
All software versions and URLs in this document valid as of dec.13, 2001.

Installing and using AVRGCC with AVRstudio
This is a comprehensive introduction on how to install AVRstudio and and the GNU AVR C
compiler “avr-gcc”, and making them work together. This introduction leads step by step to the
successful build of sample code, and programming of whichever AVR part you have chosen, on the
STK500 development board.

Used in this introduction:

• AVRstudio executable installer, “astudio.exe” release 3.53 of nov.8, 2001[5.9M] or later.
Downloadable from www.avrfreaks.net

• AVRGCC executable installer “avrgcc200112XXa_AVRfreaks.exe” [8.1M], AVRfreaks
distribution of dec.07, 2001 or later.
This package also contains:

• Flavio Gobber’s Elf2Coff converter. • The gcctest 1-9 files, by Volker Oth.

Downloadable from www.avrfreaks.net. It is important that you try to use our package, as it
contains all the correct additional files (.bat files, makefiles) that you need to complete this
guide).

Besides this software you of course need the STK-500 (or equivalent) development board, a chip
(i.e. AT90s8515), and a Personal Computer of a certain standard running MS Windows9x/NT/2000.
It is assumed that you have set up your STK500 to work with your computer’s COM port before
starting out.

Installing AVRstudio
This should involve no problems. The self-extracting archive unpacks to the folder of your choice.
Open this folder after decompression is finished, and run “install.exe”. Follow the instructions on-
screen.

http://www.avrfreaks.net/
http://www.avrfreaks.net/

Installing AVRGCC
This is also a fairly straight-
forward process; just run
the downloaded executable.
For convenience, choose
the default install location;
“c:\avrgcc”.
Make sure to leave all
seven boxes checked. You
may not think you need the
“Unix Tools”, but these
include also the make.exe
and rm.exe utilities; and
you will need them.

Also, it is important to make a few checks to ensure that the installation, including the compilation
of all libraries are completed:

• During installation, a DOS-window should appear, dumping lines of compiler output to the
screen for about a minute or so.

• When compilation is done, another DOS window appears, declaring that “your pop-up
program is ready to run”. Close this window by typing ctrl-c. Note: this does not happen on
Windows2000.
If this does NOT occur, there could be a problem. The object libraries may not have been
compiled properly. In this case, you need to run the file “run.bat” manually. It can be found
in the directory where you installed avr-gcc.

• Provided you chose the default installation target directory to be “c:\avrgcc”, the directory
“C:\avrgcc\avr\lib” should be crowded with .o files dated around the time you ran the
installation. If not, execute run.bat manually.

Building a new project with AVRstudio and avr-gcc
Now it's time to get down to it. We will open a new project in AVRstudio, add files to the project,
and provide the necessary mechanics to make GNU make.exe take care of the building of our
project.
The gcctest files by Volker Oth, included in our avrfreaks release of avr-gcc, will serve as examples.
They should be located in the /gcctest subdirectory of your avr-gcc installation. Keep them there or
copy them wherever you want.

Make a new project with AVRstudio 3.53
On the Project menu of AVRstudio, click New to see the Select new project dialog.

Enter a name for your new project, click the browse button to the right of the Location textbox and
choose the directory of “gcctest1” as your project directory:

The selected project folder/directory becomes the
location where all files generated by avr-gcc and
AVRstudio will be output. This is also where
you should keep all your project files.

When done, make sure to select “Generic 3rd
party compiler” as your Project type before
clicking the “OK” button. AVRGCC will be
your generic 3rd party compiler. As stated in the
AVRstudio manual, this feature is only
recommended for advanced users. We’ll do it
anyway.

Save the project.

The project concept, and using the GNU make utility
We will go for a concept where you stick to using a new makefile for each project, and hence; stick
to using AVRstudio “projects” for each project. All the project files should be kept in the same
directory/folder. This would be the folder you selected in the steps above.
This is necessary for AVRstudio’s Generic 3rd party compiler support to work properly.

The GNU tool make that comes with the avr-gcc distribution will use the makefile’s rules to compile
and link our project into a complete .hex file to load into the mcu.
This is a neat, clean and comprehensible way of organizing your work.

As a template for your makefiles, you should use the makefiles included in the gcctest set. There is a
makefile in each of the gcctest folders. They are mostly the same, but some of them have slight
extensions. So, do not copy the one from gcctest1 over to gcctest2 and so on.

Note: If you did not download an AVRfreaks distribution including the gcctest1-9 set, you have to
compare the makefiles yourself and edit them according to this guide.

Adding files to the project
Now, we need to add the files that compose our little project. In the case of this little test project, we
need:

• Some source code.
• A makefile.

For every included file, you can double-click its representation in the folder tree of the project
window to open and edit the file.

Let’s start by including the C-sourcefile
“gcctest1.c” :

• Right-click the “Source files” tab in the

Project window of studio.
• Select “Add file”, browse to the file

“gcctest1.c” in your project folder.
• Double-click the file, or click “open”.

Now add the makefile for this project:

• Right-click the “Other files” tab in the.
• Select “Add file”, browse to the makefile.

If you cant see it, you may have to select
“All files” in the filetype drop-down.

• Open it.

The makefile
The template makefile by Volker Oth should look like this in our version (included in the /avrfreaks
subdir of your avr-gcc installation):

Simple Makefile Volker Oth (c) 1999
edited by AVRfreaks.net nov.2001

########### change these lines according to your project ##################

put the name of the target mcu here (at90s8515, at90s8535, attiny22, atmega603 etc.)

MCU = at90s8515

put the name of the target file here (without extension)
 TRG = gcctest1

put your C sourcefiles here
 SRC = $(TRG).c

#put additional assembler source file here
 ASRC =

#additional libraries and object files to link
 LIB =

#additional includes to compile
 INC =

#compiler flags
 CPFLAGS = -g -Os -Wall -Wstrict-prototypes -Wa,-ahlms=$(<:.c=.lst)

#linker flags
 LDFLAGS = -Wl,-Map=$(TRG).map,--cref

########### you should not need to change the following line #############
include $(AVR)/avrfreaks/avr_make

dependecies, add any dependencies you need here ###################
$(TRG).o : $(TRG).c

The only lines you should perhaps have to edit, are these:

• The line saying “MCU = at90s8515”.

This should be edited to reflect which AVR mcu you are using.
• The line saying: “TRG = gcctest1”. This is the name of your target. You can alter it to

whatever you like, but gcctest1 is a good name. In this gcctest set, the makefiles are written
so that the source file needs to have the same name as the core target name. If it doesn’t,
make simply won’t find your sourcefile.
You can see this from the next line: SRC = $(TRG).c
NB! Do not use any extension/suffix for the target name!

Note the line saying “include $(AVR)/avrfreaks/avr_make” in the makefile. This line takes care of including
more dependencies and commands for the make process, from the file “avr_make”. This file is

included in the avr-gcc distribution from AVRfreaks. For a quick introduction to what it contains;
consult appendix A of this document.

Tying it all together
Okay, so now we have an open project, a source file and a makefile all ready to go. But still a little
work remains to make all these things work together. Fear not; when done with these steps you will
have a method to stick with for later that should be relatively simple to maintain.

A few things we have to realize at this point:

• AVRstudio knew nothing about avr-gcc; what it is or where it is, when we started out.
• Selecting “Generic 3rd party compiler” as project type did not initiate any magic event in

your computer, so that AVRstudio suddenly knows which compiler and how to use it.
• Avr-gcc is run from the command-line, as well as the other GNU avr tools like the assembler,

linker and the unix tools. They don’t have nice user interfaces. All these are most effectively
controlled by the program make; run from the command line.

So the question is: how do we make AVRstudio use avr-gcc?

The trick is:

• To make AVRstudio aware of the path to the GNU tools via environment parameters.
• To run make and feed it with the right makefile.

Hence,

• Writing a .bat file that points out the right directories and runs make.
• Letting AVRstudio know that it should take a look at that file…

The procedure will differ slightly for Win9x and Win2000 users:

Using Win9x:

This file is also included in the /avrfreaks subdir
of your avr-gcc installation.
Let’s do it; open a text editor and create a file
consisting of these lines (provided that you
installed avr-gcc to “c:\AVRGCC”):

@echo -------- begin --------
@set AVR=c:\AVRGCC
@set CC=avr-gcc
@set PATH=c:\AVRGCC\bin
make %1
@echo -------- end --------

Save this file as “gcc_cmp.bat” in a directory on
your computer that you know is included in the
Windows path, i.e. “c:\windows” .

This file will set some important environment
parameters for the make utility, then make will
be run. The “%1” argument is the project folder
path, provided by AVRstudio. The make utility
by default looks for the file called “makefile” in
this folder.

Using Win2000 or WinXP:

For Win2000, you need a “start”-file to kick off
the compilation. Both of these files are available
in the \avrfreaks\win2000 subdir of your avrgcc
installation:

@echo -------- begin --------
@start /MIN /wait cmd /c gcc_cmp2.bat %1
@type c:\tmpout.txt
@del c:\tmpout.txt
@echo -------- end --------

Save as “gcc_cmp.bat” in “c:\winnt”, or some
other folder you know is included in your path.
Now, create a file consisting of these lines
(again, provided that you installed avr-gcc to the
same path as we did):

@set AVR=c:\avrgcc
@set CC=avr-gcc
@set PATH=c:\avrgcc\bin
make.exe %1 >c:\tmpout.txt 2>&1

Save this file as “gcc_cmp2.bat” in the same
folder as above.
This setup will start make.exe, which is
instructed to direct its screen dump to a file that
is displayed as the compiler output inside
AVRstudio, and then deleted.

This is an important step!

Now, set the “target options” in AVRstudio:

• Right-click “Target:
debug” in the Project
window, and select
“settings”.

• Uncheck “Run
compiler…”.

• Check “Run linker…”
• Enter the name of your

clever little
gcc_cmp.bat file in the
command line window.

• Under “Run stage
settings”, opt for “Run
code”. In the first text
box type “Errors:
none”, in the second
type “obj” for object
file extension.

And here we go…

Building our first project with AVRstudio and avr-gcc
Now you should be all ready to run. Just double-click the makefile icon in the Project window of
AVRstudio, and make sure that this file is entered as shown above. Especially note that the line
setting your target name is correct. As you can see from the line below it, this should be the same
name as your C source file.
To build the project:

• Right-click “Target: debug” in the project window of AVRstudio, and select “build” from the
bottom of the menu.

Provided you completed all we went through so far as you should, this project should build just fine.
Watch the the make output appearing in a window inside AVRstudio. As long as it doesn’t report
any errors; all is OK:

Programming the AVR in the STK500
Helping you unpack, install and troubleshoot your STK500 development kit is out of scope of this
document. If you are having trouble with this; consult article written by Sean Ellis on
AVRfreaks.net, dec. 2001. But you should always:

• Make sure the STK500 is connected, and switched on.
• For this project, connect PortB to the LEDs connector with the 10-pin jumper cable.

To load your newly built code onto the chip, click the nice little AVR chip icon on the toolbar of
AVRstudio, or open the STK500 tool menu by selecting “STK500/…” from the “Tools” menu:

• You can probably leave most of the
settings to their default values.

• Make sure you load the right binary to
the chip. In the “Flash” section of the
dialog box; browse to the file
“gcctest1.hex” in your project directory.
You may have to select “other files” in
the filetype drop-down box to see the –
rom file.

• Click the “Program” button.
• Make sure the output textbox at the

bottom of the dialog says everything
went OK.

The LEDs on your STK500 board should light up, and it’s Christmas time again. Deck the hall with
bowls of holly and enjoy. Not. Because what happens in my case, at least, is that the LEDs don’t

flash. This is not a running light. It should be, and the reason it’s not running is the optimization
level of the compiler.

Tampering the makefile
Have a look at the compiler flags line in your makefile:

#compiler flags
 CPFLAGS = -g -Os -Wall -Wstrict-prototypes -Wa,-ahlms=$(<:.c=.lst)

The –O flag indicates the optimization level for the compiler. This is set pretty tight. If you also
consult your C source file, you will see that the delays between each output is implemented with
counting loops. No timer is involved to ensure an appropriate delay. What happens here is that the
delays are optimized away. They are actually gone; since the compiler realized they did nothing
useful, it left them out.
To work around this, edit the makefile by clicking the makefile icon in the Project window of
AVRstudio. Change the following line:

#compiler flags
 CPFLAGS = -g -Os -Wall -Wstrict-prototypes -Wa,-ahlms=$(<:.c=.lst)

To:

#compiler flags
 CPFLAGS = -g –O1 -Wall -Wstrict-prototypes -Wa,-ahlms=$(<:.c=.lst)

The optimization level has been set to 1. The previous “s” (size) optimization key provides
optimizations for code size. Consult avr-gcc man pages for more information.

Make clean
Important note: You must clean out the products from the previous build to make this new build. Or
else, make will decide that a rebuild is not necessary, since it is not set up to look for changes in the
makefile. We will not clean out these files manually, instead we will add a new Target in AVRstudio
that performs the cleaning. Oh yes.

• Right click Target:
debug in the Project
dialog of
AVRstudio; select
Targets -> add….
The Add new target
dialog appears. Enter
the name “clean” for
your new target, and
select Debug from
the drop-down

below (“Copy
settings from”).

• The target “clean”
will now be
available from the
Targets drop-down
in the Project dialog.

• Select this target,
and right-click to
access its settings…

• You can see that it
inherited the settings
from the Debug
target. Just add the
keyword “clean”
behind the call to the
.bat file you made.

• Build the clean
target.

This will clean out products from the make process. Why this works? “Clean” is a defined target in
the avr_make makefile included in your avr-gcc package. Consult Appendix A for a quick peek at
this file.

• Go back to the Debug target.
• Now rebuild all, reprogram the AVR and see what happens.

If you try to rebuild this project once more without making any changes, make will simply abort the
build. This is because make is, through the makefile, set up to only rebuild the parts of the project
that needs to be rebuilt at any given time. So, when make discovers there are no recent output files, it
decides to rebuild the whole shebang. But the makefile itself is not included as one of the
dependencies. So a change in this file will not automatically initiate a rebuild. But, reasonably
enough, a change in a source file will.
This is of no significance to our little single-source-file project, but it will be to larger projects.

Now, if all went well you should:

• Take a deep breath.
• Save your project.
• Sit back for a few minutes, marvelling at the wonders of science.

You could also check out the quick overlook of the avr_make file included in the avr-gcc
distribution, in appendix A of this document.

Debugging with .coff files in AVRstudio

Now, there’s something missing with our setup still:
The *.obj file that avr-gcc generates does not contain the necessary information to let AVRstudio
watch variables during debugging. The standard gcc file *.elf actually includes all this information;
but AVR Studio does not support the ELF format. It does, however, support the COFF format with
variable watch.
Flavio Gobber, an AVRfreaks.net registered user, has made an ELF to COFF converter. It is
included and integrated in AVRfreaks distributions of avr-gcc later than 20011203a, for your
convenience. These distributions are set up so that .cof files should be output in your working
directory if you followed the instructions so far. Then all you have to do is simply open the .cof file
in AVRstudio, add breakpoints and watches, and off we go.

NB! “Elf2coff” is also available from AVRfreaks.net:
http://www.avrfreaks.net/AVRGCC/download.php in case you are not using our preferred release of
avr-gcc. To set it up on your own, refer to the Appendix B of this document.

An example:
After successfully building your gcctest1 project, click to open the .cof file that should have been
output in your project directory:

• A new window should appear, showing
you the .coff dump with lots of directives
and chunks of assembly code, while your
project window disappears.

• The “Simulator options” dialog appears.
Select your device and the clock
frequency.

• Reopen your project, and click to see the
C source file.

• Scroll to this line in the main function:
 outp(0xff,DDRB);

• Press F9 to set a breakpoint here.
• Open the Add watch window from the

Watch menu; and add a watch for “led”
(right-click).

• Press Shift-F5 to reset the debug; the
focus should change to the coff file
window. Run with F5. Focus changes to
the source code window with a break at
the line you marked…

• Click F10 to single-step, and watch the
variable “led” change to “0x01”…

• Hark! The herald angels sing.

http://www.avrfreaks.net/AVRGCC/download.php

• That’s all there is to it.

Now, you should be on your way developing for the AVR family with avr-gcc and AVRstudio. The
setup provided through the steps in this document should be sufficient for some time. Start by going
through the gcctest1-9 example sets. Also, download a copy of Rich Neswold’s “GNU development
Environment for the AVR microcontroller” from www.avrfreaks.net/AVRGCC/ , as a nice
introduction and reference.

You may need to extend or alter this setup as you become more experienced and start working on
more complex projects. By then you will also probably know more about how to make the necessary
changes and fixes.
Finally:

• If you haven’t already downloaded the document “GNU development environment for the
AVR Microcontroller”, you should do that now.

• Frequent the AVRGCC forum at AVRfreaks.net
• Good luck.

http://www.avrfreaks.net/AVRGCC/

Appendix A – the “avr_make” file

Listed below are the lines that consitute the file “avr_make”. The file is composed from the make1-2
files by Volker Oth, jan.2000. It can be found in the subdirectory c:\avrgcc\avrfreaks, provided
c:\avrgcc is the directory where you installed the avr-gcc distribution. “Block” markers; “BLOCK1,
…” etc are inserted in this file for easy reference. Comments for each block are included below.
Reading through them should be an easy way of getting some idea of how this works.

#------------------ START OF FILE ---
GCC-AVR standard Makefile part 3
Based on Volker Oth's makefiles of jan.2000
Modified and merged by AVRfreaks.net for smoother integration with AVR Studio,
and easier comprehension for the average user (nov.2001). Minor errors corrected.
--

BLOCK 1) define some variables based on the AVR base path in $(AVR) #######

 CC = avr-gcc
 AS = avr-gcc -x assembler-with-cpp
 RM = rm -f
 RN = mv
 OUT = coff
 ELFCOF = elfcoff
 CP = cp
 BIN = avr-objcopy
 SIZE = avr-size
 INCDIR = .
 LIBDIR = $(AVR)/avr/lib
 SHELL = $(AVR)/bin/sh.exe

BLOCK 2) output format can be srec, ihex (avrobj is always created) #######

 FORMAT = ihex

BLOCK 3) define all project specific object files ######

 OBJ = $(ASRC:.s=.o) $(SRC:.c=.o)
 CPFLAGS += -mmcu=$(MCU)
 ASFLAGS += -mmcu=$(MCU)
 LDFLAGS += -mmcu=$(MCU)

BLOCK 4) this defines the aims of the make process ######

all: $(TRG).obj $(TRG).elf $(TRG).hex $(TRG).cof $(TRG).eep $(TRG).ok

BLOCK 5) compile: instructions to create assembler and/or object files from C source ######

%.o : %.c
 $(CC) -c $(CPFLAGS) -I$(INCDIR) $< -o $@

%.s : %.c
 $(CC) -S $(CPFLAGS) -I$(INCDIR) $< -o $@

BLOCK 6) assemble: instructions to create object file from assembler files ######

%.o : %.s
 $(AS) -c $(ASFLAGS) -I$(INCDIR) $< -o $@

BLOCK 7) link: instructions to create elf output file from object files ######
%.elf: $(OBJ)
 $(CC) $(OBJ) $(LIB) $(LDFLAGS) -o $@

BLOCK 8) create avrobj file from elf output file ######

%.obj: %.elf
 $(BIN) -O avrobj -R .eeprom $< $@

BLOCK 9) create bin (.hex and .eep) files from elf output file ######

%.hex: %.elf
 $(BIN) -O $(FORMAT) -R .eeprom $< $@

%.eep: %.elf
 $(BIN) -j .eeprom --set-section-flags=.eeprom="alloc,load" --change-section-lma .eeprom=0 -O $(FORMAT) $< $@

%.cof: %.elf
 $(ELFCOF) $< $(OUT) $@ $*.sym
 $(CP) $(OUT)\$@ .
 $(CP) $(OUT)*sym .
 $(CP) $(OUT)*S .

BLOCK 10) If all other steps compile ok then echo "Errors: none" ######

%ok:
 $(SIZE) $(TRG).elf
 @echo "Errors: none"

BLOCK 11) make instruction to delete created files ######

clean:
 $(RM) $(OBJ)
 $(RM) $(SRC:.c=.s)
 $(RM) $(SRC:.c=.lst)
 $(RM) $(TRG).map
 $(RM) $(TRG).elf
 $(RM) $(TRG).cof
 $(RM) $(TRG).obj
 $(RM) $(TRG).a90
 $(RM) $(TRG).hex
 $(RM) *.bak
 $(RM) *.log

size:
 $(SIZE) $(TRG).elf
 #------------------ END OF FILE --

Note: Make sure not to delete any tabs preceding a command in this file, as they are crucial for the
make utility’s ability to recognize commands from dependency rules. On the other hand, make sure
to delete all accidental spaces etc. in variable declarations. These may for instance cause your shell
not to recognize an executable or an executable to not recognize a parameter…

Comments
Block 1 : this block provides some additional pointers to folders and utilities needed in the make
process. Recall that the variable called AVR in our case is “c:\avrgcc”. So, the string

LIBDIR = $(AVR/avr/lib)

simply sets the variable LIBDIR to “c:\avrgcc\avr\lib”. This block provides a single entry point for
fundamental changes in the setup.

Block 2: sets optional binary output format to Intel hex.

Block 3: the first line defines the names of all object files to be created, from the names of all
included source files (both assembler and C source files). These are to be entered in the makefile.
Note also the MCU variable, referred as $(MCU), which is set to the type of AVR microcontroller to
use (i.e. AT90s8515), in your makefile.

Block 4: the aims are to create the target files listed; .obj, .elf, .hex… The order of the files are
indifferent, but the order of the following blocks in the makefile, is not.

Block 5: This is the first target : dependency line in this file. Such lines are called rules, and the
following lines are the commands that make the rule. All commands are preceeded by a tab; this is
imperative to make it work. If the tab isn’t there, the command is skipped.
This rule says that all .o files depend on the corresponding .c file. The “%” is a wildcard.
Hence, the following line compiles any .c file into a .o file:

%.o : %.c
 $(CC) -c $(CPFLAGS) -I$(INCDIR) $< -o $@

The $< and $@ are automatic variables for make, meaning “the filename of the first dependency”
and “the filename of this rule’s target”, respectively. The target of this rule is any object file, .o.
Hence, in this line when the source “gcctest1.c” comes wandering along; it is compiled into the file
“gcctest1.o”.

Block 6: Similar to the above; this time for assembly source files. Note that other flags are included,
and that avr-gcc is called with other directives than when compiling C source files (the $(AS)
variable).
The next few blocks work in a similar manner.

Block 10: Remember that all rules are performed sequentially in order of appearance in the file?
Well, if we got this far without make aborting the process, all is OK. Hence, we report to AVRstudio
“Errors: none”. This step is actually necessary for AVRstudio to see that all the previous steps went
OK. Also, a call to avr-size.exe is performed. This outputs the size of the elf file. Hence, you can see
how code changes affect the size of the resulting code.

Block 11: These few targets to do not conform to the target : depencies form of rules in a regular
fashion, since they have no actual target files. No actual files are to be built as the result of these
rules. Such rules are calles phony rules. They are useful for things like cleaning up, like this first

one, which deletes all files according to its rules when called. This step will never be performed
automatically, but make clean can be called explicitly to perform it.
Take a look again at the rule in Block 4. This is the default rule, which defines the goals of the entire
make process, and is always performed when nothing specific is called for. This is also a phony
target. We could include clean as one of the dependencies, and have it clean up intermediate files
etc.

Note: when making a change to, for instance, the compiler flags in the makefile; a complete remake
is necessary. But the makefile is not commonly considered a dependency of any project. Hence, it is
not included in any rule.
If it was for instance included as a dependency for the assembler and object files in block 5 and 6
above, the entire project would have to be rebuilt every time the makefile had changed (i.e. every
time make could tell that the makefile was newer than the source files and object files. So it usually
isn’t.
The safest/simplest thing when you have changed some entries in the makefile, is to run “make
clean” to clean out the directory and have make build the whole project all over. If working in a
windows environment, you can also delete all the files produced by make manually (all the
extensions listed in block 11).

Appendix B – setting up “elf2coff” with AVRstudio and make

The standard gcc file *.elf actually includes all information for watching variables while debugging;
but AVR Studio does not support the ELF format. It does, however, support the COFF format with
variable watch. We will utilize “Elf2Coff”, a utility made by AVRfreaks user Flavio Gobber, that
converts .elf to .cof files. These files can be directly loaded into studio for happy debugging.

Setting up Elf2Coff to run with avr-gcc and AVRstudio is not too hard, when you know what to do.
Since information on how to accomplish this is hard to come by (we know only a single source for
this – the AVR-GCC forum at AVRfreaks.net…), it is compiled and provided here for your pleasure
and convenience.

Note: If you already downloaded an avr-gcc distribution from AVRfreaks.net dated dec.03 or later;
Elf2Coff is already integrated into the package, and you don’t need to proceed with this. Coff files
should be automatically output to your project directory. That is; provided you follow the directions
in the main part of this document.

Just do it
Now, this shouldn’t take long. Lets’ get started:

• Download Elf2Coff from
www.AVRfreaks.net/AVRGCC

• Unzip into any directory.
• Inspect the unzipped structure (seen to

the right). The interesting part is the
subdirectory “avrgcc”.

• Copy this whole subdir structure into the
directory where you installed avr-gcc (i.e.
“c:\avrgcc\”). You get a new node called
c:\avrgcc\avrgcc\… with four subdirs in
it.

• Make sure you copy the file “elfcoff.exe”
from the \elfcoff\avrgcc\bin directory,
into the \bin directory of your avr-gcc
installation (should be c:\avrgcc\bin).

You also need to make some changes in the avr_make file, see Appendix A:

• In Block 1, add these line (use tabs to align with the other entries in this block):

ELFCOF = elfcoff
OUT = Coff

CP = cp

• In Block 4, add this entry for the .cof target file: $(TRG).cof
Now, this line reads:

all: $(TRG).obj $(TRG).elf $(TRG).cof $(TRG).hex $(TRG).eep $(TRG).ok

• In Block 9, add this new rule (watch the tabs!):

%.cof: %.elf

 $(ELFCOF) $< $(OUT) $@ $*sym
 $(CP) $(OUT)\$@ .
 $(CP) $(OUT)*sym .
 $(CP) $(OUT)*S .

• …and finally add this to the clean routine in Block 11:

$(RM) $(TRG).cof

Note: make sure to trim all unnecessary spaces when adding keywords to a makefile. An accidental
tab or space may cause a step in the make process to fail. The output from the compilation should
look like this:

Good luck.

	Installing and using AVRGCC with AVRstudio
	Installing AVRstudio
	Installing AVRGCC
	Make a new project with AVRstudio 3.53
	The project concept, and using the GNU make utility
	Adding files to the project
	The makefile
	Tying it all together
	Programming the AVR in the STK500
	Make clean

	Appendix A – the “avr_make” file
	Comments

	Appendix B – setting up “elf2coff” with AVRstudio and make
	Just do it

