associated with one of the weakest
points.

As most outstanding property of exceptional examples, the local optimality of x=0 differed
from the predictions. At the same time, there are examples, where the optimality of x=0 is
unchanged, however atypical bifurcations emerge in the optimum diagrams. We mention the
beam of Figure 2.20/C, which is a type 2 exceptional example: the potential of the weakest
point satisfied d°f»/dx*=0. This identity did not change the robust optimality of x=0, but called
forth a novel bifurcation pattern (the five-branch pitchfork). Thus, in this case the general
prediction concerning potential improvability of the structure was correct, but the optimal
improvability of the structural family changed.
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2.8 SUMMARY

In this section the improvability of symmetrical structures via small perturbations of their
symmetry has been examined in cases where the quality of the structures was determined by
the worst one of several smooth ‘local’ potentials associated with a set of weak points.

It has been shown that the symmetric configuration of such examples is often a ‘robust’ local
optimum. Exact (based on the structure’s inner forces) and typical (based on the structure’s
symmetry and the choice of variables) conditions of robust optimality have been derived. The
latter ones are considered as the main results of the research. Since robust optima cannot be
improved by small perturbations, these results are applied to formulate conditions of the
‘potential improvability’ of symmetrical structures.

We have showed necessary as well as sufficient conditions for the number of symmetry
breaking variables, which make a symmetrical structure potentially improvable, these results
were based on the type of symmetry of the structure. We have also determined if a given set
of variables typically yielded local, potential improvability or not. Both conditions are much
easier to handle than an explicit verification of optimality at specific examples. The latter one
means practically the calculation of the exact potential of a wide family of structures (the
members of which are determined by arbitrary xeR%).

These results help to improve symmetrical structures with small perturbations of the
symmetry. Using the typical condition, one can determine an adequate (and small) set of
variables. After that, numerical analysis of the structures serves to decide if the given
variables yield actual improvability and which combination of the variables should be applied
to get improvement. Without preliminary verification of the variables, one would either have
to choose many variables or one would risk choosing ‘hopeless’ variables. The former one is
disadvantageous, because numerical computational time grows exponentially with the
increased number of variables.

‘Optimal improvability’ of a symmetrical structure was also examined. We demonstrated that
slightly asymmetrical local optima are extremely rare among reflection-symmetrical
structures: there are typically no such optima in a one-parameter family of examples if
perturbed by one variable. (We did not show, although one can easily verify that there are
typically finite number of such examples in a two parameter family.) This result puts further
light on the widely-known observation that structures with imperfect reflection-symmetry are
very rare. We also demonstrated that structures with higher symmetry groups may behave
rather differently in this respect. Bifurcation analysis concerning another specific symmetry
group as well as a numerical example showed that slightly asymmetrical optima may emerge
in a typical manner in a one-parameter family of structures.

All the shown results are ‘typical’ but exceptions are not excluded. Accordingly, we
demonstrated the existence of exceptional examples in connection with all results. Most of the
general statements were based on the first- or second-order terms of the Taylor-expansions of
potentials associated with weak points of a structure. In cases where some of these terms had
special values (e.g. they vanished), but their speciality did not follow from basic symmetry of
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the structures/variables, the ‘typical’ predictions failed. However, such exceptional cases are
not too frequent, i.e. our results are applicable in most cases.

We also showed several types of structures with detailed numerical analysis as illustration.
We believe that the perspective offered by bifurcation and representation theory may be
helpful in the understanding of optimisation problems related to symmetrical engineering
structures.
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CHAPTER 3 EVOLUTION

3.1. INTRODUCTION TO EVOLUTION

3.1.1 Problem statement

Symmetry and asymmetry are central concepts in understanding both phylogeny and
ontogeny of animals (Moore, 2001). Except for sponges, all animal taxa can be characterised
either by ‘bilateral’ or by ‘radial’ symmetry of their basic body plan as already demonstrated
in Chapter 1. This distinction is based on having one or several planes of reflection symmetry
passing through the oral-aboral axis of the animal. The actual body structure is often less
symmetric than the basic body plan, due to secondary loss of symmetry. In particular, the left-
right symmetry of the bilateral animals is rarely perfect. Different kinds of asymmetries
emerge in different time scales of evolution. On the one hand, asymmetric locations of some
organs, as the heart or the liver, are as old as the Vertebrates themselves. On the other hand,
functional asymmetry of the human brain is probably very recent. While Chapter 2 was
devoted to the role of structures with imperfect symmetry in optimisation problems (which
was motivated by the lack of such solutions in the engineering praxis), now we are interested
in understanding the bifurcation structure of evolutionary transitions from perfect to imperfect
symmetry (which seem to occur often and to be the result of adaptation). For the sake of
simplicity, we will replace the world ‘imperfect symmetry’ by simply ‘asymmetry’ in this
chapter.

Evolution is inherently related to optimisation. ‘Fitness functions’ of the first (which will be
defined later) can be regarded as the analogues of the potential functions of the second. Some
models (called ‘frequency independent’ in the biological literature) show complete analogy to
engineering optimisation, however the mechanism of evolution is in general more than just
optimisation: a pre-defined global fitness function would predict a single winner of selection;
optimisation itself is unable to explain the origin of biological diversity. To account for the
coexistence of parallel branches of the evolutionary tree, one should take into account
‘frequency dependence’, i.e. the fact that the fitness function depends on the relative sizes of
competing populations. In case of frequency dependence, evolution itself modifies the fitness
function all the way. Consequently, one cannot rely on a global optimality criterion for
predicting the outcome of evolution. According to the theory of adaptive dynamics or AD
(Dieckmann et al., 1996; Metz et al., 1996; Geritz et al. 1997, 1998; Meszéna et al., 2005),
directional evolution via small mutational steps still proceeds in the direction of the current
fitness gradient. However, the ‘uphill’ evolution on the ‘fitness landscape’ is no longer
guaranteed to end up at a local optimum, a local pessimum can be equally reached (Eshel,
1983; Taylor, 1989; Christiansen, 1991; Abrams, 1993). In the latter case, the theory predicts
branching in the evolutionary process (Geritz et al. 1997, 1998).

Due to the possibility of frequency-dependence in biological systems, the mathematical

background of evolution is more general than that of engineering optimisation. At the same
time, this chapter will be more specific from another point of view: while engineering
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structures with arbitrary finite symmetry have been objects of the investigations of Chapter 2,
the evolutionary research is confined to the case of bilateral (i.e. D;-) symmetry, since the real
species, which motivated this study (see e.g. 3.8) are all examples of imperfect bilateral
symmetry.

The primary goal of AD theory is to demonstrate the possibility of evolutionary branching,
which can be initiated in two different ways (Metz et al., 1996; Geritz et al, 2004):
I. In a constant environment evolution converges to a branching point and branches there
immediately.

II. The population evolves to an evolutionary stable strategy and waits there until an
environmental change bifurcates this strategy to a branching point. Evolutionary
branching occurs as a response to the modified conditions.

Most AD models concentrate on Scenario I, however it is a general perception (cf. punctuated
equilibrium, Eldredge et al., 1972) that the bulk of evolutionary change is restricted to short
transitional periods, i.e. most of the time evolution stops, and is waiting for an environmental
change which will trigger the new phase of rapid evolution. This implies that the seemingly
more complicated Scenario II. is more relevant for the real process (cf. Geritz et al, 2004).

Our present aim is to apply the adaptive dynamics framework to modelling the emergence of
asymmetry instead of evolutionary branching. As we will see, asymmetry can emerge via, but
also without branching. We want to get a deeper insight to the ecological types and
background of symmetry as well as to decide whether environmental change is an important
ingredient of this phenomenon or not (cf. the comments on evolutionary branching above).
The final goal is to determine the generic evolutionary patterns of the emergence of

asymmetry.

In principle, there are three possible scenarios for the evolutionary loss of symmetry (Figure
3.1). In the simplest case (a), an initially symmetrical population evolves to be asymmetric.
This scenario does not contain branching and it can be fully described within the confines of
the optimisation picture of evolution.

T 7"
N N A
X, x X, x
(a) (c)

Figure 3.1. Three fundamental patterns for the emergence of asymmetry (referred to as type (a), (b) and
(¢)). In each case, 7 means time (in evolutionary time-scale) and x is a scalar variable corresponding to an
evolving phenotypic value of individuals. x=x, corresponds to perfect bilateral symmetry, while x-0 means

an asymmetrical phenotype.

In the second scenario (b), two asymmetric populations (which are symmetric mirror images
of each other), emerge. If we assume a fixed potential (fitness function) then the slightest
violation of the reflection symmetry between the two asymmetric populations would result in
a temporary advantage of one of the populations and competitive loss of the other one. This
scenario becomes robust only by assuming a frequency dependent fitness function.
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The third scenario (c) assumes a different kind of evolutionary branching. A new, asymmetric
form speciates away from he original, symmetric one, however, the symmetric one survives,
as well. This scenario is inconceivable under the assumption of a fixed potential. On the one
hand, the asymmetric form cannot appear while the symmetric form is optimal, while on the
other hand, the symmetric form cannot survive when it becomes a local pessimum.
Nevertheless, the scenario makes sense from the biological point of view: a new species
acquires a new way of life and does not disturb its ancestor. Hence, frequency dependence is a
necessary, however not sufficient ingredient of such situations. Any typical branching pattern
is locally symmetric according to the conventional AD theory. Branching into an unchanged
and an evolving branch is beyond the confines of the existing approach. As we will see, this
type of evolution is possible due to the higher-order terms of fitness functions, which are
usually neglected, but become relevant here, as a consequence of symmetry conditions. Thus,
this work will conclude that all the three scenarios are likely to emerge in Nature.

3.1.1. Principal results and the structure of Chapter 3

Below I give the list of the principal results of this chapter. Standard concepts of Adaptive
Dynamics are used in the formulations. I remark that a short overview on Adaptive Dynamics
can be found in part 3.2 to enhance readability of the main text.

I started with the identification of the types of symmetry-breaking, which are likely to
produce significantly different behaviour. The role of frequency dependence in evolution and,
in particular, in adaptive dynamics is widely known. Considering the evolution of symmetry, I
found two sub-classes (called strong vs. weak symmetry) in the frequency-dependent case,
which are, according to my knowledge, not present in the current literature. The
corresponding research is summarised in the following principal result:

IV:  Tintroduced a novel classification of symmetry in frequency-dependent ecological
models, which I called strong/weak symmetry (cf. Section 3.4). I determined the
corresponding symmetry constraints in the fitness functions (‘strong’ symmetry
yielded a more specific constraint than ‘weak’ symmetry), and showed that the two
cases produce different evolutionary behaviour (see further details in Principal Result
V). I also demonstrated the difference between the two classes on several real
examples (Section 3.8)

After separating the qualitatively different cases (frequency-dependent vs. independent
selection, strong vs. weak symmetry, changing environment vs. constant environment) I
performed a systematic description of the patterns of the emergence of asymmetry in each
case. My approach focused on the truncated Taylor expansions of the fitness functions in the
light of the emerging symmetry-constraints.

V: Studying the evolutionary patterns of the emergence of asymmetry,

V.1 1 listed the generic patterns in adaptive dynamics models (all scenarios of
Figure 3.1 occurred in some of the cases, see Section 3.5), I also determined the
exact conditions of the emergence of each one.

V.2 1 demonstrated the possibility of a novel evolutionary bifurcation pattern, in
which an asymmetrical evolutionary branch develops in a population with
bilateral symmetry and the new branch coexists with the symmetrical ancestors
(cf. Section 3.6). I also simulated this pattern numerically on a classical model of
Levene (Section 3.7)
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V.3 1showed that the novel pattern occurs only in case of changing environment
Hence, environmental change is even more important ingredient than in the
classical AD theory, where evolutionary branching can be demonstrated on
autonomous models.

Principal Results IV and V have been published in Varkonyi et al (accepted for publication).

The necessary elements of AD for constant environment are summarised in Section 3.2,
whereas Section 3.3 specifies the problem and the basic assumptions more precisely. Section
3.4 introduces a distinction between ‘weak’ and ‘strong’ symmetry. Section 3.5 analyses the
types of the emergence of asymmetry. Section 3.6 summarises the patterns of evolutionary
branching, Section 3.7 provides a model example. In the last unit, a few real examples are
reviewed.

3.2. ADAPTIVE DYNAMICS IN CONSTANT ENVIRONMENT

Here we summarise the essentials of AD theory in constant environment, following Geritz et
al. (1997, 1998).

We consider evolution of a continuous inherited trait x, referred to as phenotype or strategy.
(Later we will identify this trait as the symmetry breaking parameter.) We assume that the
investigated population is large, well-mixed, and it may consist of several sub-populations
with different strategies x;,x,...,xz . It is assumed that an underlying model specifies the joint
dynamics of these strategies. We further assume that this dynamics reaches a unique, global,
and ‘simple’ (i.e. fix point, periodic or quasi-periodic but not chaotic) attractor on the fast
time scale, except in degenerate cases (such as the coexistence of identical strategies).

From time to time, the dynamical system is perturbed by the emergence of a new, random
‘mutant’ strategy y with a small initial number of individuals. The mutant strategy y is always
similar to an already existing one, which is considered as the ancestor of the mutant. The
mutants appear on a slower time scale, i.e. when the already existing strategies have already
reached the global fixed point.

The goal of AD is to understand the generic properties of the emerging evolutionary process,
independently from the specific dynamical system governing the fast time scale changes of
the populations.

It is an ongoing debate in evolutionary biology whether AD is a proper description of the
evolutionary process. (See, for instance, the target review by Waxmann et al. (2005) and the
related commentaries.) This debate is about the relative importance of ecological and genetic
factors in evolution (cf. Schluter, 2001). Adaptive Dynamics concentrates on the former
aspect and strongly simplifies the latter one (through the assumptions of clonal reproduction
and small mutational steps in x). Using this theory enables us to find similarities between
structural optimisation and evolution, since the ecological process of adaptation carries a close
analogy to engineering optimisation.

As already mentioned, AD considers any evolutionary phenomenon in an asexual model,
however AD-based models with complete sexual genetics (e.g. Dieckmann et al., 1999) seem

54



Chapter 3 Evolution

to support the possibility that speciation of sexual organisms is based on the phenomenon of
AD-style evolutionary branching (Metz et al., 1996; Geritz et al.,, 2004). Analogously, a
complete analysis of the emergence of asymmetry should include the consequences of sexual
reproduction, but such an extension is beyond the confines of my work.

The following three points introduce three main elements of AD: the concept of fitness
functions (3.2.1), evolutionary behaviour at non-singular points of models (3.2.2), and
behaviour at singularities (3.2.3)

3.2.1. Fitness concept

A standard definition of the fitness of a population is its logarithmic per-capita growth rate,
i.e. the difference between the birth and the death rates under specific environmental
conditions. A population grows when its fitness is positive, i.e. when its rate of births is
higher than its rate of deaths. In particular, one can asses the fitness of a newly emerged, and
still rare, mutant strategy y when the ‘resident’ strategies xj,xy,...,x; are in equilibrium. This
fitness is the so-called ‘invasion fitness’s, . (y). There are three possible scenarios with

respect to the fate of strategy y:
— It spreads and the new equilibrium will contain this new strategy. (The transition may,
or may not, involve extinction of some of the residents.) This case corresponds to

positive invasion fitness, i.e. s, . (»)>0.
— It becomes extinct (s, (¥)<0).
— Finding the consequences of the case s, . (y)=0 needs more detailed analysis.

The mutant may spread, disappear or stay sparse according to higher-order effects in
density. This situation appears generically if y is identical to x; or in case of a linear
fitness function (e.g. evolutionary game theory, cf. Maynard-Smith, 1982, Meszéna et
al., 2001 or resource competition with substitutable resources, see e.g. Schreiber et al.,
2003). The latter case is not relevant for us.

Henceforth we will mainly concentrate on the invasion against a single resident, for which the
invasion fitness s_(y) trivially satisfies

s.(x)=0. 3.1)

As a consequence of Eq. (3.1), the Taylor expansion of s.(y) at (x,y)=(x;,x1), in the variables
Ax=(x-x1) and Ay=(y-x1),) can be written as

=(Ay—Ax)-(ay, +a10Ax+a01Ay+a20Ax2 +a11AxAy+a02Ay2 +a30Ax3 +..) (3.2)

s.(»)

X,yRx,

The sign of the function s,(y) can be conveniently plotted in a pairwise invasibility plot (PIP).
(See Figure 3.2/A for an example.) In this plot, horizontal and vertical axes correspond to the
resident (x) and the rare mutant (y) strategies, respectively. The dark region represents the
strategy combinations for which the mutant can spread against the resident, i.e. s,(y)>0.
Observe that the main diagonal is always a borderline between the black and white regions,
due to Eq. (3.1)
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Figure 3.2. A: An example of the pairwise invasibility plot (PIP) with two singular strategies. x;* is neither
convergence stable (i.e. local attractor) nor ESS (i.e. evolutionary stable singular point), nor invasion
stable. x,* is convergence stable, invasion stable, and ESS. (The stability properties are defined in 3.2.3) x
decreases in evolution (i.e. the local fitness gradient is negative, see part 3.2.2) if x>x,* or x<x;* and it
increases (i.e. the local fitness gradient is positive) if x,*>x>x;* B: The grey area indicates the area of
mutual invasibility.

Figure 3.2/B represents mutual invasibility: gray region corresponds to strategy pairs (x,y) for
which both s, (y)>0 and s,(x)>0. The joint dynamics of such strategies should have an

internal stable fixed point corresponding to positive number of individuals for both strategies,
i.e. such a strategy pair (x,y) is able to coexist. Conversely (since we assumed that an internal
attractor is globally attracting) coexistence implies the non-negativeness of the two growths
rates. If the degenerate cases (s«(y)=0 or s5,(x)=0) are not considered (cf. the comments at the
beginning of this subsection), coexistence implies mutual invasibility.

In many evolutionary models there exists a potential function U(y) (also referred to as fitness
in the biological literature), with the property that the strategy with the larger potential
outcompetes any strategy with a lower potential. This potential-optimisation picture (which
emerges also in structural optimisation) can be connected to the concept of invasion fitness
via the identification

s.(»=U)-U(x), (3.3)

i.e., the invasion fitness of a mutant corresponds to its advantage in potential-fitness. No
mutual invasibility, i.e. no coexistence is possible in such models.

Evolutionary problems, which are characterised by an invasion fitness of type (3.3), are
considered as frequency-independent, because fitness advantages/disadvantages do not
depend on the relative frequencies (abundances) of the competing strategies. In this case,

0s
) =y, =y =0
Ox0y

(3.4)

follows from (3.3).

3.2.2. Directional evolution

The direction of evolution via small mutational steps is determined by the ‘local fitness
gradient’
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D(){&éﬁ} ~ay (3.5)

=X

provided that it is non-zero. If D(x)>0, a mutant with strategy y>x invades the resident
population with strategy x, whereas if D(x)<0, mutants with y<x can spread. Here we assume

that | y—x| is small enough to guarantee that the linear term dominates the fitness

advantage/disadvantage of the mutant. Moreover, s.(y)=D(x)-(y-x) >0 implies s,(x)=D(y)-(x-
y)=D(x)-(x-)<0 in this context, i.e. the initial advantage of the mutant ensures that it ousts and
replaces the resident, provided that D(x) # 0.

As newer and newer mutants arrive and replace their ancestors, this ‘trait substitution process’
constitutes a more-or-less continuous evolution in the direction determined by the local fitness
gradient. See Dieckmann et al. (1996) for the deterministic approximation of this stochastic
evolutionary process. This ‘directional’ evolution proceeds until a ‘singular’ strategy x  is
reached, for which D(x*)=0.

In a PIP, evolution to the positive direction is represented by having a black region
immediately above the main diagonal (strategies between x;* and x,* in Figure 3.2/A; see also
Figure 3.3/B). Conversely, a black region immediately below the main diagonal represents
evolution to the negative direction (strategies smaller than x;* or larger than x,* in Figure 3.2;
see also Figure 3.3/A). Consequently, singular strategies are characterised by intersection
points of the main diagonal and another borderline (Figure 3.3/C-J).

3.2.3. Properties of singular strategies

Three distinct kinds of stability can be associated with singular strategies. A singular strategy
x is a local attractor (or convergence stable) if and only 1f D(x), which determines the
direction of evolution, is positive for x<x “and negative for x> x in the vicinity of the singular
point. In the generic case, this yields the condition

dD)|  _os)| W)

x |_. 9 Ox0y

=a,,+a, <0 (3.6)

y=x=x*

y=x=x*

Note that a convergence stable singular strategy need not be a local fitness maximum.
Strategy x is a local fitness maximum (or evolutionary stable strategy, ESS) in the generic
case, if

0’5, (¥)
8y2

=da, < 0 (37)

y=x=x*

Finally, a rare x* strategist mutant can invade a population with slightly different strategy x
(x* 1s invasion stable), if s _(x*) > 0, which yields generically the condition

s, (»)

PN =a;,, <0 (3.8)

y=x=x*

The three conditions coincide for frequency independent fitness by Eq. (3.4) (that is why there
are only ‘stable/optimal’ and ‘unstable/pessimal’ points in a potential U(y)), but not in
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general. For example, there are singular strategies, which are convergence stable, but
evolutionary unstable (Eshel, 1983, Taylor, 1989; Christiansen, 1991; Abrams, 1993).

A B
4.7,
"

D g

S |>
malo
A A
J EZ G

I H

Figure 3.3: Local PIP-s around the point (x,x) at non-singular (A, B) and typical singular (C-J) x
strategies. In all cases, grey/white colour corresponds to positive/negative fitness value.

At a typical singular strategy, the fitness function is dominated by the a;¢ and ag; coefficients,
thus the local PIP contains two intersecting lines (one of these is the main diagonal), which
divide the plot into four regions. (Later we will encounter cases when the first nonzero term is
of higher order.) Figure 3.3/C-J represent the possible local configurations of the PIP around a
singular strategy. The singular strategy is an ESS, if the vertical line through the intersection
point lies in white regions (cases G-J) and it is invasion stable if the horizontal line lies in the
black part (cases C,D,I,J). Convergence stability is indicated by a black region above the main
diagonal on the left side and below the main diagonal on the right (cases C,H-J).

The really important singular points are the convergence stable ones, because an evolving
population does not come close to a convergence-unstable strategy. At the same time, if a
population’s strategy is already x*, the two other stability criteria determine its fate.

— Ifx*is an ESS (cases G-J), it cannot be invaded by any similar mutant, i.e. it is a final rest
point of the evolutionary process.

— If it is neither ESS nor invasion stable (cases E,F), similar mutants spread in a population
of x* strategists and the latter ones get extinct. (The overall result is generically
divergence from x* because the E and F type singularities are not convergence stable.)

— Finally, at an evolutionary unstable but invasion stable strategy (cases C,D), both the
resident and the mutant are preserved and evolutionary branching occurs in such a way
that both sub-populations diverge from the singularity. This branching process is discussed
in Section 3.6. We remark that case D is usually not considered as a branching strategy,
because its convergence instability prevents populations from converging to it, i.e.
branching practically cannot occur.
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3.3. BASIC ASSUMPTIONS

My goal is to describe symmetry-breaking via the evolution of an inherited continuous scalar
strategy x, in accordance with the introduced framework of AD. Similarly to the symmetry-
breaking optimisation variables of Chapter 2, the variable x should fulfil two restrictions,
which are analogues of points (i) and (ii) in Section 2.2:

(1) There is one and only one strategy x=xo, which corresponds to bilaterally
symmetric body structure. The evolutionary development is assumed to start with
a population with exact symmetry (i.e. with strategy xo). This condition enables us
to simulate symmetry-breaking by the model.

(i1) The set of strategies xeR is invariant to reflection, i.e. for arbitrary x;eR there
exists x2€R so that the mirror image of an x=x; strategist is an x=x; strategist. The
lack of this property would mean that our simplified model violates the symmetry
of the biological system. Furthermore- as a purely technical condition-we assume
that the mirror image of an xp+Ax strategist is an xo-Ax strategist (cf. the case of
reflection symmetry and one variable in Section 2.3).

LA

0 X

Figure 3.4: An example of symmetrical strategies: x is the slope of the spiral axis of the shell. x>0 means
dextral while x<0 means sinistral shell.

If both conditions are fulfilled, we call x( ‘symmetrical strategy’. As an illustration, consider a
geometrical model of snail shell forms (Raup, 1962) with three parameters, one of which is
the slope x of the spiral (Figure 3.4). If x=0, we have a curve in a plane, generating a flat
shell, reflection-symmetric with respect to this plane. On the other hand, if x>0, the shell is
peaked and asymmetrical (dextral). With a negative value of x, the result is a reflected
(sinistral) shell. In such a situation x=0 is a ‘symmetrical strategy’.

We assume in line with AD methodology (see more details in Section 3.2) that strategy x can
be modified only by small (though not infinitely small) mutational steps. In particular, we do
not allow such “macro” mutations, via which ‘left-handed’ offspring of a ‘right-handed’
parent appear. See the Discussion for the consequences of some different assumptions.

We have to take into account that ontogeny of a symmetric body plan is simpler (and more
ancient) than that of an asymmetric one. That is why we assume exact body symmetry, as a
starting point. Then, emergence of asymmetry can be initiated in two ways (analogous to the
two categories of evolutionary branching in the Introduction):
I. A change in the developmental program allows body asymmetry and asymmetry
proves to be advantageous. This scenario can happen in constant environment.
II. The possibility for asymmetry is already present and an environmental change makes
asymmetry advantageous.

Beyond the above two categories, we will distinguish between the following types of
symmetry-breaking from the ecological point of view:
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— symmetry-breaking in frequency dependent models. Within this class, we
introduce the following two subclasses (see Section 3.4)
o case of strong symmetry: the model behaviour depends on the relative sizes of
competing populations in general, but not on the relative sizes of “lefty” and
“righty” populations, which are mirror images of each other. With other words,
asymmetrical individuals and their mirror images are ecologically identical.
o case of weak symmetry: asymmetrical individuals and their mirror images are
not identical.
— symmetry-breaking in frequency independent models.
Due to the two types of classifications we will investigate 3x2=6 separate cases in Section
3.5.

3.4. TWO TYPES OF SYMMETRY-BREAKING

The question of evolutionary advantage/disadvantage of symmetry breaking is relevant only if
the environment itself possesses the symmetry in question, that is, if replacing all individuals
of the model by the reflected ones does not affect the model behaviour. In the frequency-
independent models, this condition yields

U(xo+Ax)= U(xo-Ax), (3.9)

where Ax denotes x-xo. According to eq. (3.9), the fitness of an individual is independent of its
left/right handedness. This means that ‘left-’ and ’right-handed’ individuals are completely
equivalent from the point of view of ecological interactions: if only a part of the individuals
are replaced by reflected ones in a population, this change does not affect the model
behaviour either.

In the frequency-dependent case, the analogue of eq. (3.9) is
(3.10
)
which does not necessarily mean the equivalence of left- and right-handed individuals. Thus,
two levels of symmetry can be distinguished in case of frequency dependence, i.e. when the
interactions between the individuals affect the fitness function. We call a symmetrical strategy
strongly symmetrical if all of the interactions are independent of left/right handedness. In this
case, one can replace some (but not necessarily all) individuals by reflected ones and find the
same model behaviour. In contrast, if the interactions depend on the handedness of the
affected individuals, only the simultaneous reflection of all individuals is an invariant
transformation of the model. The latter situation will be referred to as weak symmetry.

Syrax (Xg TAY) =5, . (X —Ay)’

The symmetry condition (3.10) implies that all terms of odd order vanish in the Taylor
expansion of the invasion fitness function at point (xo, xo). Thus, in case of weak symmetry,
the general form of the expansion is more specific than Eq. (3.2):

s (y) =(Ay —Ax)-(a,,Ax+ay, Ay + a30A>c3 + amAy3 + aZIszAy + ale)cAy2 +..). (3.11)

X,yzxo

Since ago vanishes, the symmetrical strategy x, is always singular. Since the coefficients ajo
and a; remain generically non-zero, the classification of the possible PIP-s for a weak
symmetry remains the same as in Figure 3.3/C-J.
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In contrast, the strong symmetry is characterised by a more restrictive condition:
S v +Ax (xo +Ay) = S xo+Ax (xy —Ay) = S xo-Ax (xo +Ay) = S xo-Ax (x, — Ay. (3.12)

which corresponds to the fact that reflection of only the residents or only the mutants are
invariant model transformations. In this case the general form of the invasion fitness function
is:

5. (») xyexy (Ay? — Ax?)- (byy + blOsz "'bo1Ay2 + bzoAx4 + bnszAy2 "'bosz4 +..)° (3.13)
The expansion contains only the terms, which are even in both variables, due to the more
restrictive symmetry condition. Comparison with (3.11) yields a¢=ai0=boo and similar
relations for the higher-order coefficients.

For strong symmetry, boy<O (Figure 3.5/A) implies convergence, evolutionary and invasion
stability, because

%5, (») 3’5, ()
— +—= =2b,, +0
o | oxdy | 00 (3.14)
y=x=xq y=x=xq
%5, (»)
ot | . =2by, (3.15)
0’5, (»)
Tl | =—2b,, (3.16)
Y=X=X y
A B
e
? bOO
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Figure 3.5: Local PIP-s for strong symmetry. A, B: x; is a generic
strongly symmetrical strategy (byy=0); C-H: x, is a degenerate
strongly symmetrical strategy (by,=0). Grey/white colour
corresponds to positive/negative fitness values.

Such a strategy is an attractive endpoint of evolution. Conversely, byp>0 leads to a singularity,
which is unstable in all senses (Figure 3.5/B), i.e. it is a repellor.
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Later, we will also be interested in the case of vanishing bgy. If byp=0, the character of the
singular point is typically determined by bjy and by; (Figure 3.5/C-H). The six emerging
configurations are partly invasion stable (C,D,H), partly ESS (F-H), and the two properties are
not equivalent. In particular, C and D are branching strategies.

Note the geometrical interpretation of the two kinds of symmetry. Weak symmetry is
equivalent to the fact that the PIP is invariant under a rotation of 180° around the point (xo,xo).
For strong symmetry, the PIP has a vertical and a horizontal symmetry axis at the point

(xo,xo).

As already noted, weak and the strong symmetry are equivalent in frequency independent
models, because frequency-independence means that the strategy of the competitors
(including the handedness) does not affect the fitness of a strategy. Moreover, we have in this
case

19,00 _, (3.17)

4 8x26y2 =0 ~bn =0

3.5. EMERGENCE OF ASYMMETRY

In this Section we study the evolutionary loss of bilateral symmetry. We mentioned in Section
3.3 that it can occur in constant environment (case I) or it can be induced by environmental
change (case II). In the latter case, we suppose that, initially, the symmetrical strategy is
evolutionary stable and the population assumes this strategy. The phenomenon will be
discussed separately for models without frequency dependence (Section 3.5.1), as well as for
weak symmetry (Section 3.5.2), and strong symmetry (Section 3.5.3). with frequency
dependence

3.5.1. Frequency independent models

It has been demonstrated in Section 3.2 that evolutionary and invasion stability are equivalent
in frequency independent models and branching cannot occur. Thus asymmetry can only
emerge via type (a) divergence from the symmetrical strategy in constant as well as in
changing environment. (Divergence can be realised at Figure 3.5/B type strategies.). This
phenomenon is closely related to structural optimisation with a global criterion (yielding a
smooth potential, see Sections 2.1.1-2). At the example of Figure 2.1/C, the symmetrical
optimum bifurcates into a pessimum if a model parameter (p) is varied. The same
phenomenon initiates the evolutionary emergence of asymmetry in case of changing
environment (i.e. time-dependent model parameters).

3.5.2. Weak symmetry

It has been shown in Section 3.4 that the classification of generic weakly symmetrical
strategies is the same as that of singular strategies without symmetry (see Figure 3.3). In
constant environment (case I), asymmetry can emerge via type (a) divergence (cf. Figure 3.1)
if the possibility of asymmetry develops when the population is at a repellor strategy (such as
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Figure 3.3/E,F). Alternatively, type (b) branching may occur if asymmetry becomes reachable
at a branching strategy (Figure 3.3/C,D). Notice that evolution starts exactly from the singular
point, so convergence stability is irrelevant and Figure 3.3/D is also a branching point. The
steps of this kind of branching process are summarised in Section 3.6 parallel with a different
branching pattern.

Changing environment (case II) can be described by a moving point in the ajo-ag; plane
(Figure 3.3), which is originally located in the ESS region. There are two generic possibilities
for loosing evolutionary stability: reaching the border in a non-invasion stable or in an
invasion stable state (Figure 3.6, case 1 and 2). In case I, type (a) divergence from the
symmetrical strategy occurs, while in case 2, an ordinary (type (b)) evolutionary branching is
initiated.

ESS, | not ESS,
convergence and not convergence
invasion stable | or invasion stable
not ESS ' a,
N | Do
2|2
|28
S8
s
o o
Figure 3.6: The parameter plane for weak Figure 3.7: The parameter line for strong
symmetry (cf. Figure 3.3, eq. (3.11)). (3.13)). Our symmetry (cf. Figure 3.5, eq. (3.13)). Our
models are assumed to start from the ESS (grey) models are assumed to startfrom the ESS
region. Arrows indicate the two generic ways (1, 2) (grey) region. The arrow indicates the way of
of losing the ESS property in a time-dependent losing the ESS property in a time-dependent
model. model.

3.5.3. Strong symmetry in frequency dependent models

Despite frequency-dependence, the ESS and the invasion stability conditions are generically
equivalent at strongly symmetrical strategies. Thus, the common way of the emergence of
asymmetry is of type (a), analogously to part 3.5.1. However, as the degenerate cases of
Figure 3.5/C-H break the equivalence, a different and surprising scenario may be realised in
case II (changing environment) in presence of slow variation of byy. The bifurcation process
(Figure 3.7) has the following main steps:
e Initially, bpp<O and the symmetrical strategy is Figure 3.5/A type (a stable
evolutionary endpoint)
e The coefficient byy approaches zero and one of the configurations of Figure 3.5/C-H
emerges temporarily
e After some time, by gets far from zero on the positive side. The degenerate
configuration disappears and the strategy becomes Figure 3.5/B type (repellor).
If the mutation step was infinitesimally small, the higher-order terms would dominate the
Taylor expansion (3.13) only for infinitesimally short period, not long enough to have any
effect on the evolution of the poEulation. However, we consider small, but finite steps in the
strategy space. In this case the 4"-order terms dominate the quadratic ones in a finite interval
of bgy, which may correspond to a long time interval, if the environmental change is
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sufficiently slow. Here evolutionary development of the population depends on the properties
of the temporarily emerging, degenerate configuration:

e If the degenerate state is neither invasion stable nor an ESS (Figure 3.5/E), type (a)
divergence occurs as soon as the close-to-degenerate state is reached.

e If the degenerate state is an ESS (Figure 3.5/F-H), the population stays symmetric, but
later, as the degenerate state is replaced by a Figure 3.5/B type repelling strategy,
divergence occurs again.

o If the degenerate state is invasion stable but not evolutionary stable (Figure 3.5/C,D)
an evolutionary branching occurs in the close-to-degenerate state. In Section 3.6, we
describe this branching process in detail and show that it is of type (c).

3.6. ANOVEL WAY OF EVOLUTIONARY BRANCHING

The main goal of this section is to describe the details of the novel branching process of a
population with strongly symmetric strategy, which was recognised in Section 3.5.3. (This is
the situation b;g<byy=0<bg;, see Figure 3.5). This process differs significantly from the
generic pattern of branching without symmetry (Geritz et al., 1998). We describe the two ways
of branching simultaneously to highlight the similarities and differences. Notice that the
generic branching pattern in case of weak symmetry (Section 3.5.2) is the same as the latter
one.

The steps of the two processes are collected in the left (standard case) and right (strongly
symmetric case) column of Table 3.1. In both cases, row 1 presents the fitness functions
before branching, row 2 shows why two evolving branches coexist, and row 3 presents the
corresponding fitness functions. It is demonstrated in row 4, that the number of coexisting
branches cannot be more than two. Finally, the directions of evolution are determined in row
5.

In the standard case, the branching type evolution starts with the arrival of a mutant, which is
located on the opposite side of the singularity x* than the ancestor (row 2, left column). The
consecutive mutation events always end up with extinction of the middle strategy (row 5, left
column), i.e. two sub-populations evolve away from each other, resulting in a type (b)
branching. In the strongly symmetric case, branching starts with the coexistence of a new,
asymmetric mutant and its symmetric ancestors (row 2). The sequence of mutation-extinction
steps results in a branching, in which one of the strategies stays symmetric while the other one
evolves away; that is, a symmetric-asymmetric pair emerges in a type (c) branching (row 5,
right column).

Evolution follows the introduced patterns as long as both sub-populations are close to the
singular strategy. Later, the asymmetrical branch (at type (c) branching) or both branches (at
type (b) branching) continue to evolve directionally according to their respective local fitness
gradient, as demonstrated in Section 3.2.2 for a lone strategy.
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standard case (Figure 3.3/C)

case of strong symmetry (Figure 3.5/C,D)

—

The fitness function s,+(y), as a
function of y, has a minimum at
y=x*.  Locally, it can be
approximated as (cf. Eq. (3.2),
Figure 3.8/A).

sa(y)= am(y —-X *)2

The fitness function s, (), as a function of y, has a

minimum at y=x,. Locally, it can be approximated as
(cf. Eq. (3.13), Figure 3.9/A)

5. (M) by (y—x,)" (3.18)

Two strategies near to, but at the
opposite sides of the singularity (i.e.
x1<x*<x;) mutually invade each
other and, consequently, are able to
coexist.

If x; is near to x, x; and xo mutually invade each
other, i.e. they are able to coexist

If x; and x; are coexisting (cf. row 2)
and both of them are near to x*, the
invasion fitness is

Sxs V) ~ay, (y —X )(y X )
(see Figure 3.8/B, eq. (3.2)), because

If the x;=x¢+Ax; and x, strategies are coexisting (cf.
row 2) and x; is near to xo, the invasion fitness has a
double root at xp and two roots arranged
symmetrically around xy:

Son » zbm(y—xo)z(y—xo - Ax, )(y_xo +Ax1) (3.19)

(see Figure 3.9/B, eq. (3.13)), because x;=x¢ implies

X1 ’szx* lmplles lexz (y) ~ Sx* (y) SX()X[ (y) ~ SX() (y) and SX()X[ ('xo) = SX()X] (xl) = 0 by
and s, (x)=s,,(x;)=0  by|definition, and finally s _ (x,—Ax)=s, (x,+Ax)
definition . for any Ax, due to eq. (3.12).

4 |If more than two strategies|Generically only one strategy can coexist with xy,

coexisted, the corresponding fitness
function would be 0 at each of them.
The locally second-order invasion
fitness function cannot have more
than two zeros, i.e. coexistence of
more than two strategies 1is
impossible in the vicinity of x*.

because the arrival of two strategies with exactly the
same distance from x¢ (x;=xotAx, x,=xo-Ax) 1is
improbable and otherwise (x;=x¢+Ax|, x,=xo+Ax;) the
fitness function should have zeros at xptAx; and
xotAx; and a double root in xy. This is impossible,
because it has only four roots in the vicinity of xy.

If a new mutant emerges in presence
of a coexisting pair, one of the three
should become extinct by row 4.
The strategy becoming extinct
should have a negative growth rate
when it has become rare already. As
ao1>0, this condition holds only for
the middle strategy, i.e. if x;<x;<x3
are the three strategies, x, will
become extinct independently of
which of them was the mutant.
(Figure 3.8/C.)

When a new mutant appears at the equilibrium of x
and another strategy, one of the three strategies (ie. x,
x1=xoTAx; and x,=xp+Ax;) should become extinct by
row 4. Assume that ‘Axl |< | Ax> ‘ . Then x; will
become extinct, because the strategy becoming extinct
should have a negative growth rate when it has
become rare already (Figure 3.9/C).

Table 3.1: The course of the branching process at a generic branching strategy x* (standard case, left
column), and the branching process emerging at a degenerate, strongly symmetric strategy x, (right

column).
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Figure 3.8: Fitness of possible mutants at a standard branching strategy without symmetry. A: before
branching B: after branching C : fitness functions related to the coexistence of all pairs of strategies from
X1, X2, and X3

s() s(v)

5. (V)

X0

Figure 3.9: Fitness of possible mutants at a degenerate, strongly symmetric branching strategy. A: before
branching B: if x, and another strategy coexist C: fitness functions related to the coexistence of all pairs of
strategies from x,, x;, and x,.

3.7. AMODEL EXAMPLE

In this Section we present a specific model to illustrate the type (c) branching. It is based on
the examples of Levene (1953), Geritz et al. (1998). There are two parameters in the model, b
and 7, the latter representing the time-dependence of the model.

3.7.1. Description of the model

Consider a population of xj,x,...,x, strategists, the number of individuals is N;,NV,,..., Ny,
respectively. The model assumes non-overlapping generations, which live in a spatially
heterogeneous environment consisting of two different patches. A limited number of
individuals, denoted by K and K5, live in each of the patches. The total number of individuals
is constant:

N, +N,+...+ N, =K, +K,. (3.20)

The lifecycle of each generation consists of three parts.
— During dispersal, the offspring is distributed randomly in both patches; the
frequency of a strategy x; among the offspring is proportional to the frequency of

the parents with the same strategy, i.e. to N;.
— In the second phase, the offspring is subjected to frequency-independent selection,
which changes the relative frequencies of the strategies in both patches
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independently. The chance of an x; strategist in the i patch of surviving this phase
is proportional to a given function f;(xy).

— In the third phase, the survivors spread in both patches until their numbers reach
the capacities (K; and K3) of the patches. The relative frequencies of the strategies
in each of the patches are constant in this phase.

In this model, the chance of surviving the second phase is

fi(x)=e (3.21)

frlx) = (3.22)

with b, and b, positive parameters (see also Figure 3.10). Since both functions are
symmetrical, x=0 is a symmetrical strategy. Observe that this is an example of strong
symmetry, hence there is no difference between x and —x strategists.

The optimal strategy is b, in the second patch, i.e. there is an asymmetrical optimum. In the
first patch, there is a symmetrical optimum the ‘strength’ of which is determined by b,

£(x) E()

‘ \
>

> X
X 'bz bz

Figure 3.10: The functions fi(x) and f;(x).

Consider a rare mutant with strategy y in an equilibrium population of x;,x»,...,x, strategists

with equilibrium numbers Ny, Ny,..., N, If N, is the (small) number of mutants in a
generation, the N,” number of mutants in the next generation can be approximated as
N N
N, =K, nfz()’) LK. nfz(y) . .
Zfl(xk)Nk Zfz(xk)Nk '
k=1 k=1
Consequently, the logarithmic per-capita growth rate of the rare mutants is
N '
S (V) = 10g[7y] =log K, ',,f#y)JrK L)\ (3.24)
y

IIERLAND WACHI/

To reduce the number of model parameters, assume that 5,=b,=b and let the parameter 7 be
defined as

KZ
K, +K,

' (3.25)

We can determine the fitness function of rare mutants in this model in case of a monomorphic
resident population (with strategy x):

4 4

5, ()= log[(l 7).kt L ettt (3.26)

As it is expected, the fitness function satisfies the condition of strong symmetry (3.12).
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The results for the dimorphic case (two resident populations) are more involved. First, the
equilibrium densities N, N, of the two resident populations have to be determined from the
following two equations:

ﬁi:Kl' f'l\‘(xl)Nz _ +K2 fz,\,(XZ)Nl — for l:1,2 (3.27)

Six)N, + f1(x,)N, Sr(x)N, + f5(x,)N,

Second, the results for Nj and N, and Eq. (3.21), (3.22) and (3.25) are substituted into (3.24)
to obtain the fitness function. The results are quite complicated and they have to be analysed
numerically.

The fitness function for three or more coexisting strategies is uninteresting, since our analysis
(in Section 3.7.2) shows that the maximal number of strategies in stable coexistence is two.

3.7.2. Singular strategies and coalitions in the model

We investigated the behaviour of the model at different values of b and 7. Analysis of the
fitness function (3.26) yielded the following results:
— x0=0 is singular strategy, since it is a symmetrical strategy.
— We determined the fitness gradient (see Eq. (3.5)) by deriving Eq. (3.26) with respect
to y. Solving D(x")=0, we found another pair of singular strategies:

X'(b,T)=%b-2-T-1 if T>1 (3.28)

— We analysed the stability properties of the singular strategies by substituting Eq.
(3.26) into the conditions (3.6) and (3.7). The x¢=0 strategy is ESS, invasion and
convergence stable if 7 <%, it is degenerate if 7 = Jand it is unstable in all senses if

T>1.
— The asymmetrical singular strategy is ESS invasion and convergence stable if b<2",
or if #>2""* and T>T* with

1 1 1
T"(b)y==+,———" 3.29
D) =34 8b* (329
Otherwise it is a branching strategy (convergence and invasion stable but not ESS).

— In the degenerate state (7 = 1) state, the stability of the symmetrical strategy can be

determined from fourth derivatives of (3.26) with respect to x and y, which determine
the byp and by, coefficients (see Eq. (3.13) and Figure 3.5). The symmetrical strategy is
ESS (Figure 3.5/H type) if 5<2™"* and it is branching strategy (of type Figure 3.5/C) if
b>2"",

Further, numerical computations showed that:
— There exists a convergence stable and ESS coalition of symmetrical x;=0 and
asymmetrical x,(b) strategists at appropriate parameter values.
— The value of x,(b) is independent of T.
— The coalition exists if T,n(b)<T<Ta(b). If T<T,n(b), the asymmetrical strategy
vanishes, while if 7>Ty,.x(b), the symmetrical strategy gets extinct.

The PIP associated to the fitness function (3.26) is illustrated in Figure 3.11 for some values
of b and 7. We can also construct an evolutionary bifurcation diagram of the model, which
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shows the singular strategies and coalitions at specific values of b (Figure 3.12). We also
plotted x2(1), T5uin(1) and T..(1) in Figure 3.12. For other values of b, the functions x,(b) and
Twin(b) can be determined numerically and 7,,(b) is the solution of x,(b)=x*(b,T (D)) (cf.
Eq. (3.28)).

T=0.1 T=0.4 T=0.5 T=0.6 T=0.9
Y

Sl el
A

Figure 3.11: PIP of the model at specific parameter values (the grey region means positive fitness and the
white means negative)

« b=0.5 . b=1
convergence stable and 0.5 1 1 -
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,
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T T l‘ T
—«—— branching strategies 1 0.354 \\ 0.854 1
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Figure 3.12: Bifurcation diagram of the model at 5=0.5 and b=1.

3.7.3. Branching in the model

As we already showed, the model has a degenerate, symmetrical branching strategy at 7' = -

and b>2""*. This means that a type (c) branching occurs at appropriate values of b (e.g. b=1),
if the parameter T (representing the capacity of the second patch relative to the first one)
slowly increases on evolutionary time scale and it reaches 1/2. Figure 3.13/A, illustrates this
branching in numerical simulations.

If the increase of T is faster, the model behaviour is different: type (c) branching is replaced
by type (a) divergence from the symmetrical strategy, followed by an ‘ordinary’ branching
(Figure 3.13/B).

If b<2™"*, no branching occurs. If T is increased and it reaches 1/2, the population diverges
from the symmetrical strategy (type (a)) and converges to the asymmetrical singular strategy
(Figure 3.13/C), which itself slowly moves with the increase of 7.
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At our example the increased speed of environmental change modified the pattern of the
emergence of asymmetry (the type (c) branching of Figure 3.13/A was replaced by type (a)
divergence and a standard branching in an asymmetrical state, as seen in Figure 3.13/B), but
not the final outcome. There are other models where the higher speed of environmental
change prevents branching, and modifies the evolutionary outcome as well.

generations T generations T generations T
A A A A
30000 4 ) 30000 4 0.1 300004 ol
0.495
3 0.3
15000 + 15000 0.3 1 50004
1£0.50
- 0.5 0.5
a0 107 a0 1 1 o0 i

Figure 3.13: Numerical simulations of the model. Thin lines indicate the singular strategies in the model as
functions of 7. A-B: with b=1 and different speeds of environmental changes (7). In both cases, the two
coexisting branches converge to the stable coalition (x;;x,)=(0;£0.953), cf. Figure 3.12/B. C: with 5=0.5.

Branching does not occur, evolution converges to the stable singular strategy.

3.8. BIOLOGICAL EXAMPLES OF SYMMETRICAL
STRATEGIES

Some illustrative examples of strongly and weakly symmetrical strategies based on real
populations are summarised in this section.

A widely known example of the secondary loss of bilateral symmetry is the beak of crossbills,
which we introduce based on Benkman (1996), see also other works of the same author. The
asymmetry of the beak is measured by the angle x of the lower mandible of crossbills: x=0,
x<0 and x>0 correspond to straight, leftward curved and rightward curved lower mandibles,
respectively. Needless to say, x=0 is a symmetrical strategy.

(lefty) bird
%: éx Cbranch
conifer

Figure 3.14: Schematic upper view of a crossbill (head to the right) with lefty beak standing on a branch
next to a conifer. The bird can pick seeds from the lower left quarter of the conifer (in grey colour). The
bird could stand on the other side of the conifer as well, in that case it could reach the seeds in the upper
right quarter (also grey). Seeds in the white quarters of the conifer are reachable only by a righty beak.

Crossbills use their special beaks to pick out seeds from pinecones. Many of them, such as the
White winged crossbill subspecies Loxia leucoptera megaplaca forage on pinecones, which
cannot be twisted or removed from the trees (Figure 3.14). Individuals can pick out seeds
from only a part of the conifers depending on the direction of their beak. Thus, ‘lefties’ and
‘righties’ are ecologically different: the rarer one has ecological advantage in comparison
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with the more common one. The difference between lefties and righties is also indicated by
the stable 1:1 ratio of the two morphs. This is an example of a weak symmetry. In contrast, the
subspecies Loxia leucoptera leucoptera and bifasciata forage on different conifers, which are
easily removed or twisted. In this case no ecological difference seems to exist between the
two types of beaks. Accordingly, significant variance in the ratio of the two morphs was
observed in different populations. This is an example for strong symmetry.

Different species of Cichlid fishes in Lake Tanganyika provide another pair of examples. The
scale-eating Perissodus microlepis attack other species from behind and try to byte scales
from the left or the right side of the victim (Takahashi et al, 1994). They have two
asymmetrical forms in correspondence with the hunting strategy: Some of them open their
mouth to the left, while the other ones have right-sided mouths. If x is the angle of mouth
opening (x=0 for symmetrical mouth, x<0 for left-sided and x>0 for right-sided mouth), x=0 is
again a symmetrical strategy. It is weakly symmetrical, because a small group of —x in a big
population of x strategists would have higher fitness than the frequent phenotype, because of
the unexpected way of attacking the victims and the inequality s,(-x)>0, contradicting Eq.
(3.12).

The herbivorous species Telmatochromis temporalis has similar, asymmetrical mouth, used to
bite weed from the side of rocks while swimming along them (Mboko et al., 1998). As the
weed does not adapt itself to the ‘hunting strategy’ of the fish, the x and —x strategists are
ecologically equivalent in this case. Thus, xy=0 can be considered as a strongly symmetrical
strategy.

More recent studies of Lake Tanganyika populations show, that the slightly asymmetrical
body structure of many Cichlid species might have a different reason: it is an adaptive result
of cross-predation in food chains. (Lefty predators tend to prefer righty victims and vice
versa, see Nakajima et al., 2004). According to these results, all these species are examples of
weak symmetry.

Finally, the shell chirality of snails, introduced in Section 3.4, becomes important at mating
(Asami et al., 1998). The mating strategy of some pulmonate land snail species, which have
relatively flat shells, prevents mating with individuals of opposite chirality, while a different
mating behaviour of other, tall-shelled species permits it. The different chirality has in the
latter case only minor disadvantage according to experiments of Asami et al (1998). The first
situation is a typical example of weak symmetry and the second is close to strong symmetry
(which would be perfect if there was no disadvantage of cross-mating at all).

weak strong
non frequency-
dependent @)
frequency dependent (a),
(a) (b) | *(c) only in time-
dependent models

Table 3.2: Types of emergence of asymmetry. Note that symmetry is always strong in absence of
frequency dependence. (a), (b) and (c) refer to the scenarios of Figure 3.1.
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3.9. DISCUSSION

In this chapter, we examined the evolutionary patterns of the emergence of secondary (partial)
asymmetry in species with bilateral symmetry in their basic body plan. Three distinct
scenarios have been described, as illustrated in Figure 3.1. Two levels of bilateral symmetry
(‘strong’ and ‘weak’) have been defined and the difference has been illustrated on biological
examples. We determined the typical evolutionary patterns in different classes of models
concerning symmetry.

The results are summarised in Table 3.2: the type (a) emergence of asymmetry (when the
superior asymmetrical form outcompetes the inferior symmetrical one) is possible in all three
cases. Type (b) (when two asymmetrical variants emerge, avoiding competitive exclusion)
requires weakly symmetrical frequency dependence. Finally, type (c) (when an asymmetrical
form branches away from the unchanged and surviving symmetrical form) is restricted to the
case of frequency-dependent strong symmetry.

Type (c) is a novel way of evolutionary branching. It differs from the usual pattern since the
initial speed of divergence is not equal for the two branches. It relies on the transient
dominance of the higher-order terms in the evolutionary models, i.e. on a sufficiently slow
change of the environmental parameters. We simulated this type of branching on a
symmetrical version of Levene’s classical multi-patch model.

Our study assumes that the degree and the direction of asymmetry (both determined by the
phenotypic value x) are inherited from the parents and mutations cause small deviation in x. In
some cases, the direction of asymmetry develops randomly at some stage of the individual
development (see Brown et al, 1990, Govind, 1989). This different inheritance mechanism
would leave type (b) unchanged, and modify type (a) or (c) in such a way that a second
asymmetrical branch with opposite handedness also appears.

It is also possible that, while handedness is inherited from parents, a special ‘reflected’
mutation (i.e. an offspring with opposite handedness) may occur with some probability. This
is the case e.g. if the handedness is determined by a simple two-allele locus. If this type of
mutation is frequent enough, again, the asymmetric variants will populate both asymmetric
branches in types (a) and (c). However, if the reflected mutations are exceedingly rare, the
relative frequencies of the lefties and the righties will change randomly.

An interesting way to continue our research would be to detect the patterns of the emergence
of asymmetry in Nature. Empirical study of speciation is very difficult: while it is too slow for
direct observation, simultaneously it is too fast to leave a fossil record (Eldredge & Gould,
1972). As a consequence, theoretical insight always played an important role in this field
(Turelli et al. 2001). We contributed to this endeavor by investigating the bifurcation patterns
of emergence of body asymmetry. We are intrigued to learn whether the novel way of
evolutionary branching we uncovered is a part of the natural process of evolution.
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CHAPTER 4 SUMMARY AND PRINCIPAL
RESULTS

In this work I studied the relation between symmetry and optima in two distinct fields of
science. My main goal was to study the existence and emergence of objects with “imperfect”
symmetry, i.e. objects with slight asymmetry. The structural topic was motivated by the
apparent lack of engineering structures with imperfect symmetry, while the research
concerning evolution was based on the numerous observations of imperfect symmetry in
biology. Both tasks are connected to optimisation, although, as it has been shown, evolution is
more than a simple optimisation process. In fact, both topics can be considered
mathematically as generalisations of elementary catastrophe theory, classifying the
singularities of families of smooth potentials. In structural optimisation, the non-smoothness
of the potentials lead to the generalisation of the classical theory, while in case of
evolutionary models the fitness functions can be regarded as a generalisation of potentials.

Not surprisingly, generalisation of elementary catastrophe theory led to results, which are not
predicted by the classical theory. In case of engineering structures I identified symmetrical
optima surviving beyond bifurcation points while in case of evolutionary models I could
identify scenarios where the symmetrical strategy survived after the emergence of a new,
asymmetrical branch. These new phenomena not only proved to be physically relevant, the
two mentioned examples also indicate a strong analogy between the two studied fields.

In Chapter 2, I examined the local improvability of structures supporting a finite symmetry
group / with respect to a number of symmetry-breaking scalar variables. If the global
optimisation potential of the structures is determined by the upper envelope of several smooth
local potentials (associated with points or elements of the structures) the symmetrical
configuration tends to be local optimum, i.e. the perfect configuration cannot be improved by
small perturbations of the symmetry in the majority of the cases. I introduced the concept of
"potential improvability’ (which often implied actual improvability, see Definition 2.2 and the
related comments) and determined the following typical condition, which is one of the
Principal Results of my thesis:

P.R.I: The sufficient and necessary condition of potential improvability is that the
representation of the symmetry group I' of the structure in the space of
variables is not sub-representation of the regular representation of 7. (cf.
Theorem 2.5, Theorem 2.3, and Definition 2.4).

I illustrated the application of this algorithm on many structural examples (Subsections 2.5,
2.6.2 and 2.7). My numerical computations show that potential improvability very often
implies actual improvability.

This condition yields an easy-to-handle algorithm to decide whether a given structure can be

locally improved in a given set of variables, without performing detailed calculations of the
structure. The application of this algorithm has been illustrated on many structural examples
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My numerical computations confirmed that potential improvability often yields actual
improvability.

The above condition needs a short analysis of the representation of /7 emerging in the space of
the variables (which was called induced representation). In some cases, the number of
variables itself determines whether the structure is potentially improvable or not. In particular
I proved the following two statements:

P.R.II.1 The typically sufficient condition of potential improvability is 4>0(I') where
O(I) denotes the order of I' (Theorem 2.6). This condition yields for planar
reflection symmetry d>2, in case of C,, and D,, symmetry it yields d>m and d>2m,
respectively.

P.R.II.2 The typically necessary condition of potential improvability is d>2dim(I),
where dim(I) denotes the dimension of the smallest real-valued
representation of I, which has no trivial component (cf. Theorem 2.7 in
Subsection 2.4.3.2 and Definition 1.19). The necessary condition yields d>2 for
D, symmetry and C,; symmetry, in case of Cy+; symmetry it yields d>4. In case
of C; and D, this condition agrees with both the necessary condition in Principal
Result II.1 and the sufficient and necessary condition in Principal Result I. For C;
symmetry, this result seems to contradict II.1 and I if the number of variables is 3.
In fact this is not a contradiction, since an adequate set of variables cannot consist
of 3 variables in this case.

However, I also demonstrated the existence of exceptional, atypical structures where the
above conditions fail:

P.R.IL.3 In case of D; symmetry (e.g. planar reflection symmetry) there exist special,
atypical structures which can be locally improved by using only d=1 variable
(Theorem 2.1). 1 determined the exact criteria for these special cases. Based on a
special example with D, symmetry I demonstrated that there exist special, atypical
cases (contradicting the general criteria) in other symmetry groups, as well.

Chapter 2 investigated a modified version of the basic question, as well: if the symmetric
configuration is improvable by a small perturbation, the perturbed configuration is still
usually not locally optimal (i.e. the bigger the perturbation is, the better the structure
becomes). However one can find slightly asymmetrical optima (cf. Definition 2.3) in a one-
parameter family of structures if asymmetrical optima bifurcate from the symmetrical
configuration (x=0). In connection with such bifurcations, I proved

P.R.III.1 In case of C;, D; symmetries (e.g. planar reflection symmetry) and d=1/ variable
a typical, one-parameter family of structures cannot be optimally improved, i.e.
the typical, necessary condition of optimal improvability is d>2.(cf. Theorem
2.8). In the proof I listed the possible optimum/pessimum bifurcations and
provided structural examples for each listed case.

Since the proof relies on the symmetry- and variable-specific bifurcation analysis of the

optimisation diagrams, I could not extend this result to arbitrary symmetry. In addition, I
found a case, which seems to contradict the potential generalisation of the above claim:
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P.R.IIL.2 T provided an example for a structural family and a set of variables, which
cannot be improved locally, however, it can be improved optimally. Thus, I
showed that in case of some symmetry groups, optimal improvability can be
achieved with a smaller number of variables than local improvability. (as opposed
to D symmetry).

The elements of Principal Result III put more light on the observation that imperfectly
symmetrical structures are rare. At the same time, Principal Results I and II. can be applied in
the engineering practice to improve a given symmetrical structure with a small number of
variables. The results help to choose an adequate set of variables; this should be followed by
numerical analysis, which decides if the potentially improvable structure is actually
improvable or not. Although it is beyond the confines of the present work, it would be
interesting to apply the method to real, large-scale engineering structures. This opens a
challenging avenue of future research.

Evolution is more complex than optimisation of engineering structures and it is a
spontaneous, dynamical process. Despite these basic differences, temporal evolutionary
patterns are analogous to structural optimisation diagrams. The second part of my Thesis
deals with patterns of the emergence of imperfect symmetry in the course of evolution, which
is motivated by the fact that animals with imperfect symmetry are (unlike structures with
imperfect symmetry) common in Nature.

The complex genetic background of evolution is strongly simplified by the method of
Adaptive Dynamics. I applied this framework to the study of emerging asymmetry. While
classifying the types of symmetry-breaking,

P.R.IV: I introduced a novel classification of symmetry in frequency-dependent
ecological models, which I called strong/weak symmetry. I determined the
corresponding symmetry constraints in the fitness functions (‘strong’ symmetry
yielded a more specific constraint than ‘weak’ symmetry), and showed that the
two cases produce different evolutionary behaviour (see further details in
Principal Result V). I also demonstrated the difference between the two classes on
several real examples (see Section 3.8).

Using the above classification, I performed a systematic approach to the evolutionary patterns
of the emergence of asymmetry, and

P.R. V.1 I listed the generic evolutionary patterns of the emergence of asymmetry in
adaptive dynamics models (see Figure 3.1), I also determined the exact
conditions of the emergence of each one.

One of the emerging patterns proved to be especially interesting. More specifically,

P.R. V.2 1 demonstrated the possibility of a novel evolutionary bifurcation pattern, in
which an asymmetrical evolutionary branch develops in a population with
bilateral symmetry and the new branch coexists with the symmetrical ancestors. |
also simulated this pattern numerically on a classical model of Levene in Section
3.7.
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The novel pattern occurs in case of strong symmetry, when a time-dependent evolutionary
system moves through a degenerate state. While the model is degenerate only in a specific
moment in time, the effect of the degeneracy extends over a finite time-interval, during which
the model is close to be degenerate. This fact follows from the discreteness of adaptive
dynamics: it consists of small but discrete evolutionary steps. Thus, degenerate evolutionary
patterns may develop in the model if the environmental variation is slow, i.e. if the close-to-
degenerate state lasts adequately long. This phenomenon raises the significance of
environmental change:

P.R. V.3 1 showed that the novel pattern occurs only in case of changing environment
Hence, environmental change is an even more important ingredient in this context
than in the classical AD theory, where evolutionary branching exists in
autonomous models.

The unfolded list of evolutionary patterns is a set of theoretical possibilities. We have no
evidence of the physical existence of these patterns (in particular the novel pattern): such an
evidence could be based only on fossil data, but according to many results, fast transitional
phenomena of evolution (such as branching or the sudden emergence of asymmetry) seem to
be too fast to leave a remarkable fossil record. Nevertheless, theoretical modelling plays an
important role in this field, repeatedly predicting phenomena, which are later verified either
by experiments or by collected data.

Principal Results I, II, and III have been partially published in Vérkonyi et. al. (in press).

Publication of the rest of these results is in preparation (see more details in part 2.1.3).
Principal Results IV, V have been published in Varkonyi et. al. (accepted for publication).
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Appendix I Representation theory

APPENDIX | REPRESENTATION THEORY

This section contains a brief summary of some basic results of group representation theory.
My aim is not a systematic description of the theory, rather the introduction of only the
elements, which are necessary to understand the results of this work. More general
descriptions can be found in text books such as Coxeter (1973), Jones (1998). The latter one
served as source of sections 1.1-5, with minor modifications in the notations and formulations.
On the other hand, Sections 1.4-7 contain more specific results, which are according to my
knowledge not of primary interest in representation theory, but play key role in this work. In
these subsections sketchy proofs are also attached.

Part 1.1 is an introduction to groups, while the specific groups emerging in engineering
problems are listed in 1.2. Part 1.3.1 defines representations. 1.3.2 is devoted to the most basic
results of representation theory, which allow to create a unique decomposition of
representations to the direct sum of a few simple ones. In 1.3.3 a special kind of representation
is analysed, which plays important role in structural optimisation. Part 1.4 deals with the orbit
of vectors with respect to a representation. Orbits emerge explicitly in the conditions of
improvability of structures (see Lemma 2.3). Finally, differences between complex- (for
which classical results apply for) and real-valued representations (which emerge in the
engineering problems) are collected in L.5.

.1 GROUPS

Definition 1.1: a group is a finite or infinite set I of elements and a binary operation *
(‘group operation’), with the following four properties:

— closure of group operation: if y,n €I, y*nel’

— associativity of group operation: if ¢,y,n €I, (p*n)*n=p*(y*n)

— existence of identity element: there is an i €l so that for any yel, y*i=i*y=y

— existence of inverse: for any yel there is a group element v satisfying y*y ™' =i.

The simplest (‘trivial’) group has one single identity element i and the corresponding group
operation acts as i*i=i. There is one group with two elements {i,y}, for which i*i=y*y =i and
i*y=y*i=y. Though a group might be infinite as well, we mainly study finite groups. A finite
group can be conveniently characterised by a table, which contains the effect of the group
operation on the group elements. This form of the two-element group and another one with
four elements are shown in Table I.1. Notice that each row and column is a permutation of the
group elements; the identity element of the group corresponds to an unperturbed row as well
as an unperturbed column.

Two seemingly different groups may have the same structure according to:

Definition 1.2: two groups I and A are isomorphic (I'=A) if there is a one-to-one
correspondence between their elements y; <>A; so that y;*y.=y if and only if 4;*4=2
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Isomorphic groups are often considered as identical. These classes of groups are called
‘abstract groups’ and are fully defined by a group table. On the other hand, two isomorphic
groups may consist of rather different elements and operators. A number of isomorphic
groups (all belonging to the abstract group of Table 1.1/B) are collected in Table 1.2.

Two further basic definitions of group theory are

Definition 1.3: The order r of a group I'is the number of elements in the group.

Definition 1.4: An abstract group A={A;} is subgroup of the abstract group I'={y;} if there is a
homomorphism H: I'>A, which satisfies H(y)*H(n)=H(y) if and only if y*n=n. A real

group A is subgroup of the real group I'if its elements are a subset of the elements of I and
the two group operations have the same effect on the elements of A.

ap |a1 |b() |b1
ap | ai ap |ao ar by b
do |ao ai ai |ay ao by by
a; |ai ag bo |bo b1 ay ay
b1 bl b() ay Ao

A B

Table I.1.: Group tables of the two-element abstract group (A) and a four-element abstract group (B).

elements group operation

1 0 0 0][0 1 0 O0][0 0 I O[O0 O O 1] |multiplication
01 0 Of|1 00 O[]0 OO 1|0 O 1 O
00107000 171 00 00O 1 00

000 1{|O O 1 O[|0O 1 O O||1 0 0O

0,1,2,3 addition modulo 3
1,-1,1, -1 multiplication

the invariant euclidean 2D transformations of a rectangle | product of transformations
(identity, rotation by 7, reflection with respect to two lines)

the invariant euclidean transformations of an oriented |product of transfomations
rectangle embedded in 3D space. (identity, rotation by T,
reflection to the plane of the rectangle and reflection to the
centre of the rectangle)

Table 1.2. Different groups, which belong to the four-element abstract group of Table 1.1/B. The fourth
one is a symmetry group called D, (see Table 1.3), the fifth one is also symmetry group. The first one is the
regular representation of D, (see Section 1.3.3)

In this work, we concentrate on symmetry groups, i.e. groups with euclidean transformations
as elements and the product of these transformations as group operation. There are symmetry
groups in many abstract groups, e.g. rotation by 180° around a point in 2D space and identity
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transformation (called C,) belong to the two element abstract group of Table I.1/A. The last
two examples in Table 1.2 are also symmetry groups.

Some geometric objects (such as structures) are called ‘symmetric’ (e.g. reflection
symmetric). With group theoretical terms, this means that these objects are invariant to a set
of euclidean transformations (e.g. reflection and identity in case of reflection symmetry). Such
a set of invariant transformations always forms a symmetry group /. This yields a more
precise definition of symmetry:

Definition 1.5: A geometrical object is ‘[-symmetrical’ if there is a symmetry group I, the
elements of which are invariant transformations of the object I"will also be referred to as the
symmetry of the object in question.

1.2 SYMMETRIES OF REAL ENGINEERING STRUCTURES

In this part, we introduce the specific groups, which occur as symmetries of real engineering
structures. Since our goal is to optimise structures with respect to their inner forces (generated
by external loads), we modify the Definition 1.5 as:

Definition 1.6: A load-bearing structure is ‘I-symmetrical’ if its geometry, loads and inner
forces are invariant to the elements of a symmetry group I

Notice that real examples on ground are primarily subjected to gravitation, which determines
the special ‘down’ direction. The symmetry transformations of such structures must preserve
this direction (i.e. the image of a vertical vector pointing down is also pointing down). Among
the euclidean transformations of the 3D space, this property is owned by transformations,
which map a point (x,y,z) to (fu(x,y)f(x,y),z+c) (z stands for the vertical co-ordinate, c is
constant). In case of finite symmetry groups, ¢ must be 0, otherwise repeating the
transformation would never end up in identity transformation, i.e. it would generate infinitely
many group elements. Thus, the symmetry transformation do not modify z, they are ‘2-
dimensional’. Hence, only the symmetry groups observed in two-dimensional space can
emerge as symmetries of real structures. If we had e.g. a regular tetrahedron shaped
framework (this kind of symmetry cannot be observed in 2D space), its internal forces
(generated mostly by gravity) would break the symmetry of the tetrahedron. The resultant
symmetry of the structure (in the sense of Definition 1.6) would be reduced to a subgroup of
the original one. Conversely, cosmic structures (such as satellites) are likely to have 3-
dimensional’ symmetries, like those of the Platonian solids.

In the following, we introduce the finite symmetry groups of the two-dimensional space. The
two dimensional euclidean transformations are

— identity

— shifting by an arbitrary vector

— rotation by an arbitrary angle

— reflection to an arbitrary line
These transformations form two distinct types of finite groups (and many infinite ones which
are not discussed here). Basic properties of the cyclic groups (denoted by C,, n>1) and the
dihedral groups (D,, n>1) are collected in Table I.3. Two of these symmetry groups (C, and
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D,) are isomorphic, i.e. they belong to the same abstract group. From the point of view of
structural optimisation, C; and D,-symmetrical examples will behave in the same way.

name of the group | C, (n>1) D, (n=1)
order n 2n
notation of ao,a1,...,dn-1 ao,a1,...,0n-1
elements bo,b1,...,bn_1
meaning of ai 1s rotation by 2im/n around the|a; is rotation by 2in/n around a
elements in 2D | point (0,0) point (0,0); b; is reflection to the
space line ycos(mi/n) = xsin(mi/n)
identity element | ay ao
effect of group | ai*a=a;; mod(n) ai*a;=a;+j mod(n)
operation ai*bi=bj i mod(n)
bi*ai=bj+; mod(n)
bi*bi=a; i mod(n)
planar objects | for n=1: asymmetrical objects for n=1: deltoid for n=2: rectangle;
with this for n=2: paralelogramma; for n>2:|for n>2: non-oriented regular n-gon
symmetry oriented regular n-gon

Table 1.3: The finite symmetry groups of the 2D space. The two columns correspond to two classes of
groups. Row 3 determines the group elements (the exact transformations may appear different in different
coordinate systems, the transformations in row 3 provide an example) Row 5 defines the group table of
these groups in a condensed form. C; is the trivial group, which corresponds to the lack of symmetry. We
remark that C, (180° rotation symmetry) and D, (reflection symmetry) are isomorphic, they belong to the
same abstract group

1.3 REPRESENTATIONS

1.3.1 Definition, Basic properties

In structural optimisation, the type of the symmetry-breaking variables is characterised by the
representation of the symmetry transformations of the perfect structure in the space of the
variables. A representation of a group /"is defined as

Definition 1.7: a representation of group d is a homomorphism of the elements y of I to
complex square matrices y;—D;, for which y*y.=y implies D,D;=D,.

The dimension of a representation is straightforward: the order of the matrices in the
representation.

It can happen that the same matrix belongs to two different group elements in a
representation. In particular, every group has

Definition 1.8: The trivial representation is the homomorphism y—»1,

in which every group element is mapped to the 7o 1x1 identity matrix. On the other hand,
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Definition 1.9: a representation is called faithful if different group elements are mapped to
different transformations.

Notice that a faithful representation of 7 itself forms a group, which is isomorphic to I'. The
representations emerging in engineering optimisation problems are always faithful as a
consequence of condition (i).

Representations can be classified according to

Definition 1.10: Two representations are equivalent if there is a (complex-valued) unitary
transformation, which transforms elements of one to the elements of the other one. We denote
equivalence of two representations as D;=D.

Equivalent representations can be considered as the same representation in different
coordinate systems. Equivalence classes of representations can conveniently be characterised
by

Definition 1.11: The character of a representation D;, D,,..., D, is a vector of length r, namely
[ tr(D,) tr(D,)...tr(D,)], where tr(X) denotes the trace of the matrix X.

The characters of equivalent representations are equal, because the trace of a matrix is equal
to the sum of its eigenvalues, which are invariant to unitary transformations. On the other
hand, it can be proven that two representations with equal characters are necessarily
equivalent. Thus, the character itself determines the equivalence class of a representation.

If we restrict ourselves to the representations of finite groups, we can define the most basic
property of representations as

Definition 1.12: A representation D is reducible if there exists a representation D’ for which
D=D’ and D’ consists of block-diagonal matrices (each of which has the same block-
structure). Another equivalent definition of reducibility is presented later. Irreducible
representations are often called simply irreps.

According to Definition 1.10, an appropriate unitary transformation decomposes a reducible
transformation to the direct sum of irreps. What is more, the irreducible components in two
different decompositions of a representation are equivalent, i.e. the decomposition is unique
up to the level of equivalence classes. This situation is somewhat similar to the prime
factorisation of integers. As an example of the decomposition, consider a unitary
transformation of three rotating matrices (the middle ones on the left side of the equations),
which are a representation of Cj:
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2 [ 1 SB[ 2] [ ‘ (12
— =i | = || ——i ——+—1 0
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The decomposition shows that this representation is reducible, namely the direct sum of two
one-dimensional irreps. The technique of creating this kind of decomposition is introduced in
the next part.

Any group has infinite number of representations, but a restricted number of irreducible ones,
according to

Theorem 1.1 (Dimensionality theorem): If a group of order r has ny equivalence classes of k-
dimensional irreducible representations, n,° +n," +..=r.

The list of irreducible representations can be constructed for simple groups by techniques,
which are not discussed here. For us, the symmetry groups of the 2D space are of special
interest (see Section [.2). The lists of their irreps are collected in Table 1.4.

symmetry group \ irreducible representations
name |order |name |dimension |character
trivial |1 1y 1 {1} (trivial representation)
Cy n I 1 {ae: -1y
with 0</<n-1 (trivial representation if /=0)
D, if n|2n Iy 1 { ai: 1, by: 1} (trivial representation)
is even I 2 { ax: 2cos(2lkn/n), by: 0}, with 1</<n/2-1
L 1 {ap: 1, b -1}
L+ |1 {ag -1%, b -1%3
Linn |1 { ap: -1%, by -1°1
D, if n|2n Iy 1 {ay: 1, by: 1} (trivial representation)
is odd I 2 { ai: 2cos(2lkn/n), by: 0}, 1<I<(n-1)/2
Ty |1 {ai 1, b -1}

Table 1.4: Irreducible representations of the 2-dimensional symmetry groups. The meaning of the
notations a;, b, can be found in Table 1.3. Notice that the characters might be complex numbers.

1.3.2 Decomposition of representations

The decomposition of reducible representation plays a primary role in our work. The process
is introduced through the example of equations (I.1)-(I.3). As already mentioned, these three
matrices are a representation of the group Cs. The characters of the irreps of C; are (cf. Table
1.4):

| group elements lag |ay | a; |
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characters | Ip:  yo=|[1 ]
ofthe 5 y=/[1 (D (D]
ieps [ =11 (D7 (D7

The character of the representation is the trace of the three matrices, i.e. y=[2 —1 —1]. Hence
the trace of a block diagonal matrix is the sum of the traces of its blocks, we only have to
produce y as a linear combination of o, %1, %2:

2
xX= znka
=0

where the resulting coefficients n;eN indicate the number of the three irreps in the
decomposition of the representation (N stands for the set of natural numbers). The solution
exists and it is unique. In our case [ng n; ny] =[0 1 1]. This is the awaited result, hence
equations (I.1)-(I.3) already presented the decomposition of the representation to the direct
sum of these two irreps.

(14)

1.3.3 The regular representation

All groups, and in particular symmetry groups, have a special representation. Consider the
group table of a group /" of order r (see for example Table L.1). The i row contains a
permutation of the group elements. The corresponding »xr size permutation matrices R; form
a representation of /.

Definition 1.13: The representation R, which consists of the above defined matrices
R, R,,...,R, is called the regular representation of I

As an example see the regular representation of D, (Table 1.1/B) in the top row of Table 1.2.
One can show that each k-dimensional irrep of a group 7 appears k times in the
decomposition of the regular representation of /. (This is in accordance with the
Dimensionality theorem (Theorem I.1), since the regular representation is 7-dimensional.)

.4 ORBITS

In this part the orbit of a vector with respect to a representation is introduced. Notice that the
typical condition of potential improvability (Lemma 2.3) applies to orbits, which are defined
as:

Definition 1.14 : The vectors {D1v, D yv,..., D,v! are called the orbit of v with respect to the
representation D={Dj, Dy,...,D,}.

Before going into details, some new definitions are needed:

Definition 1.15: S is an invariant subspace of a representation D={D;, Ds,...,D,} if veS
implies, Dv &S for every 1<i<r.

Definition 1.16: Invariant points of a representation D={D, D»,...,D,} are the vectors v, for
which Dyv=v for every 1 <i<r.
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These concepts are used to give another definition of reducibility.
Definition 1.17: A representation is reducible iff it has a non-trivial invariant subspace.

The new definition is equivalent of Definition 1.12: consider the block-diagonal form of a
reducible representation {Di=diag(Di(1),Di(2)), i=1,2,...,r}, where the sizes of D{"and D;'*) are
kxk and (r-k) x(r-k). If a vector is of the form v=[v; v,... v 0 0...0]", then D;v inherits this form,
thus we have found an invariant subspace. Conversely, the existence of invariant subspaces
yields the block-diagonality of the representation in an appropriate co-ordinate system. The
proof of the latter statement is not discussed here.

The following two subsections focus on two properties of orbits.

1.4.1 Orbits and invariant points

The point x=0 is the trivial invariant point of any representation, hence M-0=0 for arbitrary
matrix M. However, some representations have additional invariant points, as well.

Assume that we have a v#0 invariant point of D={D,, i=1,2,...,r}. Consider a transformation
matrix T, which moves v into Tv=[1 0 0...0]. This vector is an invariant point of
TDT '={TD;T", i=1,2,...r}. Consequently the matrices TD;T™" are all of the form

1 0 --- 0

0 * * *

DT = , (I.5)

* *

0 * * *

i.e. there is a trivial representation among the irreducible components of the representation
TDT™, which is equivalent of D. Conversely, a trivial component implies the existence of
invariant points. Thus we can formulate

Lemma I.1: A representation has non-trivial invariant points iff it has a trivial component.

Now we can continue with some properties of orbits. The sum of the elements of an orbit is an
invariant point, hence
DD v+DD,v+.+DD v=D v+D v+..+D, v, (L6)

where iy i,...,I, are a permutation of 1,2,...,7. Thus,

Lemma 1.2: If a representation D={Dy, Dy,...,D,} has no trivial component, the sum of the
elements of the orbit of any vector v is
Dv+D,v+..+D v=0, (L7)

As a consequence of Lemma 1.2, 0 is convex combination (linear combination with positive
coefficients) of the vectors D;v, which gains importance in structural optimisation. However,
the same property is usually not true for representations with trivial components. To
demonstrate this, consider a representation with a trivial component, which has the form of
the right side of eq. (1.5) and a vector v=[v; v,...v;], with v;#0. Each element of the orbit of v is
of the form D;v=[v; *...*]. Thus,
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Lemma 1.3: If v is a vector, representation D={Dy, Dy,...,D,}! has a trivial component, and the
constants cy,cy,...,c, satisfy c;+tcy+...+c, =0, then
eDv+e,D,v+..+c, D v£0, (1.8)

typically.

According to Lemma 1.3, zero typically cannot be generated as a convex combination of the
vectors D;v in this case.

1.4.2 Dimensionality of orbits

In this part, we focus on the question, under which conditions the orbit of a d-dimensional
vector v spans the d-dimensional complex space C“. The first, trivial fact is that the orbit
consists of r vectors, thus r>d is a necessary condition. Another trivial requirement is that
v#0. We find more precise conditions in the following.

The orbit of a vector either spans C?oran§ subspace of it. Assume the latter one. Then, any
vector weS can be generated as the linear combination of the elements of the orbit, i.e.

WIZCkaV c, €C (1.9)
k=1
If w is multiplied by any element D; of the representation, the result

DiWZZCkDkaV ¢, €C (1.10)
k=1
is again a linear combination of the orbit elements, hence {D;Dx i=1,2,...,r} is a permutation
of {Dx k=1,2,...,r}. Thus, DiweS, which means that S is an invariant subspace of the
representation. Hence irreducible representations have no non-trivial invariant subspaces in
CY(cf. Definition 1.17)

Lemma 1.4: If D is an irreducible d-dimensional representation and v#0) is a d-dimensional
vector, the orbit of v with respect to D spans C".

In the following we study reducible representations. Consider the irreducible decomposition
of D. We prove

Lemma L5: If there exists a d\-dimensional irreducible component D, which emerges at
least d;+1times in the d-dimensional representation D, then the orbit of an arbitrary real
vector v with respect to D does not span C.

Proof of lemma: let the elements of D and D" be denoted by D; and Dj(l) j=12,...r,
respectively. Without loss of generality, we can assume that D; is in block-diagonal form, i.e.

. d, +1
D, = DY (L11)
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Consider an arbitrary d-dimensional vector in the form

v=lv o e v (L12)
where the v;-s are d;-dimensional vectors. Hence d;+1 d;-dimensional vectors are linearly
dependent, they have a non-trivial zero linear combination:

OV i+, Vot Ven =0 ¢ eC, (I.13)
This equation yields

ch_/“)V1 + czD_/(l)V2 + ...chHD_/“)vd1+1 =0 for any arbitrary j . (I.14)

The elements of the orbit of v are

DY’ v, | [ ¥,
- (1) —|p®
Dyv= D; Vau |[=| DV (I.15)
* %k * *
* %k * *

Due to equation (I.14), every element of the orbit is in the subspace

Cl[xl x2]+cz[x3 x4]+"'cdl+1[x2dl+1 x24,+2]:0 ’ (.16)

where x;eC denotes the i coordinate of a point in the d-dimensional complex space. Q.e.d.

Notice that Lemma 1.5 does not apply to the regular representation of a group, because it
contains each irreducible d;-dimensional representation exactly d; times (see before). Now we
show

Lemma 1.6: Let R denote the regular representation of a group I of order r. There exists a
vector v, the orbit of which with respect to R spans C'.

Proof of Lemma 1.6: Hence the regular representation consists of permutation matrices, each
element of the orbit of v=[1 0 0...0]" is a vector with one ‘1’ and r-1 ‘0’-s. Each element
contains the ‘1’ in a different positions, due to the fact that every column of a group table
contains each group element only ones (cf. the definition of the regular representation). Thus,
the orbit of v is a permutation of the following vectors: [1 0 0...0],[0 1 0....0],...,[0 0...0 1].
These vectors span C'. Q.e.d.

We remark without exact proof, that Lemma 1.6 states practically more than the existence of
one adequate vector v: it also yields

Lemma 1.6/A: Let R denote the regular representation of a group I of order r. The orbit of a
typical vector v with respect to R spans C'.

The statement of Lemma 1.6/4 is somewhat obvious if we consider the orbit of v as rows of an
rxr square matrix O(v). The orbit does not span C?if and only if peig[O(v)]=0, where peig()
means product of eigenvalues. Such an equation is either identity (i.e. true for arbitrary v) or it
is typically not true. Because of Lemma 1.6, only the latter one is possible.

Using
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Definition 1.18: If D and E are representations of a group I, we call E sub-representation of
D, if their irreducible decompositions contains d;d,....d; and eje,,....ex examples of the
irreducible representations of I"and for every 1<i<k, e;<d;. This an analogue of the divisors of
integers.

we can generalise Lemma 1.6/A as

Lemma 1.7: Let R denote the regular representation of a group I of order r and let R’ be a d-
dimensional sub-representation of R. The orbit of a typical vector v’ with respect to R’ spans

ce.

Proof of Lemma 1.7: Let R; and R;” denote the elements of R and R’. Then, R; can be
transformed by a unitary transformation to the following block-diagonal form:

R,
TR T { i *} (L17)

An arbitrary vector veC" can be decomposed as

Vl
v{*}, (L18)

where v’ is d-dimensional. The orbit of Tv with respect to TRT™ typically spans C” (Lemma

TR T ! Tv=T i' ' =T [' ' |
; -Tv , (19)

the vectors R;’v” also span C“ typically. Q.e.d.
Lemma 1.5 and Lemma 1.7 can be united in

Lemma 1.8: Let D and R denote a d-dimensional representation and the regular
representation of a group I, respectively. The orbit of a typical vector v with respect to D
spans C°, iff D is a sub-representation of R.

1.5 REAL-VALUED REPRESENTATIONS

All results of representation theory introduced so far, hold for complex-valued
representations, however, in structural optimisation problems, the emerging representations
are necessarily real-valued. Some of the results can be applied in a different form for real-
valued representations. As main difference, some representations are reducible, however any
of their decompositions contains complex entries. This is the case obviously at the example of
equations (I.1)-(1.3), because the characters of its two components are complex-valued,
however the traces of real-valued matrices are always real. Such a representation is
irreducible among real-valued representations.

Definition 1.19: A (real-valued) representation is called half-irreducible if it is either
irreducible or any of its decompositions contains complex elements.
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This definition is again equivalent of having no non-trivial invariant subspace, but this time in
RY. The list of half-irreducible representations of a finite group is again finite, although the
Dimensionality theorem does not hold for the number and dimensions of half-irreducible
representations. These representations of the symmetry groups of the 2D space are collected
in Table L.5.

If we are restricted to real representations, Lemma [.4 can be improved in a straightforward
manner:

Lemma 1.9: If D is a half-irreducible, d-dimensional, nontrivial real representation and v=#0 is
a d-dimensional real vector, the orbit of v with respect to D spans R.

Similarly, one could replace the word ‘irreducible’ to ‘half-irreducible’ in Lemma 1.5,
however this would weaken its statement. Thus, we apply Lemma 1.5 and the consequent
Lemma 1.8 in their original form for real-valued representations.

symmetry group | half-irreducible representations
name |order |name |dimension character
trivial |1 Iy 1 {1} (trivial representation)
C, if n|n Iy 1 {ay: 1} (trivial representation)
is even S 2 {ax: 2cos(2kin/n) } with 1</<n/2-1
Ly |1 {ag: DM
C, if n Iy 1 {ax: 1} (trivial representation)
is odd Sy 2 { ai: 2cos(2kln/n) } with 1<I<(n-1)/2
D, if n|2n Iy 1 { ar: 1, by: 1} (trivial representation)
is even I 2 {a: 2cos(2lkmn), bi: 0},  with
Lip |1 1<I<n/2-1
Lip+1 |1 {ap 1, b -1}
Lipo |1 {ap -1%, b 1}
{ ap: -1%, by -1}
D, if n|2n Iy 1 { ar: 1, by: 1} (trivial representation)
is odd I 2 { ar: 2cos(2lkn/n), by: 0}, 1<I<(n-1)/2
LIpiyn| 1 {ap: 1, by -1}

Table 1.5: Half-irreducible representations of the symmetry groups of Table 1.3. The meaning of notations

a;, by can be found in Table 1.3. Notice that the only difference compared to Table 1.4 is that some pairs of

one-dimensional irreps of the cyclic groups are replaced by two-dimensional half-irreps. The names of the
representations is 7 if they are irreducible (cf. Table 1.4) and S if they are reducible but half-irreducible.
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