All software versions and URLs in this document valid as of dec.13, 2001.

Installing and using AVRGCC with AVRstudio

Thisis a comprehensive introduction on how to install AVRstudio and and the GNU AVR C
compiler “avr-gcc”, and making them work together. This introduction leads step by step to the
successful build of sample code, and programming of whichever AVR part you have chosen, on the
STK500 development board.

Used in thisintroduction:

¢ AVRstudio executable installer, “astudio.exe” release 3.53 of nov.8, 2001[5.9M] or later.
Downloadabl e from www.avrfreaks.net|

« AVRGCC executable installer “avrgcc200112X Xa AV Rfreaks.exe’ [8.1M], AV Rfreaks
distribution of dec.07, 2001 or later.
This package also contains:

. Flavio Gobber’s EIf2Coff converter. o The gectest 1-9 files, by Volker Oth.

Downloadable from|www.avrfreaks.net| It isimportant that you try to use our package, as it
contains all the correct additional files (.bat files, makefiles) that you need to complete this
guide).

Besides this software you of course need the STK-500 (or equivalent) development board, a chip
(i.e. AT90s8515), and a Personal Computer of a certain standard running MS Windows9x/NT/2000.
It is assumed that you have set up your STK500 to work with your computer’s COM port before
starting out.

Installing AVRstudio

This should involve no problems. The self-extracting archive unpacks to the folder of your choice.
Open thisfolder after decompression isfinished, and run “install.exe’. Follow the instructions on-
screen.

http://www.avrfreaks.net/
http://www.avrfreaks.net/

Installing AVRGCC
Thisisalso afairly straight- [

forward process; just run Salsct the pasckages o b stalct anvd whass i st all than.
the downloaded executable.
For convenience, choose [P ockome
H H . | ace-a 0 2 avi-m i

the default install location; i ugc:ﬁ%ﬁgnéggﬂﬁ&ﬁhzmw
[P i) : ,ﬁ ri-t %

c.\avrgcc) N] :'.-T-Ib;-éﬂmHlZE [587E]
Make sure to leave al B R P
seven boxes checked. You AVRGCC B Fpsteiiyiy
may not think you need the Winaz systerms RS
include also the make.exe | changes : —
and rm.exe utilities; and e gL o
you will need them. AYRGES Mitror Sive el | abee |

Also, it isimportant to make afew checks to ensure that the installation, including the compilation
of al libraries are completed:

e During ingtallation, a DOS-window should appear, dumping lines of compiler output to the
screen for about a minute or so.

« When compilation is done, another DOS window appears, declaring that “your pop-up
program is ready to run”. Close this window by typing ctrl-c. Note: this does not happen on
Windows2000.

If thisdoes NOT occur, there could be a problem. The object libraries may not have been
compiled properly. In this case, you need to run the file “run.bat” manually. It can be found
in the directory where you installed avr-gcc.

* Provided you chose the default installation target directory to be “c:\avrgec”, the directory
“C:\avrgec\avr\lib” should be crowded with .o files dated around the time you ran the
installation. If not, execute run.bat manually.

Building a new project with AVRstudio and avr-gcc

Now it'stimeto get down to it. We will open anew project in AVRstudio, add files to the project,
and provide the necessary mechanics to make GNU make.exe take care of the building of our
project.

The gectest files by Volker Oth, included in our avrfreaks release of avr-gcc, will serve as examples.
They should be located in the /gcctest subdirectory of your avr-gec installation. Keep them there or
copy them wherever you want.

Make a new project with AVRstudio 3.53
On the Project menu of AV Rstudio, click New to see the Select new project dialog.

Enter aname for your new project, click the browse button to the right of the Location textbox and
choose the directory of “gcctestl” as your project directory:

Select new project Ed
Piogect name
Location
Il::hawrgcc'-.gncbe:at".gncb&aﬂ| J

Project lype

AVH Assembler
Genenc 3rd parly C compiler

GKIEamsll

The selected project folder/directory becomes the
location where all files generated by avr-gcc and
AVRstudio will be output. Thisis also where
you should keep all your project files.

When done, make sure to select “Generic 3"
party compiler” as your Project type before
clicking the “OK” button. AVRGCC will be
your generic 3" party compiler. As stated in the
AVRstudio manual, this featureis only
recommended for advanced users. We'll do it

anyway.

Save the project.

Browse for Folder EE1
Cument Selection
Chavigechgectestigectest]
-] bin 2
B0 gootast
_q] goche t1
1 pochest?
1 gectest
] gectestd
] poctests
] goctests
] poctest?
[goctests
_ 1 geclestd =
Ok [Cancel
Select new project Ed
Ficject name
!g.cclesﬂ
Location
!l::\.a\'rg-:lz'-.gncteat".gnctseﬂ J

The project concept, and using the GNU make utility

We will go for a concept where you stick to using a new makefile for each project, and hence; stick
to using AVRstudio “projects’ for each project. All the project files should be kept in the same
directory/folder. Thiswould be the folder you selected in the steps above.

Thisis necessary for AVRstudio’s Generic 3" party compiler support to work properly.

The GNU tool make that comes with the avr-gcc distribution will use the makefile' s rules to compile
and link our project into a complete .hex file to load into the mcu.
Thisisaneat, clean and comprehensible way of organizing your work.

Asatemplate for your makefiles, you should use the makefiles included in the gcctest set. Thereisa
makefile in each of the gcctest folders. They are mostly the same, but some of them have slight
extensions. So, do not copy the one from gcctest1 over to gectest2 and so on.

Note: If you did not download an AV Rfreaks distribution including the gcctest1-9 set, you have to
compare the makefiles yourself and edit them according to this guide.

Adding files to the project

Now, we need to add the files that compose our little project. In the case of thislittle test project, we

need:
* Some source code.
o A makefile.

Let’s start by including the C-sourcefile

“gectestl.c” :

* Right-click the “Sourcefiles’ tab in the

Project window of studio.

» Select “Add file”, browseto thefile
“gectest1.c” in your project folder.
* Double-click thefile, or click “open”.

Now add the makefile for this project:
* Right-click the “Other files’ tab in the.
» Select “Add file”, browse to the makefile.
If you cant seeit, you may have to select
“All files’ in the filetype drop-down.

e Openit.

= Project : gcctestl

=10 x|

I Target - Debug

[

El-- Target: Debug
=23 Source Files

L goctestl.c

-3 Header Files

For every included file, you can double-click its representation in the folder tree of the project

window to open and edit the file.

The makefile

The template makefile by Volker Oth should ook like thisin our version (included in the /avrfreaks
subdir of your avr-gcc installation):

Simple Makefile Volker Oth (c) 1999
edited by AVRfreaks.net nov.2001

#HitH#H#HAH#AH#H change these lines according to your project #H##H#H#HHEHIHHHHHH

put the name of the target mcu here (at90s8515, at90s8535, attiny22, atmega603 etc.)
MCU = at90s8515

put the name of the target file here (without extension)
TRG = gcctestl

put your C sourcefiles here
SRC = $(TRG).c

#put additional assembler source file here
ASRC =

#additional libraries and object files to link
LIB =

#additional includes to compile
INC =

#compiler flags
CPFLAGS = -g -Os -Wall -Wstrict-prototypes -Wa,-ahlms=$(<:.c=.Ist)

#linker flags
LDFLAGS = -WI,-Map=$(TRG).map,--cref

#Hit#H#H#H#AH#A#H## you should not need to change the following line ####H#H#HH#HHHH
include $(AVR)/avrfreaks/avr_make

#it#### dependecies, add any dependencies you need here ####H##HHHIHIHIHHHHHH
$(TRG).0 : $(TRG).c

The only lines you should perhaps have to edit, are these:

* Theline saying “mcu = at90s8515”.

This should be edited to reflect which AVR mcu you are using.

e Thelinesaying: “TRG = gectest1” . Thisis the name of your target. You can alter it to
whatever you like, but gcctestl is agood name. In this gcctest set, the makefiles are written
so that the source file needs to have the same name as the core target name. If it doesn’t,
make simply won’t find your sourcefile.

You can seethisfromthenextline. src = $(TRG).c
NB! Do not use any extension/suffix for the target name!

Note the line saying “include $(AVR)/avrfreaks/avr_make” iN the makefile. This line takes care of including
more dependencies and commands for the make process, from thefile “avr_make”. Thisfileis

included in the avr-gcc distribution from AV Rfreaks. For a quick introduction to what it contains,
consult appendix A of this document.

Tying it all together
Okay, so now we have an open project, a source file and a makefile all ready to go. But still alittle

work remains to make all these things work together. Fear not; when done with these steps you will
have a method to stick with for later that should be relatively ssmple to maintain.

A few things we have to realize at this point:

* AVRstudio knew nothing about avr-gcc; what it is or where it is, when we started out.

* Selecting “Generic 3" party compiler” as project type did not initiate any magic event in
your computer, so that AV Rstudio suddenly knows which compiler and how to useit.

* Avr-gcc isrun from the command-line, as well as the other GNU avr tools like the assembler,
linker and the unix tools. They don’'t have nice user interfaces. All these are most effectively
controlled by the program make; run from the command line.

So the question is: how do we make AVRstudio use avr-gcc?

Thetrick is:
* To make AVRstudio aware of the path to the GNU tools via environment parameters.
* Torun make and feed it with the right makefile.

Hence,
* Writing a.bat file that points out the right directories and runs make.
e Letting AVRstudio know that it should take alook at that file...

The procedure will differ dlightly for Win9x and Win2000 users:

Using Win9x:

Thisfileisaso included in the /avrfreaks subdir
of your avr-gcc installation.

Let’sdo it; open atext editor and create afile
consisting of these lines (provided that you
installed avr-gec to “c:\avreee?):

@echo -------- begin --------
@set AVR=c:\AVRGCC
@set CC=avr-gcc

@set PATH=c:\AVRGCC\bin
make %1

Savethisfileas“gcc_cmp.bat” in adirectory on
your computer that you know isincluded in the
Windows path, i.e. “c:\windows’ .

Thisfilewill set some important environment
parameters for the make utility, then make will
be run. The “%1” argument is the project folder
path, provided by AV Rstudio. The make utility
by default looks for the file called “ makefile” in
thisfolder.

Using Win2000 or WinXP:

For Win2000, you need a “start”-file to kick off
the compilation. Both of these files are available
in the \avrfreaks\win2000 subdir of your avrgcc
installation:

@echo -------- begin --------

@start /MIN /wait cmd /c gcc_cmp2.bat %1
@type c:\tmpout.txt

@del c:\tmpout.txt

@echo -------- end ------—--

Save as“gcc_cmp.bat” in“c:\winnt” , or some
other folder you know isincluded in your path.
Now, create afile consisting of these lines
(again, provided that you installed avr-gcc to the
same path as we did):

@set AVR=c:\avrgcc

@set CC=avr-gcc

@set PATH=c:\avrgcc\bin
make.exe %1 >c:\tmpout.txt 2>&1

Savethisfileas“gcc_cmp2.bat” in the same
folder as above.

This setup will start make.exe, whichis
instructed to direct its screen dump to afile that
is displayed as the compiler output inside
AVRstudio, and then deleted.

Thisisan important step!

Now, set the “target options” in AV Rstudio:

Right-click “Target:

debug” inthe PrOj ect Linker/Build Stage Settings
window, and select [Fiun ‘compile’ on each file in Source Fles group Carcel
“settings’. ¥ Fun linker/build stage tools

* Uncheck “Run Command line:
compiler...”. gec_cmp bt

e Check “Runlinker...”
e Enter the name of your

clever little
gec_cmp.bat filein the e e S

— d | i . d IF output containg the Followirg bext: Extension of object file o load:
command line window. fEmors: rons b

e Under “Run stage
settings’, opt for “Run
code”. In thefirst text
box type “Errors:
none’, in the second
type “obj” for object
file extension.

Ther: € Don'truncode & Run code

And herewe go...

Building our first project with AVRstudio and avr-gcc

Now you should be all ready to run. Just double-click the makefile icon in the Project window of
AVRstudio, and make sure that thisfile is entered as shown above. Especially note that the line
setting your target name is correct. As you can see from the line below it, this should be the same
name as your C sourcefile.

To build the project:

* Right-click “Target: debug” in the project window of AV Rstudio, and select “build” from the
bottom of the menu.

Provided you completed all we went through so far as you should, this project should build just fine.
Watch the the make output appearing in awindow inside AVRstudio. Aslong asit doesn’t report
any errors; al isOK:

Cihavrgcdgockestigochestl = make
ayr-goe =G =g -0s -'Wall -Wshrict-prototypes -Wa, -ahlms=gcohestl st -mmousat®0s8515 -1, goctestl.c -0 goctestl.o
avr-goo goctestl.o =Wl -Map=gocbestl.map,--cref -mmou=at30s8515 -0 gootestl.elf
awr-objcopy -0 avrobj -R .esprom goctestl.eff goctestl.abij
avr-objeopy -0 ihexD -R .eeprom gectestl elf gectestl rom
elfcoff gectestl elf coff goctestl.cof goctestl.sym
Ended
cp coffygochestl cof |
cp coffsym .
ep coff*S
avr-objcopy -3 eeprom --set-section-flags= eeprom="allaclead" --change-seckon-lma .eeprom=0 -0 ihexO gectestl.elf goctestl .eep
Errors: none
== and sssesees

Programming the AVR in the STK500

Helping you unpack, install and troubleshoot your STK500 development kit is out of scope of this
document. If you are having trouble with this; consult article written by Sean Ellis on
AV Rfreaks.net, dec. 2001. But you should always:

* Make surethe STK500 is connected, and switched on.
» For this project, connect PortB to the LEDs connector with the 10-pin jumper cable.

To load your newly built code onto the chip, click the nicelittle AVR chip icon on the toolbar of
AV Rstudio, or open the STK500 tool menu by selecting “STK500/...” from the “Tools” menu:

STESOD HEEER

e You can probably leave most of the Program | Fuses | LockBits | Advanced | Boand | Auto |

settings to their default values.

Diavice
* Make sure you load the right binary to [aTa0se515 2] EraseDevics|
the chip. In the “Flash” section of the T T T
dialog box; browseto thefile ISP ¥ Eiase Device Bedore Progiamming
“gectestl.hex” in your project directory. [RaMoiticnoas su, F- ok L 6o AReCE oy
Y ou may have to select “other files’ in i ST
the filetype drop-down box to see the — o r————p—y—]

rom file.

* Click the “Program” button. e et | -
« Make sure the output textbox at the e TR
bottom of the dialog says everything TN e = B
went OK. T E Veily Read I
shecting .
=

The LEDs on your STK500 board should light up, and it’s Christmas time again. Deck the hall with
bowls of holly and enjoy. Not. Because what happensin my case, at least, isthat the LEDs don’t

flash. Thisis not arunning light. It should be, and the reason it’s not running is the optimization
level of the compiler.

Tampering the makefile
Have alook at the compiler flags line in your makefile:

#compiler flags
CPFLAGS = -g -Os -Wall -Wstrict-prototypes -Wa,-ahlms=$(<:.c=.Ist)

The —O flag indicates the optimization level for the compiler. Thisis set pretty tight. If you also
consult your C source file, you will see that the delays between each output is implemented with
counting loops. No timer isinvolved to ensure an appropriate delay. What happens here is that the
delays are optimized away. They are actually gone; since the compiler realized they did nothing
useful, it left them out.

To work around this, edit the makefile by clicking the makefile icon in the Project window of

AV Rstudio. Change the following line:

#compiler flags
CPFLAGS = -g -Os -Wall -Wstrict-prototypes -Wa,-ahims=$(<:.c=.Ist)

To:

#compiler flags
CPFLAGS = -g —O1 -Wall -Wstrict-prototypes -Wa,-ahlms=$(<:.c=.Ist)

The optimization level has been set to 1. The previous “s’ (size) optimization key provides
optimizations for code size. Consult avr-gcc man pages for more information.

Make clean

I mportant note: Y ou must clean out the products from the previous build to make this new build. Or
else, make will decide that arebuild is not necessary, since it is not set up to look for changesin the
makefile. We will not clean out these files manually, instead we will add a new Target in AVRstudio
that performs the cleaning. Oh yes.

» Right dlick Target
debug in the Project e
diaog of [elea —
AVRstudio; select SRR
Targets-> add.... Cieh

The Add new target
dialog appears. Enter
the name “clean” for
your new target, and
select Debug from
the drop-down

below (* Copy

Setti ngs from”) |Tul;|l:| - clean j
* Thetarget “clean” L e
will now be T——
available from the {23 Header Files
Targets drop-down =1 Other Files
in the Project dialog.
e Sdlect thistarget,
and right-click to
access Its settl ngS a LinkerBuld Stage Setling:
. You Can see that.|t M T e e
inherited the settings P sy Carcel
from the Debug R
target. Just add the aee. cire bt clean

keyword “clean”
behind the call to the
.bat file you made.

e Buildtheclean

t et 1~ Aun Stage Seltng:
arget. If cutpet contars the following text Extension of object fie to load:
Efrars: none obj

Therc ¢ Dontrnncode © Run code

Thiswill clean out products from the make process. Why thisworks? “ Clean” is a defined target in
the avr_make makefile included in your avr-gcc package. Consult Appendix A for aquick peek at
thisfile.

» Go back to the Debug target.
* Now rebuild all, reprogram the AVR and see what happens.

If you try to rebuild this project once more without making any changes, make will simply abort the
build. Thisis because make is, through the makefile, set up to only rebuild the parts of the project
that needs to be rebuilt at any given time. So, when make discovers there are no recent output files, it
decides to rebuild the whole shebang. But the makefile itself is not included as one of the
dependencies. So achange in thisfile will not automatically initiate arebuild. But, reasonably
enough, a change in a source file will.

Thisisof no significance to our little single-source-file project, but it will be to larger projects.

Now, if all went well you should:
e Takeadeep breath.

e Saveyour project.
» Sit back for afew minutes, marvelling at the wonders of science.

Y ou could aso check out the quick overlook of the avr_make file included in the avr-gcc
distribution, in appendix A of this document.

Debugging with .coff files in AVRstudio

Now, there's something missing with our setup still:

The *.obj file that avr-gcc generates does not contain the necessary information to let AVRstudio
watch variables during debugging. The standard gcc file *.elf actually includes al this information;
but AVR Studio does not support the ELF format. It does, however, support the COFF format with
variable watch.

Flavio Gobber, an AV Rfreaks.net registered user, has made an ELF to COFF converter. Itis
included and integrated in AV Rfreaks distributions of avr-gcc later than 200112033, for your
convenience. These distributions are set up so that .cof files should be output in your working
directory if you followed the instructions so far. Then all you have to do is ssimply open the .cof file
in AV Rstudio, add breakpoints and watches, and off we go.

NB! “Elf2coff” is aso available from AV Rfreaks.net:
http://www.avrfreaks.net/AVRGCC/download.phplin case you are not using our preferred release of
avr-gcc. To set it up on your own, refer to the Appendix B of this document.

An example:
After successfully building your gcctestl project, click to open the .cof file that should have been
output in your project directory:

* A new window should appear, showing
you the .coff dump with lots of directives
and chunks of assembly code, while your
project window disappears.

e The“Smulator options’ dialog appears.

Select your device and the clock

frequency. “““l—_|
» Reopen your project, and click to see the | Conce

C sourcefile. that et

» Scroll to thislinein the main function: : S
outp(0xff,DDRB); foten el F i s B |
* PressF9 to set abreakpoint here. e S
« Open the Add watch window from the : : L _
Watch menu; and add awatch for “led” Ml 100000 Bl fiEE
(right-click).

* Press Shift-F5 to reset the debug; the
focus should change to the coff file
window. Run with F5. Focus changes to
the source code window with a break at
the line you marked...

» Click F10 to single-step, and watch the
variable “led” changeto “0x01"...

e Hark! The herald angels sing.

http://www.avrfreaks.net/AVRGCC/download.php

e That'sal thereisto it. e atchies

tvpedef unzigned ch

Uatch | Value
— ot iz scope int nain{ wvoid)
W i {
— lad ox0L 'O uld led, i, 3. k

| | outp(0=ztf DDRB):
led = 1;

for

=l

‘Watchl | Watch2 | Watch3 | Watch led <<= 1,

1f (!l=d)
led = 1:;
for {(i=0; i<
for({3=0:
kt+:

Now, you should be on your way developing for the AVR family with avr-gcc and AVRstudio. The
setup provided through the steps in this document should be sufficient for some time. Start by going
through the gcctest1-9 example sets. Also, download a copy of Rich Neswold's “GNU development
Environment for the AVR microcontroller” from www.avrfreaks.net/AVRGCC/|, as anice
introduction and reference.

Y ou may need to extend or alter this setup as you become more experienced and start working on
more complex projects. By then you will aso probably know more about how to make the necessary
changes and fixes.

Finally:

* If you haven't already downloaded the document “GNU development environment for the
AVR Microcontroller”, you should do that now.

» Freguent the AVRGCC forum at AV Rfreaks.net

» Good luck.

http://www.avrfreaks.net/AVRGCC/

Appendix A —the “avr_make” file

Listed below are the lines that consitute the file “avr_make”. The file is composed from the makel-2
files by Volker Oth, jan.2000. It can be found in the subdirectory c:\avrgcc\avrfreaks, provided
c:\avrgcc is the directory where you installed the avr-gcc distribution. “Block” markers; “BLOCK1,
..." etc areinserted in thisfile for easy reference. Comments for each block are included below.
Reading through them should be an easy way of getting some idea of how this works.

Hommmm START OF FILE
GCC-AVR standard Makefile part 3

Based on Volker Oth's makefiles of jan.2000

Modified and merged by AVRfreaks.net for smoother integration with AVR Studio,
and easier comprehension for the average user (nov.2001). Minor errors corrected.
#

BLOCK 1) define some variables based on the AVR base path in $(AVR) #####H#

CcC = avr-gcc

AS = avr-gcc -x assembler-with-cpp
RM =rm -f

RN =mv

ouT = coff

ELFCOF = elfcoff

CP =cp

BIN = avr-objcopy
SIZE = avr-size
INCDIR =.

LIBDIR = $(AVR)/avr/lib

SHELL = $(AVR)/bin/sh.exe

BLOCK 2) output format can be srec, ihex (avrobj is always created) #####H#

FORMAT = ihex

#####+# BLOCK 3) define all project specific object files ######
OBJ = $(ASRC:.s=.0) $(SRC:.c=.0)
CPFLAGS += -mmcu=$(MCU)
ASFLAGS += -mmcu=$(MCU)
LDFLAGS += -mmcu=$(MCU)
##H### BLOCK 4) this defines the aims of the make process ######

all: $(TRG).obj $(TRG).elf $(TRG).hex $(TRG).cof $(TRG).eep $(TRG).ok

#####+# BLOCK 5) compile: instructions to create assembler and/or object files from C source ######

%.0 : %.c
$(CC) -c $(CPFLAGS) -I1$(INCDIR) $< -0 $@

%.s : %.Cc
$(CC) -S $(CPFLAGS) -1$(INCDIR) $< -0 $@

#t###+# BLOCK 6) assemble: instructions to create object file from assembler files ######

%.0 : %.S
$(AS) -c $(ASFLAGS) -I$(INCDIR) $< -0 $@

#it###+# BLOCK 7) link: instructions to create elf output file from object files ######
%.elf: $(OBJ)
$(CC) $(OBJ) $(LIB) $(LDFLAGS) -0 $@

#i###+# BLOCK 8) create avrobj file from elf output file ######

%.0bj: %.elf
$(BIN) -O avrobj -R .eeprom $< $@

BLOCK 9) create bin (.hex and .eep) files from elf output file ####H##

%.hex: %.elf
$(BIN) -O $(FORMAT) -R .eeprom $< $@

%.eep: %.elf
$(BIN) -j .eeprom --set-section-flags=.eeprom="alloc,load" --change-section-Ima .eeprom=0 -O $(FORMAT) $< $@

%.cof: %.elf
$(ELFCOF) $< $(OUT) $@ $*.sym
$(CP) $(OUT\$@ .
$(CP) $(OUT)*sym .
$(CP) $(OUT)*S .

BLOCK 10) If all other steps compile ok then echo "Errors: none"

%0k:
$(SIZE) $(TRG).elf
@echo "Errors: none"

##t#### BLOCK 11) make instruction to delete created files ######

clean:
$(RM) $(OBJ)
$(RM) $(SRC:.c=.s)
$(RM) $(SRC:.c=.Ist)
$(RM) $(TRG).map
$(RM) $(TRG).elf
$(RM) $(TRG).cof
$(RM) $(TRG).obj
$(RM) $(TRG).a90
$(RM) $(TRG).hex
$(RM) *.bak
$(RM) *.log

$(SIZE) $(TRG).elf
T SUR———— END OF FILE

Note: Make sure not to delete any tabs preceding a command in thisfile, asthey are crucial for the
make utility’ s ability to recognize commands from dependency rules. On the other hand, make sure
to delete all accidental spaces etc. in variable declarations. These may for instance cause your shell
not to recognize an executable or an executabl e to not recognize a parameter...

Comments

Block 1 : this block provides some additional pointersto folders and utilities needed in the make
process. Recall that the variable called AVR in our caseis*”c:\avrgec”. So, the string

LIBDIR = $(AVR/avr/lib)

simply sets the variable LIBDIR to “c:\avrgcc\avr\lib”. This block provides a single entry point for
fundamental changesin the setup.

Block 2: sets optional binary output format to Intel hex.

Block 3: thefirst line defines the names of all object files to be created, from the names of all
included source files (both assembler and C source files). These are to be entered in the makefile.
Note also the MCU variable, referred as $(MCU), which is set to the type of AVR microcontroller to
use (i.e. AT90s8515), in your makefile.

Block 4: the aims are to create the target files listed; .obj, .elf, .hex... The order of the files are
indifferent, but the order of the following blocks in the makefile, is not.

Block 5: Thisisthefirst target : dependency linein thisfile. Such lines are called rules, and the
following lines are the commands that make the rule. All commands are preceeded by atab; thisis
imperative to make it work. If thetab isn’t there, the command is skipped.

Thisrule saysthat all .o files depend on the corresponding .c file. The“ %" isawildcard.

Hence, the following line compiles any .c fileinto a.o file:

%.0 : %.c
$(CC) -c $(CPFLAGS) -1$(INCDIR) $< -0 $@

The $< and $@ are automatic variables for make, meaning “the filename of the first dependency”
and “the filename of thisrule starget”, respectively. The target of thisruleis any object file, .o.
Hence, in this line when the source “gcctest1.c” comes wandering along; it is compiled into thefile
“gcctestl.o”.

Block 6: Similar to the above; this time for assembly source files. Note that other flags are included,
and that avr-gcc is called with other directives than when compiling C sourcefiles (the $(AS)
variable).

The next few blocks work in asimilar manner.

Block 10: Remember that all rules are performed sequentially in order of appearance in the file?
WEell, if we got this far without make aborting the process, all is OK. Hence, we report to AVRstudio
“Errors: none”. This step is actually necessary for AVRstudio to see that all the previous steps went
OK. Also, acall to avr-size.exe is performed. This outputs the size of the elf file. Hence, you can see
how code changes affect the size of the resulting code.

Block 11: These few targets to do not conform to the target : depenciesform of rulesin aregular
fashion, since they have no actual target files. No actual files are to be built as the result of these
rules. Such rules are calles phony rules. They are useful for things like cleaning up, like thisfirst

one, which deletes all files according to its rules when called. This step will never be performed
automatically, but make clean can be called explicitly to perform it.

Take alook again at the rulein Block 4. Thisis the default rule, which defines the goals of the entire
make process, and is aways performed when nothing specific is called for. Thisis also a phony
target. We could include clean as one of the dependencies, and have it clean up intermediate files
etc.

Note: when making a change to, for instance, the compiler flags in the makefile; a complete remake
Is necessary. But the makefile is not commonly considered a dependency of any project. Hence, it is
not included in any rule.

If it was for instance included as a dependency for the assembler and object filesin block 5 and 6
above, the entire project would have to be rebuilt every time the makefile had changed (i.e. every
time make could tell that the makefile was newer than the source files and object files. So it usualy
isn't.

The safest/simplest thing when you have changed some entries in the makefile, is to run “make
clean” to clean out the directory and have make build the whole project all over. If workingin a
windows environment, you can also delete all the files produced by make manually (all the
extensions listed in block 11).

Appendix B — setting up “elf2coff” with AVRstudio and make

The standard gcc file *.elf actually includes all information for watching variables while debugging;
but AVR Studio does not support the ELF format. It does, however, support the COFF format with
variable watch. We will utilize “EIf2Coff”, a utility made by AV Rfreaks user Flavio Gobber, that
converts .elf to .cof files. These files can be directly loaded into studio for happy debugging.

Setting up ElIf2Coff to run with avr-gcc and AV Rstudio is not too hard, when you know what to do.
Since information on how to accomplish thisis hard to come by (we know only a single source for
this—the AVR-GCC forum at AVRfreaks.net...), it is compiled and provided here for your pleasure
and convenience.

Note: If you already downloaded an avr-gcc distribution from AV Rfreaks.net dated dec.03 or later;
Elf2Coff is already integrated into the package, and you don’t need to proceed with this. Coff files
should be automatically output to your project directory. That is; provided you follow the directions
in the main part of this document.

Just do it
Now, this shouldn’t take long. Lets’ get started:

+ Download EIf2Coff from

www.AV Rfreaks.net/ AVRGCC 27 EFCoff B avrgeo
 Unzipinto any directory. SR 5 roce -] avr
* Inspect the unzipped structure (seen to B avr
the right). The interesting part is the ::: :jnlzm e
subdirectory “avrgec”. B-03 b e "] include
» Copy thiswhole subdir structure into the -] coffviewer | £ info
directory where you installed avr-gcc (i.e. &1 EfToCoff #-] lib
“c:\avrgec\”). You get anew node called i Elfviewer B-_1 man
c\avrgcc\avrgee\... with four subdirsin -~ L] volker_install

it.

» Make sure you copy the file “ elfcoff.exe”
from the \elfcoff\avrgcc\bin directory,
into the \bin directory of your avr-gcc
installation (should be c:\avrgcc\bin).

Y ou aso need to make some changes in the avr_make file, see Appendix A:
« InBlock 1, add these line (use tabs to align with the other entries in this block):

ELFCOF = elfcoff
OUT = Coff

CP =cp

* InBlock 4, add this entry for the .cof target file: $(TRG).cof
Now, thisline reads:

all: $(TRG).obj $(TRG).elf $(TRG).cof $(TRG).hex $(TRG).eep $(TRG).ok
« InBlock 9, add this new rule (watch the tabs!):

%.cof: %o.elf

$(ELFCOF) $< $(OUT) $@ $*sym
$(CP) $(OUT\S$@ .

$(CP) $(OUT)*sym .

$(CP) $(OUT)*S .

« ..and finally add this to the clean routine in Block 11:

$(RM) $(TRG).cof

Note: make sure to trim all unnecessary spaces when adding keywords to a makefile. An accidental
tab or space may cause a step in the make process to fail. The output from the compilation should
look like this:

COWINDOW S Desktop\ AVRprojects\testgochgoctesthgoctestl =make

avr-goc -c -9 -0% -Wall -Watrict-prototypes -Wa, -ahlms=gectestl Jst -mmoy=at90s8515 -1, gectestl.c -0 gockestl o
avr-goe goctestl.o -Wl-Map=goctestl map,--cref -mmcu=at3058515 -0 gockesti elf

avr-objcopy -0 avrobi -R eeprom goctestl.elf goctestiob)

olfcoff gectestl elf Coff goctestl.cof goctestl.symm

Ended

cp Coffygectestl cof |

cp Coffh¥sym .

cp Coffh™3 |

avr-abjcopy -0 thex -R .eeprom goctestl.elf goctestl .rem

avr-objoopy -] .eeprom --sat-section-flags=.eeprom="alloc foad” --change-section<lma .eeprom=0 -0 ihex goctestl.elf gocte ...
Errors: nong

........ T —

Good luck.

	Installing and using AVRGCC with AVRstudio
	Installing AVRstudio
	Installing AVRGCC
	Make a new project with AVRstudio 3.53
	The project concept, and using the GNU make utility
	Adding files to the project
	The makefile
	Tying it all together
	Programming the AVR in the STK500
	Make clean

	Appendix A – the “avr_make” file
	Comments

	Appendix B – setting up “elf2coff” with AVRstudio and make
	Just do it

