AVRStudio4 and Atmega128
A Beginner’s Guide

Written By David Zier
Oregon State University
TekBots™
March 30, 2003

AVR Studio 4 and ATmegal28: A Beginner’s Guide

1

Table of Contents
INTRODUCTION...ccuuiuiisrinsensessanssassansssnssssssesssans 4
1.1 PURPOSE ...ttt st 4
1.2 AVR STUDIO 4 OVERVIEW...c..ctiiiiiiiiniienieeniteettenieesteesieeeneesaeesreesineeneeseneennees 4
1.3 ATMEGAI28 OVERVIEWoiiiiiiiiiiniiiiiiieniteiteteeieesie ettt 4
1.4 NOMENCLATUREcesittittetteritentee ettt e st e et este e eeneesaeesteesieeeneesaneennees 4
1.5 DISCLAIMER....cutiitiiiiitieieiteeitete ettt ettt sttt sttt et s sae e sae b 4
AVR STUDIO 4...ccuueneinennicnisenssissnssessscsssssssssessssssssssssssssns w5
2.1 STARTUP TUTORIAL ...c..eeuiiiiiiiieiiieiienteeteeiteett ettt sttt sttt ne e s 5
2.1.1 INSTALIATION ... 5
2.1.2 Project CreQIION.coovueeieaiiiiieeeee e b
2.1.3 Project SimulQtioncccccooiviiiiiiiiiiiieiie et 7
2.2 SIMULATION TIPS ..coiiiiiiiiiiiiiiiteeetesie ettt 7
2.2.1 Line-By-Line Debugging................cccocceeviaiiiaiieiiiaiieeie e, 8
2.2.2 WOrkspace Window..............c...cccoeeveuiiieiiiieiiie e 8
2.2.3 MeMOTY WiIRAOWS.........c..oooieiiiiieieeeeee e 9
2.3 DEBUGGING STRATEGIEScecttiiiiieiiniieieeienitenttetesiresteeteeeresstenesunesseensesanens 10
MICROCONTROLLER PROGRAMMING WITH PONYPROG2000.......... 11
3.1 INSTALLING PONYPROG2000..........ccceioiiriiiiiiiiiinicieniecectesecieeee e 11
3.2 PONYPROG2000 SETUPeeeiiiiiiiiieiieeieeeteesiee ettt 11
3.2.1 Setup the AVR Microcontroller Board.................cc..cccccoovvveeviveeiineannnann, 11
3.2.2 Setup POnyProg2000)cccoocoeeiieieiiiieiiii e 12
3.3 UPLOADING A PROGRAMioiiiiiiiiiiiiniiiiicieeiteiecte ettt 14
ATMEGAL28....cuueiuiiiiiiisnicsnisesssisssissesssnsssissssssess 16
4.1 USEFUL REGISTERS.....coiutiiiiiiiiiteiietenitete ettt ettt et sttt s 16
4.1.1 General PUrpose REZISIETSccccuceieeiiiiiiiieiieeseet e 16
4.1.2 Special Function REGISIEFScc.ocoueeeceeeeiiiesiie e eiee e 17
4.2 INTERRUPT VECTORS ...ccuttiiiiiiiiiiieiieeiee ettt ettt sttt s e e 20
4.3 MEMORY SPECIFICATIONSccttiuiiiiiiiiniieiieieeitesiteteeiee st ete et enesnesneenesnnens 22
4.3.1 Program Memory..............ccccooiiiiiiiiiiiiiie e 22
4.3.2 SRAM Data MEMOFYccceeeaiiaiiieesiie et eee e 22
4.3.3 EEPROM Data Memoryccocoueuveiiiieniiiiiiiniieiieeteeeene e 24
4.4 STARTER CODE ...c..oiiiiiiiiiiiiiiiiiieiteie ettt ettt s 24
AVR ASSEMBLY PROGRAMMINGccovvuiiruiesnissnisssnssssossssssssssssssssssssssssssosss 27
5.1 PRE-COMPILER DIRECTIVEScoiiiiiiiiiiiiiiieiieienieeie et 27
5.1.1 CSEG — Code SeZMENL..........cccocouieeiiiiiiiiiisiiiet e 28
5.1.2 DB — Define conStant BYte(S)ccoccveeveecueeceeeieeiieeieeseeeee e 28
5.1.3 DEF — Set a symbolic name on @ register.................cccccovueeinccneacennenne. 28
5.1.4 EQU — Set a symbol equal to an expresSion...............cccceeeeeeeeceveecenennnnnn. 29
5.15 INCLUDE — Include another file.................cccccoociiviniiniiiiininiacnene. 29
5.1.6 ORG — Set program OFIQIN.............cccceeeueeeeeeeeeieeeiieeeee e 29

TekBots™ Oregon State University Page 2 of 53

AVR Studio 4 and ATmegal28: A Beginner’s Guide

5.2 EXPRESSIONSttieiititeeiite ettt ettt e ettt e ettt e st e et e e st e e sasteesnseeesabeeesnseeenns 30
5.2.1 OPCFANCS ...ttt 30
5.2.2 FURCHIONS. ..ottt 30
5.23 OPCFALOFS ...ttt 30

5.3 BASIC INSTRUCTIONS......eiiiiiiieiiieeniieeenitteeniteeesiteeeiveeeireesiteessteesnseeesnbeeesaseeenns 31
5.3.1 Common NOMENCIATUTEcccoveiiiiiiiiiieeeiiii e 31
5.3.2 Arithmetic and Logic INSIFUCLIONSccoveeveeeaiiiaeieeiieeeie e 31
5.33 Branch INSIFUCIIONS. ... 32
5.3.4 Data Transfer INSTUCLIONS.................cccveeeeecueeiieeieeeee e 33
5.3.5 Bit and Bit- test INSITUCHIONSccccovveiiiiiiiieiiiiiiieeeeeeeeeeeeeeeeeeee, 34

5.4 CODING TECHNIQUESeeitiieeiieeeireeniteesiteesieeesiaeeesiseeensseessseesnnseesseessseessnnes 36
5.4.1 Y76 171 = 36
5.4.2 ReGiStEr NAMUING.c.ooeiiieiieeeie e 38
543 Constants and AddresSing.................c.cccoceviioinieniiiiiiiiiniicee e, 39
544 ATMegal28 Definition File...............cccoovueeiveiieeiiaiieeieeeieeeeeie e 40

5.5 FLOW OF CONTROL ...ceeeitiiiiieiitieeeeiieee e et ee s eteeeeeaeeeeesataeesentaeeeesnnneeeeennnsees 40
5.5.1 TF STQUEINCNL ...t 40
5.5.2 TF-ELSE STQIEME@AL............ooovveeeeeeeeeeieeeeeeeieeeeeeeeeeeeeeeeee s 4]
5.5.3 IF-ELSIF-ELSE StQteMeNt..............cccooviveeieieeieeiiiiieeeeeeeeeeeeeiiieeeeeee e, 42
5.5.4 WHILE STAEEIIEHL...........e i aaaaaeaaanans 43
5.5.5 DO STAIEIMERL ...ttt 44
5.5.6 FOR SEAIEIICIE ... 45
5.5.7 SWITCH STAtemMeEntooooviiieeeiiiiieeeeeeeeeeeeieee e 46

5.6 FUNCTIONS AND SUBROUTINES.....ccutttteiiiiieeeeniieeeeenireeeeesnereeeessreeeesnnneeessssnees 47
5.6.1 DEfINTTIONS ...ttt et enae s 47
5.6.2 Operational OVervieW...............ccccccceeverieeeiieeiiieeit et 48
5.6.3 IMPLEMENIALION ... 49

6 REFERENCES.. .. eeeteeeeecirreneeeeeeeccssssssssssessesssasens 53

TekBots™ Oregon State University Page 3 of 53

AVR Studio 4 and ATmegal28: A Beginner’s Guide

1 Introduction

The Department of Electrical and Computer Engineering (ECE) at Oregon State
University (OSU) has recently been reevaluating the way classes are taught.
With the collaboration of Tektronix, the TekBots program was born. TekBots has
allowed ECE a way to educate by keeping a consistent flow in the course work. In
keeping with that consistency, ECE 375: Computer Structure and Assembly Language
Programming, is in the process of converting labs over to use Atmel’s software tools and
AVR RISC core chips. For more information about the TekBots Program, go to
http://ece.oregonstate.edu/tekbots/.

1.1 Purpose

The purpose of this document is to provide the reader with the basic knowledge to
develop assembly programs for the ATmegal28 using AVR Studio 4. The intent of this
document is to be used in conjuncture with lecture material from ECE 375: Computer
Structure and Assembly Language Programming.

1.2 AVR Studio 4 Overview

AVR Studio 4 is the new professional Integrated Development Environment (IDE) for
writing and debugging AVR applications in Windows 9x/NT/2000/XP environments.
AVR Studio 4 supports the following development tools: ICE50, JTAGICE, ICE200,
STKS500, and AVRISP. AVR Studio 4 was created by the Atmel Corporation and can be
downloaded for free from http://www.atmel.com/atmel/products/prod203.htm.

1.3 ATmega128 Overview

The ATmegal28 is a low power CMOS 8-bit microcontroller based on the AVR
enhanced RISC architecture. By executing powerful instructions in a single clock cycle,
the ATmegal28 achieves throughputs approaching 1 MIPS per MHz allowing the system
designer to optimize power consumption versus processing speed. The complete
datasheet can be downloaded from http://www.atmel.com/atmel/acrobat/doc2467.pdf.

1.4 Nomenclature

Throughout this document, there will be several styles of writing to signify different
aspects such as code examples or command line instructions.

This style is used for normal text
This style is used for code examples

This style used for menu selects and commands, ie. File->Exit

1.5 Disclaimer

TekBots and Oregon State University are trademarks of OSU.
AVR Studio 4 and ATmegal28 are trademarks and/or copyrighted by Atmel Co.
Windows is a trademark of Microsoft Co.

TekBots™ Oregon State University Page 4 of 53

http://ece.oregonstate.edu/tekbots/
http://www.atmel.com/atmel/products/prod203.htm
http://www.atmel.com/atmel/acrobat/doc2467.pdf

AVR Studio 4 and ATmegal28: A Beginner’s Guide

2 AVR Studio 4

This section provides general information on to successfully use AVR Studio 4 to
complete most, if not all, of the projects. Not every aspect of AVR Studio 4 will be
covered here, but for those who choose to learn the program in more detail, additional
information can be attained from Atmel’s website at http://www.atmel.com.

2.1 Startup Tutorial

This tutorial will give a step-by-step guide on how to install AVR Studio 4, create a

project, and simulate the project. For the purposes of this tutorial, the first lab for ECE

375 will be used. The code can be downloaded from
http://engr.oregonstate.edu/~zier/ECE375/Labl.asm.

2.1.1 Installation

The installation of AVR Studio 4 is a pretty straightforward process, but nevertheless,
here is how to do it.

1. Download astudio4.zip from http://www.atmel.com/atmel/products/prod203.htm. As
of this writing, it should be the first link under Development Software on said
website.

2. Unzip astudio4.zip into an easily accessible directory such as My Desktop or My

Documents.

Run the setup program by double left clicking (DLC) on setup.exe.

4. Follow the instructions in the setup program. Most of the default installation
directories will work just fine.

5. When finished, click on the Finish button. That’s it; AVR Studio 4 is successfully
installed.

[98)

2.1.2 Project Creation

AVR Studio 4 is an Integrated Development Environment (IDE). Just like any other
IDE, AVR Studio 4 is project based. A project is like an environment for a particular
program that is being written. It keeps track of what files are open, compilation
instructions, as well as the current Graphical User Interface (GUI) selections. It would be
wise to create a separate project and project folder for each and every lab. To
demonstrate creating a project, the first lab will be used.

1. Start AVR Studio 4 by clicking through the menus Start->Programs->Atmel AVR
Tools->AVR Studio 4. The path could be different if changed during installation.

2. AVR Studio 4 should start up and place a Welcome to AVR Studio 4 dialogue box
up. Click on the New Project button in the upper top left. If box does not appear,
click on Project->New Project.

3. In the Project Type box, select Atmel AVR Assembler. Future versions will have
different project types, but for now, this is the only option available.

4. Inthe Project Name text box, type the name of the project, such as Lab 1.

TekBots™ Oregon State University Page 5 of 53

http://www.atmel.com/
http://engr.oregonstate.edu/~zier/ECE375/Lab1.asm
http://www.atmel.com/atmel/products/prod203.htm

AVR Studio 4 and ATmegal28: A Beginner’s Guide

Normally, both check boxes would be checked to create initial file and create folder,
but since we already have the initial file, leave that box unchecked.

The Location of the project can be changed by clicking on the “...” button next to
path name. It is recommended to place the project file in a networked directory (such
as ENGR of FLOP) if using a computer on campus or in My Documents folder on a
personal machine.

When finished, the popup dialogue should look like Figure 1: AVR Studio Project
Creation.

Imitial File
| .asm
Location:
|E:HDncuments and Settingz \L7L My Documents\ECE 375
[T Shaow thiz dialog on open Help I Ba I ﬂe:-:t>>‘ Finizh I Eancel]

Create new Project
Project Type: Praoject Mame:
& Atmel AR Assembler |Lab1

[Create initial File W Create Folder

*®

10.
1.

12.
13.
14.
15.

16.
17.

Figure 1: AVR Studio Project Creation

Click Next to continue.

The next dialogue asks to Select Debug Platform and Device.

9.1. Select AVR Simulator from the Debug Platform window.

9.2. Select ATmegal28 from the Device window.

Click Finish to complete the project creation.

Normally, if Create initial File was selected, a blank page would appear to start
writing the program on. But, the program is already written, so we must add it to the
project.

Download the labl.asm file into the newly created project folder.

In the Workspace window in AVR Studio 4, select the Project tab on the bottom
left.

Open the project tree by clicking on the plus sign next to Labl. You should now see
a folder labeled Assembler.

Right Click on the Assembler folder to bring up an option box.

Select Add Existing File from the option box and an Open dialogue should appear.
If labl.asm was downloaded correctly, it should be the only file available to choose
from. Double left click on labl.asm to open the file.

TekBots™ Oregon State University Page 6 of 53

AVR Studio 4 and ATmegal28: A Beginner’s Guide

18. labl.asm should now appear under the Assembler folder in the Workspace window

and the actual program should now appear in the editor area on right.

19. That is it. The project file has now been created.

2.1.3 Project Simulation

Now that the project has been created, it needs to be tested. Running the program on a
simulated chip built into AVR Studio 4 does this. AVR Studio 4 has the capability to
simulate almost every AVR microcontroller offered by Atmel. For the purposes of this
tutorial and ECE 375 class, the ATmegal28 will be the chip that will be simulated. This
chip was selected during the project creation phase. The chip can also be reselected by
clicking on Debug->Select Platform and Device.

1.

Before the program can be simulated, the program must first be compiled. There are
three ways to do this:

1.3. Or use the F7 key.
If the code was successfully compiled, a message in the message box at the bottom
should read “Assembly complete with no errors”. If it does not say this, then there
were some errors in the code. Clicking on the errors in the message box will
highlight the error in the code in the editor window.
Once the code has been successfully compiled, simulation can begin. There are two
ways to simulate the chip, debugging mode that allows a line-by-line simulation and
run mode that continuously runs the program.
3.1. There are a couple of ways to run in debug mode:

3.1.1. Follow the menu Debug->Start Debugging.

3.1.2. Or click on the Start Debugging Icon, *.
3.2. To start the run mode:

3.2.1. Follow the menu Debug->Run.

3.2.2. Click on the Run icon, =+,
3.2.3. Or use the F5 key.
To stop the simulation at any point:
4.1. Follow the menu Debug->Stop Debugging.
4.2. Or click on the Stop Debugging Icon, ®.
That is how to simulate a program. For more detailed simulation tips and strategies,
see Simulation Tips.

2.2 Simulation Tips

Just simulating a program is not enough. Knowing how to use the simulator and
debugger is essential to get results from simulation. This section will provide the
necessary information needed to get the most out of a simulation.

TekBots™ Oregon State University Page 7 of 53

AVR Studio 4 and ATmegal28: A Beginner’s Guide

2.2.1 Line-By-Line Debugging

Line-by-line debugging is the best way to take control of the simulation. It allows the
programmer to verify data in registers and memory. There are several ways to get into
line-by-line debugging mode. The first would be to start the simulation in line-by-line
debug mode by clicking on the debug icon, P, or through the menu Debug->Start
Debugging. When the program is in run mode, hitting the pause key, I, will halt the
simulation and put it into line-by-line mode. Also, if a break point was set in the code,
the simulation will automatically pause at the break point and put the simulation into line-
by-line mode.

When running in line-by-line mode, several new buttons will be activated. These allow
you to navigate through the program.

e © Step Into (F11) — Steps into the code. Normal operation will run program line-
by-line, but will step into routine calls such as the RCALL command.

. B Step Over (F10) — Steps over routine calls. Normal operation will run
program line-by-line, but will treat routine calls as a single instruction and not
jump to the routine instructions.

. {F Step Out (Shift+F11) — Steps out of routine calls. This will temporarily put
the simulation into run mode for the remainder of the routine and will pause at the
next instruction after the routine call.

e "t} Run to Cursor (Ctrl+F10) — Runs simulation until cursor is reached. The
cursor is the blinking line indicating where to type. Place the cursor by putting
the mouse over the instruction you want to stop at and hit the Run to Cursor icon.

After experimenting around with these four commands, you should be able to navigate
through the code with ease.

2.2.2 Workspace Window

The workspace window holds valuable information about the project and the simulation.
There are three areas of the workspace windows signified by tabs at the bottom; Project,
I/0, and Info.

The Project window contains all the information related to the project such as files and
file structuring. From here, files can be created, destroyed, rearranged, or organized.
You can also use this window to select which file appears in the editor window.

The 1I/0 window contains all the registers associated with the simulated chip. By default,
this window should automatically be displayed when simulation is run in line-by-line
mode. Figure 2: I/O Window in Workspace shows an example of what the I/O window
looks like during the Lab 1 simulation. By expanding this window, additional
information is available such as Bits and Address of the registers. It is in this window
where you can simulate input on the ports. The node labeled /O ATMEGA128 contains
all the special registers associated with the chip.

TekBots™ Oregon State University Page 8 of 53

AVR Studio 4 and ATmegal28: A Beginner’s Guide

Workspace x
MName Value Bits Address
- g register 0-15
- [§) register 16-31
B = OxF5
B 17 0x0
B 1= 0x0
B 1 0x0
B = 0x0
B 2t 0x0
B 22 0x0
B 23 0x0
B 24 w0
B = 0w
A == Ox0
Bz 0w
A == Ox0
B = 0w
B o 0w
B 0w

+ E Processaor

+ -3 1/o ATMEGA 128

= El 10 | i

Figure 2: I/O Window in Workspace

Note: By expanding the /O ATMEGA128 node, you have access to the ports and can
simulate input or interrupts through them.

The Info window displays information about the current chip that is being simulated.
This information contains names and addresses of registers and external pins. It is a good
point of reference when programming for the chip.

2.2.3 Memory Windows

In actuality, all of the registers are actually parts of memory within the ATmegal28. In
addition to the register memory, the ATmegal28 has several other memory banks,
including the program memory, data memory, and EEPROM memory. Of course, no
good simulator is complete without being able to view and/or modify this memory, and
AVR Studio 4 is no exception.

To view the memory window, follow the menu command View->Memory Window or
hit Alt+4. The window will pop up on top and can sometimes get in the way. A good
way to organize it is to drag the window down next to the message window at the bottom
and it will slide in right next to it. Expanding the window will also show additional
information. Figure 3: Memory Window shows an example of what it looks like when it
is docked next to the message window and expanded.

TekBots™ Oregon State University Page 9 of 53

AVR Studio 4 and ATmegal28: A Beginner’s Guide

|F'n:ugram »| BAE| abc.| Addiess: |EI:-:2?
FF FF

ooooz? FF FF FF FF wvyyyy s
noooozad FF FF FF FF FF FF wvyvyy

0ooo2D FF FF FF FF FF FF yvyyyy

oooo3o o0 E2 03 95 FE CF A1pI

0ooo33 FF FF FF FF FF FE w9yyyy

0ooo3e FF FF FF FF FF FF yyyyyy

000039 FF FF FF FF FF FF wvyvyy

fdowap » x

Figure 3: Memory Window

The main area of the Memory Window contains three sets of information; the address of
the line in the blue, the data of the memory in hexadecimal format, and the ASCII
equivalent of that data. The pull down menu on the top left allows you to select the
various memory banks available for the ATmegal28. To edit the memory, just place the
cursor in the hexadecimal data area and type in the new data.

2.3 Debugging Strategies

Debugging code can be the most time consuming process in programming. Here are
some tips and strategies that can help with this process:

e Comment, Comment, Comment. Unless it is absolutely blatantly obvious of
what the code is doing, comment EVERY line of code. Even if the code is
obvious, at least comment what the group of instruction is doing, for example,
“Initializing Stack Pointer”.

e Pick a format and stick with it. The format is how you lay out your code. A
single programming format will make reading the code a lot easier.

e Before writing any actual code, write it out in pseudo-code and convince yourself
that it works.

e Break the code down into small routines and function calls. Small sections of
code are much easier to debug than one huge section of code.

e Wait loops should be commented out during debugging. The simulator is much
slower than the actual chip and extensive wait loops take up a lot of time.

e Use breakpoints to halt the simulation at the area known to be buggy. Proper use
of breakpoints can save a lot of time and frustration.

e Carefully monitor the I/O Window and Memory Windows throughout the
simulation. These windows will indicate any problem.

e Make sure the AVR instruction is actually supported by the ATmegal28.

e The ATmegal28 has certain memory ranges; so make sure that when
manipulating data, the addresses are within range.

TekBots™ Oregon State University Page 10 of 53

AVR Studio 4 and ATmegal28: A Beginner’s Guide

3 Microcontroller Programming with PonyProg2000

The primary goal of most AVR assemblers is to use their code on an actual
microcontroller. Unfortunately, AVRStudio4 does not provide a way to physically
upload the data file onto a microcontroller. Future versions of AVRStudio4 may contain
such enhancements, but they will probably rely on Atmel proprietary interface. For now,
there is an excellent freeware serial device programmer called PonyProg2000. There are
several different flavors of PonyProg, but since this document focuses on the
ATmegal28, we will use PonyProg2000. This section will contain several step-by-step
tutorials on how to use PonyProg. The main site that supports PonyProg2000 can be
found at http://www.lancos.com/prog.

3.1 Installing PonyProg2000

This section explains where and how a user would download and install PonyProg2000.
This is an ideal section for those who do not already have PonyProg2000 on there system.
This program is freeware and will cost you nothing to use, but freeware has it limitations
in documentation and support. So far, the author has found no problems with the current
version of PonyProg2000.

The following is a step-by-step tutorial on how to download and install the program.
This program is designed for Windows machines only.
1. Go to the site http://www.lancos.com/ppwin95.html and click on the link that
reads ‘v2.05a BETA’. This will start the download process.
2. Save the downloaded zip file labeled ‘ponyprogV205a.zip’ to an easily accessible
folder.
3. Once the zip file has finished downloading, unzip ‘ponyprogV205a.zip’ and
extract the ‘setup.exe’ program from the zip file.
Run the ‘setup.exe’ program to begin the installation process.
Click yes on the dialog box that appears.
Follow the steps in the Installation Wizard.
The default directories it assigns for the program location and group icons are
OK.
8. Once the Installation Wizard is complete, the program is completely installed.

Nowe

3.2 PonyProg2000 Setup

There are a few things that need to be done with the program before a user can upload
data into a microcontroller. This section gives a step-by-step guide on how to setup both
PonyProg2000 and the microcontroller board.

3.2.1 Setup the AVR Microcontroller Board

1. Connect the ISP dongal, (A small device that converts parallel data to serial ISP
data; for students using the TekBots V3.75 kit, it is the small board with a single

TekBots™ Oregon State University Page 11 of 53

http://www.lancos.com/prog
http://www.lancos.com/ppwin95.html

AVR Studio 4 and ATmegal28: A Beginner’s Guide

3.2.2

chip on it that came with the kit), to the parallel port on the PC. This should be
LPT1 on most systems.

Connect one end of the ISP cable, a ribbon cable with a notched 2x5 female
connector at either end, to the ISP dongal.

Connect the other end of the ISP cable to the ISP port on the AVR micro-
controller board; it should be the J22 that is right next to the serial port.

Now that the ISP connection is made, apply power to the microcontroller board.
NOTE: it is advisable to remove power from the AVR Microcontroller Board any
time you plug or unplug the ISP cable.

The AVR Microcontroller Board is now connected to the PC and is ready to be
programmed.

Setup PonyProg2000

. Make sure the Microcontroller Board is properly connected as stated in Section

3.2.1 and then start up the PonyProg2000 program.

Click OK to remove the splash screen and get access to the program. Also note,
if you are like the author, you might want to check the box labeled “Disable
Sound” first.

. It will then bring up a prompt telling you to calibrate before any read/write

operations. Click OK to close this dialog.

Another prompt asking to run setup will appear, click OK to close this as well.
The first thing is to select the correct device. There are two pull down menus on
the right that do just that. Select “AVR micro” from the first pull down menu and
“ATmegal28” from the second.

Now run the calibration by navigating the menu options, Setup->Calibration.
Click YES on the dialog to begin calibration. It should go very quick. A dialog
will then pop and state that the calibration is complete. If you do not get this, then
close all the other running applications and try again.

Now run the interface setup by navigating the menu options, Setup->Interface
Setup....

A new dialog appears, fill in the information to match the figure below.

TekBots™ Oregon State University Page 12 of 53

AVR Studio 4 and ATmegal28: A Beginner’s Guide

Interface board Setup

[0 port zetup

‘f" Serial ' Parallel

€l covil @ cowe | |@IETI] € LPTo
1 oMz € CoMd |E LPT2

Select Polanty of the Control lines

[lrwert Reset [T lrwert D-IM
[lrwvert SCEL [T lrwert D-OUT
Cancel | ok Frobe |

Figure 4: PonyProg2000 Interface Board Setup

10. Click Probe to make sure the connection is ok and then click OK.
11. With everything setup correctly, you should have a screen that looks similar to the
following figure. You have now successfully setup PonyProg2000 for the

ATmegal28.

Ele Edit Device Command Script Utiity Setup ? Window

[] PonyProg2000 - Serial Device Programmer

o gk @B ez

% |avR micro Tl |aTmegatze ~|

lers caRaEy Llelmlo v

=10l x|

PonyProg2000 ATmegal 28 Size 135168 Bytes CRLC 8a01h
Figure 5: Fully Initialized PonyProg2000
TekBots™ Oregon State University Page 13 of 53

=101

AVR Studio 4 and ATmegal28: A Beginner’s Guide

3.3 Uploading a Program

After all the initialization is complete, uploading a program onto the AVR Micro-
controller Board is easy. You will, of course, need a program to upload. Here is the step-

by-step tutorial on how to do this process.

1. Compile your program in AVRStudio4. This generates a usable AVR program in
the form of an HEX file. This is the actual binary data that gets uploaded into the

ATmegal28.

2. Click on the g icon or File->Open Device File... to load a program into

PonyProg2000.

W

5. A file should appear that has the same name of your project in the AVRStudio4.
Click on this name and then click Open to load the program.

Navigate to the directory where your AVRStudio4 project is located.
Select “*.hex” from the pull down menu labeled “Files of type:”.

6. A successfully loaded program should look similar to the following figure.

[] PonyProg2000 - Serial Device Programmer - [ecuments\TekBots\LCDDriver\lcddriver.he - |EI|5|
$¥- File Edit Device Command Script Utlity Setup 2 Window == x|
| &R micra =l |eTmegstze ~|
P e JJJ JJEJ Jl
aee@ae) us FF F FF FF FF FF FF FF |
aee@18) FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF ||
aeeazvB) FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF
aeea3v) FF FF FF FF FF FF FF FF - FF FF FF FF 86 C8B FF FF
@eeauB) FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF
@eease8) FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF
geeasB) FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF
@eea7B) FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF
@eeegB) FF FF FF FF FF FF FF FF - FF FF FF FF 88 E1 BE BF
aeea9ve) BF EF 8D BF B7 DB OF EA - 83 BF 88 E3 &1 BF 82 EA) i
aeeanv) @7 BF 8@ EA 4B ZE 66 24 - E4 EB F1 EB CA EB D1 EB .;-a@. FEERNAASHD
08@BEB) 7O E1 85 91 89 93 7A 95 - E1 F7 E6 DB 78 94 50 B2 pa'l.‘lzlé+aerlPz
ge@ace) S8 94 85 2D 81 708 21 F8 - E4 E? F1 E@ 38 DB F7 CF PE_- p'ﬁaenaﬂB T
geeapB) @5 2D 82 7O 21 FO E4 EA - F1 EB® 29 DA Fa CF @5 2D - p’ﬁaena)DﬁI -
BBOBEB) B4 7O 21 FO E4 EE F1 E® - 22 DO E9 CF 85 2D B8 7@ p'ﬁaena pET.-.p
@eeaAFB) 21 FO E4 EC F1 EB 1B DA - EZ CF 85 2D 88 71 21 FA ’ﬁﬁiﬁé par.- q'ﬁ
aee1@88) E4 ED F1 EB 14 DB DB CF - 85 2D @88 72 21 FO E4 EE alna BT .-
@ee118) F1 EOG 6D DO D4 CF 85 2D - 88 74 21 FO E4 EF F1 EB fia.piT .- t'
ge@128) 86 DO CD CF 85 2D 88 78 - 89 FO E1 DO C8 CF OF 93 DIT .- x33DET .
gee138) ¥F 23 DD DO 7O E1 CA E1 - D1 EG A5 21 89 93 7a 95 l?Dpaﬁaﬁé ‘izl
gee148) E1 F7 B2 DO FF 91 OF 91 - 88 95 OF 93 OF B7 OF 93 azzp.c.*.0.0.-.1
gee158) 63 24 A1 F4 ABG E3 B1 EG - 23 EQ @8 EZ 8D 93 2A 95 CI.D Axala . 5. 00
ae@168) E9 F7 84 2D A8 E3 B1 EB - ES DB 73 EB 31 EB 29 EA .- a+a§Bsa1a)a
aee178) 80 91 CD DA 23 95 7A 95 - D9 F7 43 94 OF 91 BF BF LcipumzED:cH.<.;
[
PoryProg2000 ATmegal 28 Size 135168 Bytes CRC 91EAh

Figure 6: Successfully Loaded AVR Hex Program File in PonyProg2000

Bl
7. Finally, upload the program onto the ATmegal28 by clicking on the j icon or
by the menu, Command->Write All. Also, Ctrl-W will work. This should bring

TekBots™

Oregon State University

Page 14 of 53

AVR Studio 4 and ATmegal28: A Beginner’s Guide

up a dialog that confirms your request to program the device. Click Yes to begin
upload.

8. A progress bar will appear. It will write to the device, and verify it twice. This
takes about a minute or two to complete. When it is finish, a dialog appears
telling that it was successful or not. Click on OK to go back to PonyProg2000.

9. Once the program has been written to the ATmegal28, the ATmegal28 will
automatically reset and start running your program. Congratulations, you have
now successfully uploaded your program

During any stage of development, the program is not generally perfect from the start.
Several revisions must be made and a lot of debugging. This generally means that a
program will have to be downloaded several times into the chip. Well, you do not
have to reload the program each time you make changes; there is a nice little function
that does this for us. First, keep both AVRStudio4 and PonyProg2000 open. Make
you change in AVRStudio4 and then recompile your program (F7). Now, switch
over to PonyProg2000, it should still have the last version of the program loaded.

Click the icon to refresh the code. Doing so will automatically update the loaded

program file in the window to reflect any changes made. Finally, just upload the
program again. This is really a time saver and you will use it a lot during the
development of projects.

Feel free to explore the rest that PonyProg2000 has to offer. This document only
covers the basics and does not go into any more detail about PonyProg2000. There is
one more mention though, be careful of any modification to the fuse bits as they can
several alter the way the ATmegal28 functions.

TekBots™ Oregon State University Page 15 of 53

AVR Studio 4 and ATmegal28: A Beginner’s Guide

4 ATmega128

This section will provide some basic information about the ATmegal28. For more
detailed information about the ATmegal28, see the Complete Datasheet at
http://www.atmel.com/atmel/acrobat/doc2467.pdf.

4.1 Useful Registers

The ATmegal28 is equipped with two types of registers, general purpose registers and
special function registers. All the registers in the ATmegal28 are 8-bit, which means
they are basically just 8 flip-flops in a row and are, in actuality, just part of the memory,
each with their own address. Unlike other areas of memory that are tied into a
multiplexor, registers are tied directly to the CPU and hold valuable data for the CPU.

4.1.1 General Purpose Registers

There are 32 General Purpose Registers in the ATmegal28. These registers are
connected to the ALU (Arithmetic Logic Unit) and are used to manipulate data. The
registers are labeled RO — R31.

4.1.1.1 Lower Registers

The lower 16 registers, RO — R15, work just the rest of the registers with the exception of
loading immediate data. These registers have access to the full range of the Data
Memory, ALU, and additional peripherals. Here is an example of using the loading
immediate data into the lower registers:

LDI R16, 30 ; Load the number 30 into R16

MOV RO, R16 ; Copy R16 into RO, RO <- R16

INC RO ; Increment RO, RO <- RO+1

ADD RO, R16 ; RO <- RO + R16, value in RO should now be 61

4.1.1.2 Upper Registers

The upper 16 registers, R16 — R31, have additional capabilities. They have access to
immediate data using the LDI instruction. These registers will be the ones that get the
most use throughout your program. To move data into or out of these registers, the
various different Load and Store instructions are needed. All arithmetic instructions
work on these registers. Here is an example of using the upper registers:

LDI R16, S$SA4 Load the immediate hex value into R16

LD R17, X ; Load value from memory address in X-Pointer
ADC R16, R17 ; Add with carry, R16 <- R16 + R17 + Carry Bit
ST Y, R16 ; Store value in R16 to address in Y-Pointer

TekBots™ Oregon State University Page 16 of 53

http://www.atmel.com/atmel/acrobat/doc2467.pdf

AVR Studio 4 and ATmegal28: A Beginner’s Guide

4.1.1.3 X-, Y-, Z-Registers

The last six of the General Purpose Registers have additional functionality. They serve
as the pointers for indirect addressing. The ATmegal28 has a 16-bit addressing scheme
that requires two registers for the address alone. The AVR RISC structure supports this
scheme with the X, Y, and Z-Registers. These registers are the last six General Purpose
Registers (R26-R31). The following table details the register assignments:

Table 1: Address Register Assignments

Name Byte | Assignment
X-Register Iﬁ?{; Egg
Y-Register Ili?gvrl Ezzg
Z-Register Ilfgvfl gg(l)

The following code is an example of how to use these special registers. The code will
read a value from SRAM, manipulate it, and then store it back at the next address in
SRAM.

ILDI R26, S$5A
LDI R27, $02

Load Ox5A into the low Byte of X
Load 0x02 into the high Byte of X

Ne Ne Ne Ne N

LD R16, X+ Load value from SRAM, increment X
INC R16 Manipulate value
ST X, R16 Store value to SRAM

4.1.2 Special Function Registers

Special Function Registers are registers in the ATmegal28 that either control or monitor
the various components of the chip. In this section, I will cover the commonly used
Special Function Registers. Most of the Special Function Registers have read/write
capabilities, check the datasheet for the ATmegal28 for more details. These register
reside in the ATmegal28 I/O Memory and as such, require the IN and OUT instructions
to read and write to these registers.

4.1.2.1 Status Register (SREG)

The Status Register or SREG contains the important information about the ALU such as
the Carry Bit, Overflow Bit, and Zero Bit. These bits are set and cleared during ALU
instructions. This register becomes extremely useful during branching operations. The
following table details the bit assignments within the SREG.

TekBots™ Oregon State University Page 17 of 53

AVR Studio 4 and ATmegal28: A Beginner’s Guide

Table 2: SREG Definition

Bit | Name Description
7 I Global Interrupt Enable
6 T Bit Copy Storage
5 H Half Carry Flag
4 S Sign Bit
3 \Y Twos Compliment Overflow Flag
2 N Negative Flag
1 Z Zero Flag
0 C Carry Flag

As an example of using this register, look at the BREQ or Branch If Equal instruction.
When this instruction is called, it looks at the Zero Flag in the SREG. If the Zero Flag is
set, then the instruction will branch to the program address specified, otherwise it will
continue on as usual.

4.1.2.2 Stack Pointer

The Stack is mainly used for storing temporary data, for storing local variables and for
storing return addresses after interrupts and subroutine calls. The Stack Pointer Register
always points to the top of the Stack. Note that the Stack is implemented as growing from
higher memory locations to lower memory locations. This implies that a Stack PUSH
command decreases the Stack Pointer.

The AVR Stack Pointer is implemented as two 8-bit Special Function Registers, Stack
Pointer High Register (SPH) and Stack Pointer Low Register (SPL). The following
diagram is a representation of the Stack Pointer.

Bit 15 14 13 12 11 10 9 8
SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SPH
SP7 SP6 SP5 SP4 SP3 SP2 SP1 SPO SPL

7 6 5 4 3 2 1 0

Figure 7: Stack Pointer

The following example demonstrates how to initialize the Stack Pointer. Remember to
include the definition file for the ATmegal28 at the beginning of the program to utilize
Register naming schemes.

.include “ml28def.inc” ; Include definition file in program
LDI R16, LOW(RAMEND) ; Low Byte of End SRAM Address
OuUT SPL, R16 ;Write byte to SPL
LDI R16, HIGH (RAMEND) ;High Byte of End SRAM Address
ouT SPH, R16 ;Write byte to SPH

TekBots™ Oregon State University Page 18 of 53

AVR Studio 4 and ATmegal28: A Beginner’s Guide

4.1.2.3 1/O Ports

The ATmegal28 is equipped with 7 I/O Ports labeled Port A through Port G. Each port
has it own unique capabilities such as External RAM Addressing, PWMs, Timers, and
Counters. Unfortunately, this document will only cover the basics that are common with

each port. For more detail information, refer to the Complete Datasheet for the
ATmegal28.

The 1/0 Port is the most fundamental way to move data in to or out of the ATmegal28.
The ports are bi-directional I/O ports with optional internal pull-ups. Throughout the rest
of the description, certain names are abbreviated that are common to all registers. For
example, a generic pin on an I/O port is referred to as Pxn, where x is the port name (A-
G) and n is the pin number (0-7).

Each port pin consists of three Register bits: DDxn, PORTxn, and PINxn. The DDxn bits
are accessed at the the DDRx Special Function Register (SFR), the PORTxn bits at the
PORTx SFR, and the PINxn bits at the PINx SFR. To alleviate confusion, these three
Special Function Registers for Port A are detailed below.

Bit 7 6 5 4 3 2 1 0

| PORTA7 | PORTA6 | PORTAS5 | PORTA4 | PORTA3 | PORTA2 | PORTA1 | PORTAO | PORTA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

Figure 8: Port A Data Register - PORTA

Bit 7 6 5 4 3 2 1 0

| DDA7 | DDA6 | DDA5S | DDA4 | DDA3 | DDA2 | DDAl | DDA0 | DDRA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

Figure 9: Port A Data Direction Register - DDRA

Bit 7 6 5 4 3 2 1 0

| PINA7 | PINA6 | PINAS | PINA4 | PINA3 | PINA2 | PINA1 | PINAO | PINA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

Figure 10: Port A Input Pins Address — PINA

The DDxn bit in the DDRx Register selects the direction of this pin. If DDxn is written
logic one, Pxn is configured as an output pin. If DDxn is written logic zero, Pxn is
configured as an input pin.

If PORTxn is written logic one when the pin is configured as an input pin, the pull-up
resistor is activated. To switch the pull-up resistor off, PORTxn has to be written logic
zero or the pin has to be configured as an output pin.

TekBots™ Oregon State University Page 19 of 53

AVR Studio 4 and ATmegal28: A Beginner’s Guide

If PORTxn is written logic one when the pin is configured as an output pin, the port pin is
driven high (one). If PORTxn is written logic zero when the pin is configured as an
output pin, the port pin is driven low (zero).

Table 3 summarizes the control signals for the pin value.

Table 3: Port Pin Configurations

PUD
DDxn | PORTxn | (in SFIOR) 1/0 Pull-up | Comment
0 0 X Input No Tri-state (Hi-Z)
Pxn will source current if ext.
0 1 0 Input Yes pulled low.
0 1 1 Input No Tri-state (Hi-Z)
1 0 X Output No Output Low (Sink)
1 1 X Output No Output High (Source)

Note: When reading a value from the port, read from the PINx Register. When writing a
value to the port, write to the PORTx register.

The following code is an example of how to initialize the ports. This example initializes
Port B as output and Port D as input. Remember, this code uses the definition document
that is included somewhere in the beginning of the program.

LDI R16, SFF ; Select Direction as Output on all pins

ouT DDRB, R16 ; Set value in DDRB

1DI R16, SFF ; Set Initial value to high on all pins

ouT PORTB, R16 ; Set PORTB value, Port B pins should be high

LDI R16, $00 ; Select Direction as Input on all pins

ouT DDRD, R16 ; Set value in DDRD

LDI R16, $00 ; Use normal Tri-state with no Pull-up resister
ouT PORTD, R16 ; Port D is now ready as input

4.1.2.4 Additional Special Function Registers

Details on other Special Function Registers can be obtained from the complete datasheet
for the ATmegal28. Future version of this document might discuss other registers if
needed for the ECE 375 class.

4.2 Interrupt Vectors

Interrupts are special functions that are automatically called when trigger in the hardware
of the ATmegal28. In general, interrupts are enabled or disabled through the Global
Interrupt Enable, bit 7 of the SREG. There are some AVR Assembly instructions that do
this as well, SEI, Set Global Interrupt, and CLI, Clear Global Interrupt. Of course, just
turning the Global Interrupt Enable on and off won’t activate the interrupts themselves.

TekBots™ Oregon State University Page 20 of 53

AVR Studio 4 and ATmegal28: A Beginner’s Guide

Each interrupt has a specific enable bit in the Special Function Register. To find out how
to enable a specific interrupt, refer to the complete datasheet for the ATmegal28.

Once an interrupt is triggered, the current instruction address is saved to the stack and the
program address is sent to that specific Interrupt Vector. An Interrupt Vector is a specific
address in the program memory associated with the interrupt. There is general enough
room at the Interrupt Vector to make a call to the interrupt function somewhere else in
program memory and a return from interrupt instruction.

The following table is a list of all the Interrupt Vectors, as well as there addresses in
program memory, and definitions.

Table 4: Reset and Interrupt Vectors

Vector Program
No. Address Source Interrupt Definition
External Pin, Power-on Reset, Brown-out Reset,
1 $0000 RESET Watchdog Reset, and JTAG AVR Reset
2 $0002 INTO External Interrupt Request 0
3 $0004 INTI External Interrupt Request 1
4 $0006 INT2 External Interrupt Request 2
5 $0008 INT3 External Interrupt Request 3
6 $000A INT4 External Interrupt Request 4
7 $000C INT5 External Interrupt Request 5
8 $000E INT6 External Interrupt Request 6
9 $0010 INT7 External Interrupt Request 7
10 $0012 TIMER2 COMP Timer/Counter2 Compare Match
11 $0014 TIMER2 OVF Timer/Counter2 Overflow
12 $0016 TIMER1 CAPT Timer/Counter1 Capture Event
13 $0018 TIMER1 COMPA Timer/Counter] Compare Match A
14 $001A TIMER1 COMPB Timer/Counter] Compare Match B
15 $001C TIMER1 OVF Timer/Counterl Overflow
16 $001E TIMERO COMP Timer/Counter) Compare Match
17 $0020 TIMERO OVF Timer/Counter() Overflow
18 $0022 SPI, STC SPI Serial Transfer Complete
19 $0024 USARTO0, RX UASRTO, Rx Complete
20 $0026 USARTO0, UDRE USARTO Data Register Empty
21 $0028 USARTO, TX USARTO, Tx Complete
22 $002A ADC ADC Conversion Complete
23 $002C EE READY EEPROM Ready
24 $002E ANALOG COMP Analog Comparator
25 $0030 TIMER1 COMPC Timer/Counter]l Compare Match C
26 $0032 TIMER3 CAPT Timer/Counter3 Capture Event
27 $0034 TIMER3 COMPA Timer/Counter3 Compare Match A
28 $0036 TIMER3 COMPB Timer/Counter3 Compare Match B
29 $0038 TIMER3 COMPC Timer/Counter3 Compare Match C
30 $003A TIMER3 OVF Timer/Counter3 Overflow
31 $003C USARTI1, RX USARTI, Rx Complete
32 $003E USARTI1, UDRE USARTI1 Data Register Empty
33 $0040 USARTI1, TX USARTI, Tx Complete
34 $0042 TWI Two-wire Serial Interface
35 $0044 SPM READY Store Program Memory Ready
TekBots™ Oregon State University Page 21 of 53

AVR Studio 4 and ATmegal28: A Beginner’s Guide

See Section 4.4 Starter Code to find out how to code the Interrupt Vector.

4.3 Memory Specifications

This section describes the different memories in the ATmegal28. The AVR architecture
has two main memory spaces, the Data Memory and the Program Memory space. In
addition, the ATmegal28 features an EEPROM Memory for data storage. All three
memory spaces are linear and regular.

4.3.1 Program Memory

The Atmegal28 contains 128K bytes of On-chip In-System Reprogrammable Flash
memory for program storage. Since all AVR instructions are 16 or 32 bits wide, the
Flash is organized as 64K x 16. For software security, the Flash Program memory space
is divided into two sections, Boot Program section and Application Program section. The
figure below illustrates the Flash Memory.

Program Memory

$0000

Application Flash Section

Boot Flash Section

$FFFF

Figure 11: Program Memory Map

Constant tables can be allocated within the entire program memory address space. To
access these constant, or any data within the program memory, use the AVR instructions
LPM - Load Program Memory or ELPM — Extended Load Program Memory. Refer to
the instruction description in the AVR Instruction Set document to learn how to use them.

4.3.2 SRAM Data Memory

The ATmegal28 supports two different configurations for the SRAM data memory,
Normal mode and ATmegal03 Compatibility mode. This mode is selected in the fuse
bits of the ATmegal28. For the purposes of this class and document, only the Normal

TekBots™ Oregon State University Page 22 of 53

AVR Studio 4 and ATmegal28: A Beginner’s Guide

mode will be discussed and used. The following figure illustrates the memory map for
the SRAM.

Data Memory
32 Registers $0000-$001F
64 1/0 Registers $0020-$005F
160 Ext I/O Reg. $0060-$00FF
Internal SRAM $0100
(4096 x 8)
$10FF
External SRAM $1100
(0 — 64K x 8)
$FFFF

Figure 12: Data Memory Map

The ATmegal28 is a complex microcontroller with more peripheral units than can be
supported within the 64-byte location reserved in the Opcode for IN and OUT
instructions. For the Extended I/O space from $60 - $FF in SRAM, only the
ST/STS/STD and LD/LDS/LDD instructions can be used.

The first 4352 Data Memory locations address the Register file, the I/O Memory and the
internal data SRAM. The first 32 locations address the Register file, the next 64
locations address the standard I/O memory, 160 locations of Extended I/O memory, and
then the next 4096 locations address the internal data SRAM.

An optional external data SRAM can be used with the ATmegal28. Refer to the
datasheet for information on how to accomplish this.

The five different addressing modes for the data memory cover: Direct, Indirect with
Displacement, Indirect, Indirect with Pre-decrement, Indirect with Post-increment. In the
General Purpose Register file, registers R26 to R31 feature the indirect addressing pointer
registers (X, Y, Z). See the section on X-, Y-, Z-Registers for more information about
these registers.

The direct addressing reaches the entire data space.

TekBots™ Oregon State University Page 23 of 53

AVR Studio 4 and ATmegal28: A Beginner’s Guide

The Indirect with Displacement mode reaches 63 address locations from the base address
given by the Y- or Z-register.

When using register indirect addressing modes with automatic pre-decrement and post-
decrement, the address registers X, Y, and Z are decremented or incremented.

4.3.3 EEPROM Data Memory

The ATmegal28 contains 4K bytes of data EEPROM memory. The EEPROM memory
is useful in certain applications where modifying the data in the field becomes important.
For the purposes of the class and this document, the EEPROM is not discussed in detail.
For information on the EEPROM, refer to the datasheet for the ATmegal28.

4.4 Starter Code

This section is an AVR program that can be used as a good starting point for any
program. Just copy the program directly into a new project. The code shows a good
coding technique as well as leaves areas for the interrupt vectors. It also gives some of
the basic initialization routines.

;***

Project Name Here

Project Description Here

LR I I S b b b S b I S R I S b b S b S S 2R e S b e S R S b I b R S R S R b b I I I b I 2 A b I 4

Author: Your Name
Lab: Lab Number Here
Date: Enter the date Here

*
*
*
*
*
*
’
*
*
*
*
*
*

LR I S I S b I S b I S I I S b I S I I S R S SR I S S R I S b I S R I S R I S R I S b I S R I b b b S b 4

.include "ml28def.inc" ; Definition file for ATmegal28

e KA A A AR A AR A A A A AR A AR AR KA A AR A AR A AR A AR A AR AR A A A A Ak A Ak A Ak A Ak Ak kA Ak kA k%%
’

;* Program Constants
PR R B I I I I i I I I I I b I e b I I b I e S b I 2 b I b b b 2 b b R b b 2 b b b b b dh i b b i 4 4
4

.equ const =$00 ; Generic Constant Structure

e KA A A AR A AR A A A A AR A AR AR KA A AR A AR A AR A AR A AR AR A A A A Ak A Ak A Ak A Ak Ak kA Ak kA k)%
’

;* Program Variables Definitions
;***

.def mpr =rl6 ; Multipurpose Register

e KA A A AR A AR A AR A AR A AR A AR A AR A AR A AR A AR A AR AR A A A A Ak A Ak A Ak A Ak Ak kA Ak kA k)%
’

;* Interrupt Vectors
;***
.Ccseg
.org $0000 ; Define start of Code segment

rijmp RESET ; Reset Handler

TekBots™ Oregon State University Page 24 of 53

AVR Studio 4 and ATmegal28: A Beginner’s Guide

reti ; IRQ0 Handler

nop

reti ; IRQ1 Handler

nop

reti ; Timer2 Compare Handler

nop

reti ; Timer2 Overflow Handler

nop

reti ; Timerl Capture Handler

nop

reti ; Timerl CompareA Handler

nop

reti ; Timerl CompareB Handler

nop

reti ; Timerl Overflow Handler

nop

reti ; Timer0O Overflow Handler

nop

reti ; SPI Transfer Complete Handler
nop

reti ; USART RX Complete Handler

nop

reti ; UDR Empty Hanlder

nop

reti ; USART TX Complete Handler

nop

reti ; ADC Conversion Complete Handler
nop

reti ; EEPROM Ready Hanlder

nop

reti ; Analog Comparator Handler

nop

reti ; Two-wire Serial Interface Handler
nop

reti ; Store Program Memory Ready Handler
nop

P R S I S b I S b I S I I S I I S I S S S I e S S I S 2R S b e S IR S R Sb b I S b I 2 b I S b 2 R S b S b S 4
’

;* Func: RESET
;* Desc: Reset Handler Routine
;***
RESET:

x Stack Pointer Init *****

1di mpr, LOW(RAMEND)
out SPL, mpr

1di mpr, HIGH (RAMEND)
out SPH, mpr

rjmp MAIN

;***

;* Func: MAIN
;* Desc: Main Entry into program
;***
MAIN:
;< Insert your program Here>

rjmp MAIN ; Loop Indefinitly

TekBots™ Oregon State University Page 25 of 53

AVR Studio 4 and ATmegal28: A Beginner’s Guide

To use the Interrupt Vector, create the Interrupt Handler Routine similar to the RESET
routine. Then replace the NOP instruction for the interrupt and replace it with an RIMP
command to the newly created Interrupt Handler Routine.

TekBots™ Oregon State University Page 26 of 53

AVR Studio 4 and ATmegal28: A Beginner’s Guide

5 AVR Assembly Programming

This section concentrates on the usage of the AVR Instruction Set. This guide will not
cover every single Instruction or all the Assembler Directives. Instead, it will cover the
most basic and commonly used instructions and directives and give techniques on how to
use them efficiently to get the most out of your program. For a detailed list of
instructions, refer to the Atmel’s AVR Instruction Set. It can be found at
http://www.atmel.com/atmel/acrobat/doc0856.pdf. For a complete detailed list of all the
AVR Assembler Directives, refer to Section 4.5 of AVR Assembler. It can be found at
http://www.atmel.com/atmel/acrobat/doc1022.pdf.

5.1 Pre-compiler Directives

Pre-compiler directives are special instructions that are executed before the code is
compiled and directs the compiler. These instructions are denoted by the preceding dot,
i.e. .EQU. The directives are not translated directly into opcodes. Instead, they are used
to adjust the location of the program in memory, define macros, initialize memory, and so
on. The following sections will contain detailed information on the most commonly used
directives. The following table contains an overview of the directives supported by the
AVR Assembler.

Table 5: Pre-Compiler Directives

Directive | Description
.BYTE Reserve byte to a variable
.CSEG Code Segment
.DB Define constant byte(s)
.DEF Define a symbolic name on a register
.DEVICE | Define which device to assemble for
.DSEG Data Segment

.DW Define constant words
.ENDMACRO | End macro
-EQU Set a symbol equal to an expression

.ESEG EEPROM segment
LEXIT Exit from a file
.INCLUDE | Read source from another file
.LIST Turn listfile generation on
.LISTMAC | Turn macro expression on
.MACRO Begin Macro
.NOLIST | Turn listfile generation off
.ORG Set program origin
.SET Set a symbol to an expression

TekBots™ Oregon State University Page 27 of 53

http://www.atmel.com/atmel/acrobat/doc0856.pdf
http://www.atmel.com/atmel/acrobat/doc1022.pdf

AVR Studio 4 and ATmegal28: A Beginner’s Guide

5.1.1 CSEG - Code Segment

The CSEG directive defines the start of a Code Segment. An assembler file can contain
multiple Code Segments, which are concatenated into one Code Segment when
assembled. The directive does not take any parameters.

Syntax:
.CSEG
Example:
.DSEG ; Start Data Segment
vartab: .BYTE 4 ; Reserve 4 bytes in SRAM
.CSEG
const: .DW 2 ; Write 0x0002 in program memory
mov rl, r0 ; Do something

5.1.2 DB - Define constant byte(s)

The DB directive reserves memory resources in the program memory or the EEPROM
memory. In order to be able to refer to the reserved locations, a label should precede the
DB directive.

The DB directive takes a list of expressions, and must contain at least one expression.
The list of expressions is a sequence of expressions, delimited by commas. Each
expression must evaluate to a number between —128 and 255 since each expression is
represented by 8-bits. A negative number will be represented by the 8-bits two’s
complement of the number.

If the DB directive is used in a Code Segment and the expression list contains more than
one expression, the expressions are packed so that two bytes are placed in each program
memory word. If the expression list contains an odd number of expressions, the last
expression will be placed in a program memory word of its own, even if the next line in
the assembly code contains a DB directive.

Syntax:
LABEL: .DB expressionlist
Example:
.CSEG
consts:
.DB 0, 255, 0b01010101, -128, S$SAA
text:

.DB “Hello World”

5.1.3 DEF - Set a symbolic name on a register

The DEF directive allows the registers to be referred to through symbols. A defined
symbol can be used to the rest of the program to refer to the registers it is assigned to. A
register can have several symbolic names attached to it. A symbol can be redefined later
in the program.

Syntax:
.DEF Symbol = Register

TekBots™ Oregon State University Page 28 of 53

AVR Studio 4 and ATmegal28: A Beginner’s Guide

Example:
.DEF temp = R16
.DEF ior = RO

.CSEG
1di temp, SFO ; Load OxFO into temp register
in ior, S$3f ; Read SREG into ior register
eor temp, ior ; Exclusive or temp and ior

5.1.4 EQU - Set a symbol equal to an expression

The EQU directive assigns a value to a label. This label can then be used in later
expressions. A label assigned to a value by the EQU directive is a constant and can not
be changed or redefined.

Syntax:
.EQU label = expression

Example:
.EQU io offset = $23
.EQU porta = io offset + 2
.CSEG
clr r2 ; Clear register 2
out porta, r2 ; Write to Port A

5.1.5 INCLUDE - Include another file

The INCLUDE directive tells the Assembler to start reading from a specified file. The
Assembler then assembles the specified file until the end of file (EOF) or an EXIT
directive is encountered. An include file may itself contain INCLUDE directives.

Syntax:
.INCLUDE “filename”

Example:

iodefs.asm

Status register

Stack pointer high
Stack pointer low
incdemo.asm

Include I/0 definitions
Read status register

.EQU sreg = $3F
.EQU sphigh = $3E
.EQU splow = $3D

.INCLUDE “iodefs.asm”
in r0, sreg

Ne Ne Ne Ne Ne Ne N

5.1.6 ORG - Set program origin

The ORG directive sets the location counter to an absolute value. The value to set is
given as a parameter. If an ORG directive is given within a Code Segment, then it is the
Program memory counter that is set. If the directive is preceded by a label (on the same
source line), the label will be given the value of the parameter. The default value of the
Code location counter is zero when assembling is started. Note that the Program memory
location counter counts words and not bytes.

Syntax:

TekBots™ Oregon State University Page 29 of 53

AVR Studio 4 and ATmegal28: A Beginner’s Guide

.ORG expression
Example:
.CSEG
jmp main ; Jump to the main section of code
.ORG $0042 ; Set location counter to address $0042 to skip the
; interrupt vectors
main: ; Main section of code
mov 10, rl ; Do something

5.2 Expressions

The Assembler incorporates expressions. Expressions can consist of operands, operators
and functions. All expressions are internally 32 bits.

5.2.1 Operands

The following operands can be used:
e User defined labels that are given the value of the location counter at the place they
appear.

e User defined constants defined by the EQU directive.

e Integer constants: constants can be given in several formats, including
a) Decimal (default): 10, 255
b) Hexadecimal (two notations): 0x0a, $0a, Oxff, $ff
¢) Binary: 0b00001010, Ob11111111

e PC — the current value of the Program memory location counter

5.2.2 Functions

The following functions are defined:

e LOW(expression) returns the low byte of an expression
HIGH(expression) returns the high byte of an expression
BYTE2(expression) is the same function as HIGH
BYTE3(expression) returns the third byte of an expression
BYTE4(expression) returns the fourth byte of an expression
LWRD(expression) returns bits 0-15 of an expression
HWRD(expression) returns bits 16-31 of an expression
PAGE(expression) returns bites 16-21 of an expression
EXP2(expression) returns 2" expression
LOG2(expression) returns the integer part of log2(expression)

5.2.3 Operators

The Assembler supports a number of operators that are described in section 4.6.3 of the
AVR Assembler document. These operators can be commonly associated with C/C++
operators. Note that these operations are done only during compilation and cannot be
used in place of the AVR Instructions.

TekBots™ Oregon State University Page 30 of 53

http://www.atmel.com/atmel/acrobat/doc1022.pdf

AVR Studio 4 and ATmegal28: A Beginner’s Guide

5.3 Basic Instructions

Almost all AVR Instructions fall into three categories; Arithmetic and Logic Instructions,
Branch Instructions, and Data Transfer Instructions. This section will not cover every
instruction in the AVR Instruction Set; instead, it will support the AVR Instruction Set
document by expanding on key instructions and their uses.

5.3.1 Common Nomenclature

With the exception of a few instructions, all AVR Assembly Instructions follow a
common nomenclature. There are three parts to every instruction, the Instruction Name,
Argument 1, and Argument 2.

Every AVR Instruction has an instruction name. This name is a unique three or four
letter combination that identifies the instruction; for example, the AVR Instruction the
Loads an Immediate Value has the Instruction Name of LDI.

Also, every instruction may have up to two arguments associated with it. These
arguments follow the Instruction Name and are separated by a comma. When arguments
are used, it is important to note that the result of the command will always be stored in
the first argument. Please note the figure below.

CMD ARG1, ARG2

Instruction Name Argument] Argument2

ARGI1 € CMD(ARGI1, ARG2)

Result of operation

Figure 13: AVR Instruction Nomenclature

5.3.2 Arithmetic and Logic Instructions

The arithmetic and logic instructions make use of the microcontroller’s ALU. Almost all
of the arithmetic and logic instructions consist of a two arguments and can modify all of
the status bits in the SREG. Take note that all of the arithmetic and logic instructions are
8-bit only. The following is a breakdown of the available instructions:

Addition: ADD, ADC, ADIW

Subtraction: SUB, SUBI, SBC, SBCI, SBIW

Logic: AND, ANDI, OR, ORI, EOR

Compliments: COM, NEG

Register Bit Manipulation: SBR, CBR

Register Manipulation: INC, DEC, TST, CLR, SER

e Multiplication': MUL, MULS, MULSU

e Fractional Multiplicationlz FMUL, FMULS, FMULSU

! Multiplication and Division is very limited and restrictive

TekBots™ Oregon State University Page 31 of 53

http://www.atmel.com/atmel/acrobat/doc0856.pdf

AVR Studio 4 and ATmegal28: A Beginner’s Guide

There is a common nomenclature to the naming of the instructions. The following table
explains the nomenclature.

Table 6: Common Instruction Nomenclature

Ending Meaning Description
Letter
C Carry Operation will involve the carry bit
I Immediate Operation involves an immediate value that is passed as the
second argument.
\\ Word The operation is a 16-bit operation.
S Signed The operation handles signed numbers
SU Signed/Unsigned | The operation handles both signed and unsigned.

5.3.3 Branch Instructions

Branch Instructions are used to introduce logical decisions and flow of control within a
program. About 20% of any program consists of branches. A branch instruction is
basically an instruction that can modify the Program Counter (PC) and redirect where the
next instruction is fetched. There are two types of branch instructions, unconditional
branches and conditional branches.

5.3.3.1 Unconditional Branches

Unconditional branches modify the PC directly. These instructions are known as jumps
because they cause the program to “jump” to another location in program memory.
There are several types of jump instructions (RJMP, IJMP, EIJMP, JMP), but the most
common one is the relative jump, RIMP, because it takes the least amount of cycles to
perform and can access the entire memory array.

There are also special unconditional branch instructions known as function calls, or calls
(RCALL, ICALL, EICALL, CALL). The function calls work just like the jump
instructions, except they also push the next address of the PC on to the stack before
making the jump. There is also a corresponding return instruction, RET, that pops the
address from the stack and loads it into the PC. These instructions are used to create
functions in AVR assembly. See Section 5.6 for more details on functions.

5.3.3.2 Conditional Branches

Conditional branches will only modify the PC if the corresponding condition is meant. In
AVR, the condition is determined by looking at the Status Register (SREG) bits. For
example, the Branch Not Equal, BRNE, instruction will look at the Zero Flag (Z) of the
SREG. If Z = 0, then the branch is taken, else the branch is not taken. At first this might
not seem very intuitive, but in AVR, all the comparisons take place before the branch.

There are several things that can modify the SREG bits. Most arithmetic and logic
instructions can modify all of the SREG bits. But what are more commonly used is the
compare instructions, (CP, CPC, CPI, CPSE). The compare instructions will subtract the

TekBots™ Oregon State University Page 32 of 53

AVR Studio 4 and ATmegal28: A Beginner’s Guide

two corresponding registers in order to modify the SREG. The result of this subtraction
is not stored back to the first argument. With this in mind, take a look at BRNE again. If
the values in two register are equal when they are subtracted, then the resulting value
would be zero and then Z = 1. If they were not equal then Z would be 0. Now when
BRNE is called, the Z bit can determine the condition. Section 5.5 shows several
examples of how to use this process. The following table gives a nice quick summary of
all conditional tests, the corresponding instruction, and what bits in SREG are
manipulated to determine the condition.

Table 7: Conditional Branch Summary

Test Boolean Mnemonic | Complementary | Boolean Mnemonic [Comment
Rd > Rr | Ze(N®V)=0 BRLT" Rd < Rr Z+(N@V)=1 BRGE Signed
Rd>Rr | (N®&V)=0 BRGE Rd <Rr (NeV) =1 BRLT Signed
Rd=Rr | Z=1 BREQ Rd = Rr Z=0 BRNE Signed
Rd<Rr [z+(N@V)=1 BRGE"” |[Rd>Rr Zo(N®V)=0 BRLT Signed
Rd<Rr | (N@V) =1 BRLT Rd > Rr (NeV)=0 BRGE Signed
Rd>Rr [C+Z=0 BRLO™ Rd <Rr C+Z=1 BRSH Unsigned
Rd>Rr |C=0 BRSH/BRCC | Rd <Rr Cc=1 BRLO/BRCS | Unsigned
Rd=Rr | Z=1 BREQ Rd = Rr Z=0 BRNE Unsigned
Rd<Rr |C+Z=1 BRSH" Rd > Rr C+Z=0 BRLO Unsigned
Rd<Rr | C=1 BRLO/BRCS | Rd > Rr C=0 BRSH/BRCC | Unsigned
Carry C=1 BRCS No carry C=0 BRCC Simple
Negative | N =1 BRMI Positive N=0 BRPL Simple
Overflow [V =1 BRVS No overflow V=0 BRVC Simple
Zero Z=1 BREQ Not zero Z=0 BRNE Simple
Note: 1. Interchange Rd and Rr in the operation before the test, i.e., CP Rd,Rr — CP Rr,Rd

Additionally, conditional branches include the skip instructions (SBRC, SBRS, SBIC,
SBIS). These instructions will skip the next instruction if the condition is meant. These
can be very useful in determining whether or not to call a function. Note that the skip
instructions are limited to only bit testing on registers or specific areas in IO Memory.

5.3.4 Data Transfer Instructions

The majority of instructions in any assembly language program are data transfer
instructions. These instructions essentially move data from one area in memory to
another. As easy as this concept seems, it can quickly become very complicated and
overwhelming. For example, the AVR Instructions Set supports five different addressing
modes: Immediate, Direct, Indirect, Indirect with Pre-Decrement, Indirect with Post-
Increment, and Indirect with Displacement. But each of these modes can be broken down
into comprehensible sections.

5.3.4.1 Immediate Addressing

Immediate addressing is simply a way to move a constant value into a register. Only one
instruction supports immediate addressing, LDI. Also note that this instruction will only
work on the upper 16 General Purpose Registers, R16 — R31. The following is an
example of when LDI would be used. Suppose there was a loop that needed to be looped

TekBots™ Oregon State University Page 33 of 53

AVR Studio 4 and ATmegal28: A Beginner’s Guide

16 times. Well, a counter register could be loaded with the value 16 and then
decremented after each loop. When the register reached zero, then the program will exit
from the loop. Since the value 16 is a constant, we can load into the counter register by
immediate addressing. The following code demonstrates this example.

.def counter = r22 ; Create a register variable
1di counter, 16 Load the immediate value 16 in counter
Loop: breg Exit If zero, exit loop

Ne Ne Ne Ne NeoNe N

adc r0, rl Do something
dec counter Decrement the counter
rjmp Loop Redo the loop

Exit: inc r0 Continue on with program

5.3.4.2 Direct Addressing

Direct addressing is the simplest way of moving data from one area of memory to
another. Direct addressing requires only the address to access the data. But it is limited to
the use of the register file. For example, if you wanted to move a byte of data from one
area in Data Memory to another area in Data Memory, you must first Load the data a
register and then Store the data into the other area of memory. In general, every data
manipulation instruction, except LDI, comes in a Load and Store pair. For Direct
Addressing modes, the instruction pairs are LDS/STS and IN/OUT.

The point of having multiple instruction pairs is to access different areas of memory.
e LDS/STS — Move data in and out of the entire range of the SRAM Data Memory
e IN/OUT — Move data in and out of the IO Memory or $0020 - $005F of the SRAM
Data Memory. IN/OUT takes less instruction cycles than LDS/STS does.

The following is an example loop that continually increments the data value at a
particular address.

.equ addr = $14DO
Loop: lds r0, addr
inc r0
sts addr, rO0

rijmp Loop

Address of data to be manipulated
Load data to RO from memory
Increment RO

Store data back to memory

Jump back to loop

Ne Ne Ne Ne N

5.3.5 Bit and Bit-test Instructions

Bit and Bit-test Instructions are instructions that manipulate or test the individual bits
within an 8-bit register. There are three types of Bit and Bit-testing instructions; Shift and
Rotate, Bit Manipulation, and SREG Manipulation.

5.3.5.1 Shift and Rotate

Shifting a register literally means shifting every bit one spot to either the left or the right.
The AVR Instruction set specifies register shifts as two types of instructions, shifts and
rotates. Shifting will just shift the last bit out to carry bit and shift in a 0 to the first bit.
Rotating will shift out the last bit to the carry bit and shift in the carry bit to the first bit.
Therefore rotating a register will not loose any bit data while shifting a register will loose

TekBots™ Oregon State University Page 34 of 53

AVR Studio 4 and ATmegal28: A Beginner’s Guide

the last bit. The instruction mnemonics are LSL, LSR, ROL, and ROR for Logical Shift
Left, Logical Shift Right, Rotate Left Through Carry, and Rotate Right Through Carry
respectively.

There are also some special Shifting Instructions, Arithmetic Shift Right (ASR) and
Swap Nibbles (SWAP). Arithmetic Shift Right behaves like a Logical Shift Right except
it does not shift out to the carry bit. Instead, ASR, will right shift anywhere from 1 to 7
spaces. Swap Nibbles will swap the upper and lower 4-bits with each other.

5.3.5.2 Bit Manipulation

Bit Manipulation Instructions allow the programmer to manipulate individual bits within
a register by setting, or making the value 1, and clearing, or making the value 0, the
individual bits. There are three instruction pairs to manipulate the SREG, an I/O
Register, or a General Purpose Register through the T flag in the SREG. BSET and
BCLR will set and clear respectively any bit within the SREG register. SBI and CBI will
set and clear any bit in any I/O register. BST will store any bit in any General Purpose
Register to the T flag in the SREG and BLD will load the value of the T flag in the SREG
to any bit in any General Purpose Register.

5.3.5.3 SREG Manipulation

Although the instructions SBI and CBI will allow a programmer to set and clear any bit
in the SREG, there are additional instructions that will set and clear specific bits within
the SREG. This is useful for when the programmer does not want to keep track of which
bit in the SREG is for what. The following table shows the mnemonics for each set and
clear instruction pair are in the table below.

Table 8: SREG Bit Manipulation Instructions

Bit | Bit Name Set Bit | Clear Bit
C | Carry Bit SEC CLC

N | Negative Flag SEN CLN

Z | Zero Flag SEZ CLZ

I | Global Interrupt Flag SEI CLI

S | Signed Test Flag SES CLS

V | Two’s Complement OVF Flag SEV CLV

T | T Flag SET CLT

H | Half Carry Flag SEH CLH

TekBots™ Oregon State University Page 35 of 53

AVR Studio 4 and ATmegal28: A Beginner’s Guide

5.4 Coding Techniques

This section contains general hints and tips to produce well-structured code that can be
easily debugged and save a lot of time and headaches.

5.4.1 Structure

It is important to create and maintain a consistent code structure throughout the program.
Assembly Language in general can be greatly confusing; a well-structured program will
ease this confusion and make the program very readable to yourself and other people.
Spending several hours trying to find a specific problem area in a piece of code can
become quite frustrating.

So what does a well-structured program look like? Structure includes everything that is
typed in the program, where certain parts of the program are located, how an instruction
looks within a line, etc. There are several ways to write out the code on the ‘paper’, but
the most important part is to be consistent. If you start writing your code in one fashion,
maintain that fashion through out the remainder of the program. Varying between
different ‘styles’ can be quite confusing and make the code unreadable.

The one style that I recommend is using the four-column method. If this style is used
consistently throughout the program, the program should look like four columns. A
column is usually separated with one or two tabs depending on how long the data strings
are. In general, the following table describes what goes into each column, the tab lengths
and exception rules.

Table 9: Line Formatting Rules

Column | Tab | Includes Comments
Length
1 1 Pre-compiler e If a label is longer than one tab length,
Directives, Labels then the instruction mnemonic goes on the
next line.

e No instructions must be placed on the
same line as a pre-compiler directive.

2 1 Directive e It is common for Directive Parameters to
Parameters, exceed one tab length.
Instruction
Mnemonic

3 2 Instruction e If Instruction Parameters exceed two tab
Parameters lengths, then place the comment on the

previous line.

TekBots™ Oregon State University Page 36 of 53

AVR Studio 4 and ATmegal28: A Beginner’s Guide

Comments

e Comments should only be used in the
fourth column, which is roughly four tab
lengths from the start of the line.

e Unless the code is blatantly obvious,
place a comment on every line of code.

e Exceptions are Header Comments, they
must start at the beginning of the line

The following is an example of well-formatted code using the rules from Table 9: Line
Formatting Rules.

; Title: XOR Block of Data
; Author: David Zier
; Date: March 16, 2003
.include “ml28def.inc” Include definition file
.def tmp = rlb Temporary Register
.def =xor = ré6 XOR Register
.equ addrl = $1500 Beginning Address
.equ addr2 = $2000 Ending Address
This code segment will XOR all the
bytes of data between the two address
ranges.
.org $0000 Set the program starting address
INIT: 1di XL, low(addrl) Load low byte of start address in X
1di XH, high(addrl) Load high byte of start address in X
FETCH: Code won’t fit, create a new line
1d tmp, X+ Load data from address into tmp
eor Xor, tmp XOR tmp with xor register, store in xor
cpi XL, low(addr2) Compare high byte of X with End Address
brne FETCH If low byte is not equal, then get next
cpi XH, high(addr2) Compare low byte of X with End Address
brne FETCH If high byte is not equal then get next
DONE: rjmp DONE Infinite done loop

The next part to proper code structure is code placement. Certain sections of code should
be placed in certain areas. This alleviates confusion and allows the contents to be ordered
and navigable. The following table illustrates the order in which certain code segments
are to be placed.

TekBots™ Oregon State University Page 37 of 53

AVR Studio 4 and ATmegal28: A Beginner’s Guide

Table 10: Code Structure

Header Comments Title, Author, Date, and Description
Definition Includes Specific Device Definition Includes, 1.e.
“m128def.inc”
Register Renaming Register renaming and variable creation, i.e. .def
tmp =10
Constant Constant declarations and creation, i.e. .equ addr =
Declaration $2000
Interrupt Vectors See Section 4.2 Interrupt Vectors
Initialization Code Any initialization code goes here
Main Code The heart of the program.
Subroutines Any subroutine that is created follows the main code.
ISRs Any Interrupt Subroutines will go here.
Data Any hard coded data is best placed here, i.e. .DB
“hello”
Additional Code Finally, if there is any additional source code
Includes includes, will go last.

By following these simple structure rules, the code will be more readable and
understandable.

5.4.2 Register Naming

Register naming is an important part to any program. It alleviates confusion and makes
the code more readable, thus it will be easier to debug. The main purpose to renaming a
register is to assign a register as a specific variable type. For example, if I wanting a
temporary register that I would use through out the program to hold one-shot data, I
would name the register “tmp”. If I was righting a program that executed a complex
arithmetic routine, I might want a variable to store the result, so I name a register “res”.

The reason you would rename a register is to alleviate confusion. If I just used the
regular register names (10, rl, r2, etc.), I could easily get confused as to what each
register was used for. Was r0 the register to hold the result or was r13? As the program
grows more complex, this can easily be the case.

Register names should be short but descriptive and unique. Short names fit well into the
four-column formatting scheme. Names should be no longer the six letters, but on
average, be 3 letters in length. For example, “tmp” for temporary, “res” for result,
“addr]” for address low byte, or “cnt” for count. Make the names as descriptive as

TekBots™ Oregon State University Page 38 of 53

AVR Studio 4 and ATmegal28: A Beginner’s Guide

possible. Using a register named “tmp” that always holds the value to be compared is not
good; a better name might be “cmp” for compare. And finally, the name must be unique.
Don’t name several registers “tmpl1”, “tmp2”, and “tmp3”. This is no better than using
rl, 12, and r3. In fact it is worse, because you have to type more letters. If there is ever
situations where multiple temporary register are to be used, make them unique. An
example might be “otmp” and “itmp” for outer loop temporary and inner loop temporary
respectively.

Proper register naming will make coding easier, so it is a good idea to get in the habit.
Also, bad register naming can make code much more difficult to work with. In general, a
segment of code that using register renaming can be easily understandable, even without
the comments.

5.4.3 Constants and Addressing

Like register renaming, constant names should be short, descriptive, and unique. So
when does one use a constant? If you ever find your self repeatedly using the same
constant value over and over again, then a constant is needed. Constants are beneficial in
two ways; one, they make the code more readable and thus more easy to debug, and two,
allow you change the behavior of the program by adjusting the constant numbers in the
beginning of the code.

If there were no constants, a programmer might have to search through the entire code to
see particular value was and change, maybe even multiple times. With constants, this
requires only one edit and no searching each time the programmer wants to change a
value.

Common uses of constants are with set addresses. One thing to note is that addresses are
16-bits and registers are 8-bits. This means that you must deal with addresses as low and
high bytes. There are several things to be concerned with here. First, when comparing
addresses always compare both the low and the high bytes, even if the high byte doesn’t
change. It is very possible, that by the time the program is finished, the high byte might
change and since it was not compared, the program does not function properly. Next, the
programmer would need to consider how to use and access a 16-bit constant. The
following code is one example of how to access the address $23D4.

.equ addrl = $D4 ; Low byte of address

.equ addrh = $23 ; High byte of address
1di XL, addrl ; Load low byte of address
1di XH, addrh ; Load high byte of address

This will works, but it is not a good method for accessing the low and high bytes. Below
is a better and much preferred method.

.equ addr = $23D4 ; The address
1di XL, low(addr) ; The low byte of the address
1di XH, high (addr) ; The high byte of the address

TekBots™ Oregon State University Page 39 of 53

AVR Studio 4 and ATmegal28: A Beginner’s Guide

This is better because now you can see the address in its entirety. The previous method
split the address into two separate byte constants, which can become confusing when
changing the address. For example, what if I wanted to have another address constant
and I put it as high then low. I might get confused and enter the wrong byte of the
address because it is not consistent with the previous method. By putting the entire
address, you can easily read or edit the address. Additionally, inserting another address
will not be confusing since it is consistent. We later use the high() and low() macros to
access the high and low bytes.

It is a good idea to name every constant that you use within your code. It is quick, easy,
and saves you a lot of time when coding and debugging. It is definitely more beneficial
for you to use constants than to not.

5.4.4 ATMega128 Definition File

A definition file is a file that contains addresses and values for common I/O registers and
special registers within a specific chipset. For example, every ATMEL AVR chipset
contains an SREG, but not every chipset has the SREG in the same memory location.
This is where the definition file comes in. Just write your code with the common name
for the I/O register such as SREG or SPH, and then include the definition file in the
beginning of you code. This does two things, first, the programmer doesn’t have to look
up or memorize the address for each to the I/O register or chip specific registers and
second, the same code can be used for different chipset by just including the proper
definition file.

Since this document mostly concentrates on the ATMegal28, we use the definition file so
that we don’t have to look up the address for specific I/O registers. The definition file is
for the ATMegal28 is m128def.inc. It contains a lot of .equ and a few .def expressions.
The file also contains useful information such as the last address in SRAM (RAMEND).
It is included with AVR Studio4 when you download and install the program.

5.5 Flow of Control

This section will contain several examples of C-like flow of control expressions and how
to code the same thing in AVR Assembly. These flow of control examples will show the
proper way to use a branch instruction and more importantly, what a branch instruction is
used for.

5.5.1 IF Statement

This is probably the most simplest and straightforward control statement in program. In
C, the IF statement is commonly seen as:

if (expr)
statement

If expr is nonzero (true), then statement is executed; otherwise statement is skipped, and
control passes to the next statement. This is true for assembly as well. For example, the
following C-code.

TekBots™ Oregon State University Page 40 of 53

AVR Studio 4 and ATmegal28: A Beginner’s Guide

if
{

(n >= 3)

expr++;
n expr;

Here is the equivalent version in assembly.

.def n = r0
.def expr = rl
.equ cmp = 3
cpi n, cmp ;
IF: brsh EXEC ;
rjmp NEXT ;
EXEC: inc expr ;
mov n, expr ;
NEXT: ... ;

Compare value

If n >= 3 then branch to NEXT

Jump to NEXT since expression is false
increment expr

Set n expr

continue on with code

Although this code behaves like the C-code, it is not optimal. By simply using the
complementary Boolean Expression, you can save space and speed up the program.

.def n = r0
.def expr = rl
.equ cmp = 3
cpi n, cmp ;
IF: brlo NEXT ;
inc expr ;
mov n, expr ;
NEXT: ... ;

This statement behaves exactly the same but uses one less branch statement and one less

Compare value

If n > 3 is false then skip code
increment expr

Set n expr

Continue on with code

line of code. And more importantly, is easier to read and understand.

5.5.2 IF-ELSE Statement

This is very similar to the IF statement, except it has an additional unconditional else
statement. This is not too hard to implement. Here is an example C-Code.

if (n

else

And here is the equivalent code in AVR Assembly.

TekBots™

Oregon State University

Page 41 of 53

AVR Studio 4 and ATmegal28: A Beginner’s Guide

.def n = r0
.def expr =rl
.equ cmp = 5

cpi n, cmp ; Compare value

breq IF ; Branch to IF if the n == 3

rijmp ELSE ; Branch to ELSE if the expression is false
IF: inc expr ; Increment expression

rjmp NEXT ; Goto NEXT
ELSE: mov n, expr ; Set n = expr
NEXT: ... ; Continue on with code

We can make this more efficient if we use the complimentary Boolean expression.

.def n = r0
.def expr = rl

.equ cmp = 5
cpi n, cmp ; Compare value

IF: brne ELSE ; Goto ELSE statement since expression is false
inc expr ; Execute the IF statement
rjmp NEXT ; Continue on with code

ELSE: mov n, expr ; Execute the ELSE statement

NEXT: ... ; Continue on with code

Again, this code has one less branch statement and one less instruction. Although this
does not seem like much now, but if this were nested within a loop that looped 100 times,
then it is essentially 100 less instructions to be executed.

5.5.3 IF-ELSIF-ELSE Statement
This is simply a nested mix of the IF and IF-ELSE statements. A C example would be:

if (n < 3)
expr++;
else if (n == 5)
n = expr;
else
n++;

Here is how to logically convert it into assembly.

.def n = r0

.def expr =rl
.equ vall
.equ val2 =5

Il
w

cpi n, vall ; Compare n with vall
brlo IF ; If n < 3, then execute if
rjmp ELIF ; Goto ELSEIF Expression
IF: inc expr ; Execute if statement
rjmp NEXT ; Goto Next
ELIF: cpi n, val2 ; Compare n with val2
breg ELIE ; If n == 5, then execute ELSEIF statement

TekBots™ Oregon State University Page 42 of 53

AVR Studio 4 and ATmegal28: A Beginner’s Guide

rijmp ELSE ; Goto ELSE statement
ELIE: mov n, expr ; Execute ELSEIF statement
rjmp NEXT ; Goto Next
ELSE: inc n ; Execute ELSE statement
NEXT: ... ; Continue on with code

This seems a little complicated and confusing. By changing the Boolean expressions, the
code can be optimized and less confusing.

.def n = r0

.def expr =rl
.equ vall = 3
.equ val2 =5

cpi n, vall ; Compare n with vall

IF: brsh ELIF ; If is not n < 3, then goto ELSEIF expression
inc expr ; Execute if statement
rjmp NEXT ; Goto Next

ELIF: cpi n, val2 ; Compare n with val2
brne ELSE ; If is not n == 5, then goto ELSE expression
mov n, expr ; Execute ELSEIF statement
rjmp NEXT ; Goto Next

ELSE: inc n ; Execute ELSE statement

NEXT: ... ; Continue on with code

This optimized code has two less instructions and two less branches. In addition, it is
easier to read and understand.

5.5.4 WHILE Statement

The WHILE statement is commonly used to create repetitive loops. In fact, it is common
to use an infinite while loop to end a program. Consider a construction of the form:

while (expr)
sStatement
next statement

First expr is evaluated, if it is nonzero (true), the statement is executed, and control is
passed back to the beginning of the WHILE loop. The effect of this is that the body of
the WHILE loop, namely the statement, is executed repeatedly until expr is zero (false).
At that point control passes to next statement. An example is:

while (n < 10) {
sum += n;
n++;

In assembly, WHILE loops can be created pretty easily. Here is the equivalent assembly
code:

.def n = r0
.def sum = r3
.equ limit = 10

TekBots™ Oregon State University Page 43 of 53

AVR Studio 4 and ATmegal28: A Beginner’s Guide

WHIL:
WHEX:

NEXT:

cpi
brlo
rijmp
add
inc
rjmp

n, limit
WHEX
NEXT
sum, n

n

WHIL

Compare n with limit

When n < limit, goto WHEX

Condition is not meet, continue with program
sum += n

n++

Go back to beginning of WHILE loop

Continue on with code

This code can also be optimized as follows:

.def
.def
.equ

WHIL:

NEXT:

n = r0
sum =
limit

cpi
brsh
add
inc
rjmp

r3
=10

n, limit
NEXT
sum, n

n

WHIL

Compare n with limit

When not n < limit, goto NEXT
sum += n
n++

Go back to beginning of WHILE loop
Continue on with code

By converting the BRLO to BRSH, we where able to remove one of the branch
instructions and make the code look more like a WHILE loop.

5.5.5 DO Statement

The DO statement can be considered a variant of the WHILE statement. Instead of
making its test at the top of the loop, it makes it at the bottom. The following is an
example:

do {
sum += n;
n--;

} while (n > 0);

The assembly code for the DO statement is also very similar to the WHILE statement.

.def n = r0
.def sum = r3
.equ limit = 0
DO: add sum, n ; sum += n
dec n n++
cpi n, limit compare n to limit
brne DO since n is unsigned, brne is same expr
NEXT : Continue on with code

As you can see, a DO statement provides better performance over the optimized WHILE
statement. But even this function can be optimized.

.def n = r0
.def sum = r3

TekBots™ Oregon State University Page 44 of 53

AVR Studio 4 and ATmegal28: A Beginner’s Guide

.equ limit = 0

DO: add sum, n

; sum += n
dec n ; n++
brne DO ; since n 1is unsigned, brne is same expr
NEXT: ; Continue on with code

Although the optimization does not affect the performance of the DO statement in
general, it did for this case. Since DEC is called before the BRNE instruction, the CPI
instruction is not needed. The CPI instruction forces the specific bits in the SREG to
occur that are needed by the branching instructions. In this case, the DEC instruction will
work as well. For example, when the DEC instruction decrements the » value and n
becomes zero, then the Zero Flag in the SREG is set. This is the only bit that is checked
by the BRNE command. Thus we can completely remove the CPI instruction.

5.5.6 FOR Statement

The FOR statement, like the WHILE statement, is used to execute code iteratively. We
can explain its action in terms of the WHILE statement. The construction

for (exprl; expr2; expr3)
statement
next statement

is semantically equivalent to

exprl;

while (expr2) {
Statement
expr3;

}

next statement

provided that expr2 is present. FOR loops are commonly used to run through a set of
data. For example, the following is some code that iterates 10 times.

for (n = 0; n < 10; n++)
sum += n;

The following assembly is the equivalent of the C code.

.def n = r0
.def sum = r3

.equ max = 10

1di n, O ; Initialize n to O
FOR: cpi n, max ; Compare n to max value

brlo EXEC ; If n < max, the goto EXEC

rjmp NEXT ; Statement is false, break out of FOR loop
EXEC: add sum, n ; sum += n

inc n ; decrement n

rjmp FOR ; goto the start of FOR loop

TekBots™ Oregon State University Page 45 of 53

AVR Studio 4 and ATmegal28: A Beginner’s Guide

NEXT: ... ; rest of code

There are several things to do to optimize this code, first, use a DO loop instead of a
WHILE loop. Next use the complemented form of the expression. And lastly, initialize
the variable » to max and decrement it. This will allow use to use the SREG technique
from Section 5.5.5.

.def n = r0
.def sum = r3

.equ max = 10

1di n, max ; Initialize n to max
FOR: add sum, n ; sum += n

dec n ; decrement n

brne FOR ; repeat loop if n does not equal 0
NEXT : ; rest of code

This removed seven instructions and two branches. In addition, the code is simpler and
easier to read. And more importantly, it has the same functionality as the C code. This is
also a good example of why to name constants. If we wanted the FOR loop to loop 25
times, then all we would have to do is change the max constant from 10 to 25. No sweat!

5.5.7 SWITCH Statement

The SWITCH statement is a multiway conditional statement generalizing the IF-ELSE
statement. The following is a typical example of a SWITCH statement:

switch (val) {
case 1:
a_cnt++;
break;
case 2:
case 3:
b cnt++;
break;
default:
c_cnt++;

}

The case statement is probably the most complicated to write in assembly. Here is the
logical form for the above C code example.

.def wval = r0
.def a cnt = rb
.def b cnt = r6

.def ¢ cnt = r7
SWITCH: ; The beginning of the SWITCH statement
cpi val, 1 ; Compare val to 1
breg S 1 ; Branch to s 1 if val == 1
cpi val, 2 ; Compare val to 2
breq S 3 ; Branch to s 3 if val == 2

cpi vgl, 3 Compare val to 3

TekBots™ Oregon State University Page 46 of 53

AVR Studio 4 and ATmegal28: A Beginner’s Guide

breg S 3 ; Branch to S 3 if val ==
inc c_cnt ; Execute Default
rjmp NEXT ; Break out of switch
S 1: inc a cnt ; Execute case 1
rimp NEXT ; Break out of switch
S 3: inc b _cnt ; Execute case 2
NEXT: ... ; The rest of the code

This is the general idea, although some might even nest the execution within condition
expressions to make it more logically correct. Yet, using the complementary Boolean
expression can optimize this code segment. (Do you a similar pattern yet!)

.def wval = r0

.def a cnt = rb
.def b cnt = r6
.def ¢ cnt = r7

SWITCH: ; The beginning of the SWITCH statement

S 1: cpi val, 1 ; Compare val to 1
brne S 2 ; Branch to s 2 if val !=1
inc a cnt ; Execute case 1
rimp NEXT ; Break out of switch

S 2: cpi val, 2 ; Compare val to 2
brne S 3 ; Branch to s 3 if val != 2
inc b _cnt ; Execute case 2
rjmp NEXT ; Break out of switch

S 3: cpi val, 3 ; Compare val to 3
brne DFLT ; Branch to DFLT if wval != 3
inc b _cnt ; Execute case 3
rijmp NEXT ; Break out of switch

DFLT: inc c _cnt ; Execute default

NEXT: ... ; The rest of the code

Believe it or not, this code actually has better optimization than the former. In the
former, any given case statement will have to go through two branches before it is
executed. In the optimized version, it will only have to go through one branch. If you
take a look at the worse case scenario, there are fewer jumps to get to the default
statement as well. Therefore this is the optimal code, even though there are more
instructions.

5.6 Functions and Subroutines

AVR Assembly language has the ability create and execute functions and subroutines.
By simply using a subroutine or a function, a programmer can drastically reduce the size
and complexity of the code. Because of the importance, this topic is given its own
subsection. This section will cover the general topics of functions and subroutines,
included how to create one, when to create one, and how to use one.

5.6.1 Definitions

A function or a subroutine can generally be thought as “reusable code”. Reusable code is
any segment of code that can be used over and over through out the program without

TekBots™ Oregon State University Page 47 of 53

AVR Studio 4 and ATmegal28: A Beginner’s Guide

duplicity or two copies of the same code. You can think of functions and subroutines as
they are implemented in a C program. The function is created outside of the main
program and then is later called within the main program, sometimes in multiple areas.

Reusable code within an assembly program can be thought of as either a function or a
subroutine. Both are very similar in terms of how they are implemented, but have subtle
differences.

A subroutine is a reusable piece of code that requires no input from the main program.
Generally, the state of the program is saved upon entering the subroutine and is restored
before leaving the subroutine. This is perfect for when servicing interrupts.

A function, on the other hand, is involved within the main code and requires some
interaction. This usually means that some registers or other memory has to be initialized
before the function is called. In addition, a function will most likely alter the state of the
program.

In general, a subroutine must not alter the state of a running program and no care must be
taken to ensure the proper operation of a subroutine. For a function, the main program
must initialize data for the function to work properly and must be able to handle any
changes caused by the function.

5.6.2 Operational Overview

A subroutine or function is called via the CALL, RCALL, ICALL, or EICALL
instructions and is matched with an RET instruction to return to the instruction address
after the call. The function or subroutine is preceded by a label that signifies the name of
function or subroutine. When a CALL instruction is implement, the processor first
pushes the address of the next instruction after the CALL instruction onto the stack. This
is important to realize since it means that the stack must be initialized before functions or
subroutines can be used. The CALL instruction will then jump to the address specified
by label used as the parameter. The next instruction to be executed will then be the first
instruction with the subroutine or function. Upon exiting the subroutine or function, the
return instruction, RET, must be called. The RET instruction will then pop the address of
the next instruction after the CALL instruction from the stack and load into the PC. Thus
the next instruction to be executed is the instruction after the CALL instruction.

It is important to keep track of what is pushed and popped on the stack. If within a
subroutine or function, data is not popped correctly, the RET instruction can pop the
wrong data values for the address and thus the program will not function correctly.
Additionally, never exit a subroutine or function via another jump instruction other than
RET. Doing so will cause the data in the stack to never be popped and thus the stack will
become out of sink.

So when does a programmer decide to create a subroutine or function? This can often be
a tough call and can get really complicated. The general rule of thumb is that a
subroutine or function is needed when the programmer finds that the same segment of

TekBots™ Oregon State University Page 48 of 53

AVR Studio 4 and ATmegal28: A Beginner’s Guide

code is being written in several places within the program. This can be very troublesome
since an error within the code segment result in several hours of work trying to fix every
instance of the code segment. On the other hand, if the program were to use a function or
subroutine, the fixing the code is easy since there is only one instance and it is in a
common location.

5.6.3 Implementation

In the last section, we briefly talked about how a function or a subroutine works. This
section will give detailed explanations on how to implement both the function and the
subroutine.

5.6.3.1 Setup

The first thing to do for any function and subroutine is to initialize the stack. This can be
done in four lines of code at the beginning of the program. Optimally, the stack should
be initialized for any program. Here is the code:

.include “ml28def.inc”
INIT: Initial the stack pointer

Load the lo byte of the ram’s end addr
Set the Stack Pointer Low register
Load the hi byte of the ram’s end addr
Set the Stack Pointer High register

1di rl6, low (RAMEND)
out SPL, rlé6
1di rl6, high (RAMEND)
out SPH, rlo

Ne Ne Ne Ne N

After this point, any function or subroutine will correctly in regards to the stack.

5.6.3.2 Subroutine Implementation

The subroutine does not require any outside influence for its performance. Therefore it is
a good idea to save the state of the program before executing the subroutine. This means
that certain registers must be pushed to the stack in the beginning of the subroutine and
popped just before the subroutine ends. It is important to remember to pop registers in
reverse order from which they where pushed. These registers include the SREG
(essentially the state of the program) and any general purpose registers that are used
throughout subroutine.

A good example of a routine is a wait loop that will wait for a specific amount of time.
For our case, we will want the wait subroutine to wait for 1000 cycles (not including the
subroutine overhead cycles.)

.def ocnt = rlé6 ; Outer loop count variable
.def icnt = rl7 Inner loop count variable
WAIT: Wait subroutine

push icnt Save icnt register

push ocnt Save ocnt register

in ocnt, SREG Get the SREG value

push ocnt Save the value of the SREG

1di ocnt, 55 Loop outer loop 55 times
WTL1l: 1di icnt, 5 Loop inner loop 5 times
WTL2: dec icnt Decrement inner loop counter

Ne Ne Ne Ne Ne Ne N Ne Neo N

TekBots™ Oregon State University Page 49 of 53

AVR Studio 4 and ATmegal28: A Beginner’s Guide

brne WTL2
dec ocnt
brne WTL1
1di ocnt, 3
WTL3: dec ocnt
brne WTL3
nop
pop ocnt
out SREG, ocnt
pop ocnt
pop icnt
ret

Continue through inner loop
Decrement outer loop counter
Continue through outer loop

This next loop just uses 9 cycles
that is need for the 1000 cycles
Repeat last loop 3 times

We still come up 1 cycle short
Get the SREG value

Restore the value of the SREG
Restore ocnt register

Restore icnt register

Return from subroutine

Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne o~

We are going to stray off topic for a second to discuss this code. From the time first LDI
instruction is called to the last NOP, there are exactly 1000 cycles of execution. To
calculate this, you must take into consideration the number of cycles it takes to execute
each instruction. With the exception of the branches, every instruction takes one cycle.
The branches take 1 cycle if false and 2 cycles if true. With this in mind, the main loop
follows the equation ((3*icnt + 3)*ocnt . The optimal values for icnt and ocnt are 5 and
55 respectively. This yields the total number of cycles for the main to be 990 cycles.
This is unfortunately 10 cycles short of our goal. We could just shove 10 consecutive
NOPs at the end, but instead opted for a second small loop. This second loop follows the
equation 3*ocnt and with a value of ocnt being 3 yields 9 cycles. Therefore, with the
addition of a single NOP instruction, our total number of cycles is 1000 cycles.

Now back to the topic of subroutines. As you can see in the example code, the very first
thing we do is push the SREG to the stack. Additionally, we also push the registers icnt
and ocnt since they are used within the subroutine. We then execute the main subroutine
code. This followed up by popping the data from the stack in the reverse order that it is
pushed. And finally, we leave the subroutine with the RET instruction. Another item to
notice is that PUSH and POP only deal with the general-purpose registers. Therefore, if
we wanted to push an I/O Register, such as the SREG, we must first load it into a
general-purpose register. Since we were already using the ocnt register within the
subroutine, we used it to temporarily hold the SREG value. We made sure the ocnt
register was first pushed to the stack so that we didn’t loose any data that might have
been there.

So now how does a programmer use a subroutine once it has been created? Well, this is
easier than it sounds. Since a label precedes the subroutine, we can just make a call to the
label with one of the CALL instructions.

MAIN: 1di rlo, 4

LOOP: rcall WAIT
dec rl6
brne LOOP

Set rl6e to 4

Call our WAIT routine

Decrement rl6

Call the wait statement 4 times
Additional code

Call our WAIT routine

Even more code

Program complete

rcall WAIT

Ne Ne Ne Ne Ne Ne o Ne N

DONE: rijmp DONE

TekBots™ Oregon State University Page 50 of 53

AVR Studio 4 and ATmegal28: A Beginner’s Guide

As you can see, this program will call the WAIT routine in several places. Now if the
routine did not exist, then we would have to write all that code twice in several places.
While this is not hard with modern technologies such as cut and paste, the might still
initially be incorrect. This means that we now have to search through the rest of the code
and this can quickly become a headache. By now, you should be able to understand how
subroutines can make your programming experience better.

5.6.3.3 Function Implementation

A function is a bit different from a subroutine in the fact that it alters the state of the
program. Unlike the subroutine, the function will most likely need to be initialized prior
to the function call. This is how to create input to a function. Also the function will most
likely modify some registers to provide output. With the exceptions of the input and
output, a function behaves just like a routine. Any registers that used within a function
but do not correspond to any input or output, must still be pushed and popped from the
stack.

We will use a common example of a function that takes two 8-bit numbers and multiplies
them together. Since an 8-bit multiplication results in a 16-bit number, the result will be
stored in the same registers that were used for the input. The two input registers are the
multiplier (mplr) and the multiplicand (mplc). The high byte of the result will be stored
in mplr and the low byte will be stored in the mplc. The basic multiplication algorithm
will be to repeatedly add the multiplicand to itself for the amount specified in the
multiplicand. So here is the function.

.def mplr = rl8 ; The multiplier
.def mplc = rl9 ; The multiplicand
.def resh = rl ; The high byte of the result
.def resl = r2 ; The low byte of the result
.def zero = r0 ; Zero register that always contains 0
MUL: ; The multiplication function
push resh ; Save the state of resh
push resl ; Save the state of resl
push zero ; Save the zero register
clr zZero ; Enforce the 0 in the zero register
clr resh ; Clear the result high byte
clr resl ; Clear the result low byte
cpi mplr, O ; Initially check mplr for O
breq EXIT ; Check for end condition
ADD: add resl, mplc ; Add multiplicand to result
adc resh, zero ; This just add the carry bit, if any
dec mplr ; Decrement mplr
brne ADD ; Repeat loop if mplr is not O
EXIT: mov mplr, resh ; Move high byte of result to mplr
mov mplc, resl ; Move low byte of result to mplc
pop Zero ; Restore zero register
pop resl ; Restore resl register
pop resh ; Restore resh register
ret ; Return from function

TekBots™ Oregon State University Page 51 of 53

AVR Studio 4 and ATmegal28: A Beginner’s Guide

As you can see, the general structure and layout is very similar to a subroutine. The only
difference is that we did not push and pop the registers mplr and mplc, since they are used
for input and output. You will also note the SREG was not saved. Sometimes, a function
will want to return the value of the SREG and therefore it is not necessarily vital to save
it.

Now we will see how to utilize a function. The process is very similar to subroutine
except that the input values need to be initialized before the function is called. It is also
important to note that register renaming for the functions input and outputs should be
done at the beginning of the program with the programs renamed registers. Like the
subroutine, any register that is used internally can be renamed before the instance of the
function. So here is an example of how to use the function we created in the above
example.

.def mplr = rl8
.def mplc = rl9

INIT: 1di rl6, high(RAMEND) ; Initialize the stack pointer high byte
out SPH, rlé6
1di rl6, low (RAMEND) ; Initialize the stack pointer low byte
out SPL, rlé6
MAIN: ... ; Other code in the main program
1di mplr, 25 ; Load 25 into multiplier
1di mplc, 93 ; Load 93 into multiplicand
rcall MUL ; Multiply 93 * 25
st X+, mplr ; Do something with the result
st X, mplc ; by storing it into memory
ce ; Additional Code
mov mplr, r5 ; Setup another multiplication function
mov mplc, r8 ; with the registers r5 and r8
rcall MUL ; Multiply r8 * r5
mov r0, mplr ; Do something with the result
mov rl, mplc ; by storing the result into r0:rl
ce ; More code
DONE: rjmp DONE ; Program complete

As you can see, we initialize the function by storing the value we want to multiply into
the mplr and mplc. We then call the multiplication function, MUL. And finally we
handle the results. What values you want to multiply and what to do with the result
depends on the program. By now, you should have a good understanding as how to
create and use a function.

TekBots™ Oregon State University Page 52 of 53

AVR Studio 4 and ATmegal28: A Beginner’s Guide

6 References
Atmel, “8-bit AVR Instruction Set”, Rev. 0856D-AVR-08/02, Atmel Corp., 2002.

Atmel, “ATmegal28 Preliminary Datasheet”, Rev. 2467H-AVR-02/03, Atmel Corp.,
2003.

Atmel, “ATmegal28 Preliminary Summary”, Rev. 2467HS-AVR-02/03, Atmel Corp.,
2003.

Atmel, “Section 4: AVR Assembler User Guide”, Rev 10224-4-01/98, Atmel Corp.,
1998, Section 4.5.

Kelley, Al and Pohl, Ira, “C By Dissection: The Essentials of C Programming, 3 Ed.”,
Addison Wesley Longman, Inc., 1996, pp. 97-119.

TekBots™ Oregon State University Page 53 of 53

	Introduction
	Purpose
	AVR Studio 4 Overview
	ATmega128 Overview
	Nomenclature
	Disclaimer

	AVR Studio 4
	Startup Tutorial
	Installation
	Project Creation
	Project Simulation

	Simulation Tips
	Line-By-Line Debugging
	Workspace Window
	Memory Windows

	Debugging Strategies

	Microcontroller Programming with PonyProg2000
	Installing PonyProg2000
	PonyProg2000 Setup
	Setup the AVR Microcontroller Board
	Setup PonyProg2000

	Uploading a Program

	ATmega128
	Useful Registers
	General Purpose Registers
	Lower Registers
	Upper Registers
	X-, Y-, Z-Registers

	Special Function Registers
	Status Register (SREG)
	Stack Pointer
	I/O Ports
	Additional Special Function Registers

	Interrupt Vectors
	Memory Specifications
	Program Memory
	SRAM Data Memory
	EEPROM Data Memory

	Starter Code

	AVR Assembly Programming
	Pre-compiler Directives
	CSEG – Code Segment
	DB – Define constant byte\(s\)
	DEF – Set a symbolic name on a register
	EQU – Set a symbol equal to an expression
	INCLUDE – Include another file
	ORG – Set program origin

	Expressions
	Operands
	Functions
	Operators

	Basic Instructions
	Common Nomenclature
	Arithmetic and Logic Instructions
	Branch Instructions
	Unconditional Branches
	Conditional Branches

	Data Transfer Instructions
	Immediate Addressing
	Direct Addressing

	Bit and Bit-test Instructions
	Shift and Rotate
	Bit Manipulation
	SREG Manipulation

	Coding Techniques
	Structure
	Register Naming
	Constants and Addressing
	ATMega128 Definition File

	Flow of Control
	IF Statement
	IF-ELSE Statement
	IF-ELSIF-ELSE Statement
	WHILE Statement
	DO Statement
	FOR Statement
	SWITCH Statement

	Functions and Subroutines
	Definitions
	Operational Overview
	Implementation
	Setup
	Subroutine Implementation
	Function Implementation

	References

