
COMPUTER GRAPI-IICS AND IlVIAGE PROCESSING 6, 513-537 (1977) 

Iterative Three-Dimensional Image Reconstruction from 
Tomographic Projections * 

JAMES G. COLSHER 1 

Biomedical and Environmental Research Division, Lawrence Livermore Laboratory, 
Livermore, California 94550 

Received June 16, 1976 

Four algorithms are adapted to perfolTa direct three-dimensional reconstruction from 
projections. The algorithms considered are summation, the Algebraic Reconstruction 
Technique (ART), the Simtfltaneous Iterative Reconstruction Technique (SIRT), and 
the Iterative Least Squares Technique (ILST). The concept of tomographlc projections 
is introduced and shown to greatly simplify the ealctdations. This work represents the 
first time that these iterative algorithms have been applied to projections other than 
coaxial. The methods developed can be of benefit in electron microscopy, holographic 
intcrferometry, and nuclear medicine. To evaluate these methods an experimental 
investigation is can'ied out using computer-generated synthetic images. Using SIRT, 
direct 3-D reconstruction is shown to be superior to serial 2-D reconstruction from 
coaxial projections when the range of viewing angles is limited. The number of projections 
required for adequate reconstruction is also considered. Finally, the performance of the 
algorithms is compared with respect to overall similarity of the reconstruction to the 
original tes~ object, effects of noise, and computer time and memory requirements. 

I, INTRODUCTION 

The problem of reconstructing three-dimensional images from projections has 
arisen in fields as diverse as electron microscopy, radiology, and radioastronomy. 
Various techniques have been proposed to solve this problem; the earliest was 
developed by Radon in 1917 [-11. Good reviews of the subject are given by 
Budinger and Gullberg i-2-] and Gordon and Herman [-3~. Most of the techniques 
presented to date are actually two-dimensional procedures for reconstructing a 
series of parallel planes from multiple one-dimensional projections. For these 
methods, coaxial projection data are obtained by rotating the object about a fixed 
axis so that  object planes perpendicular to the axis project into a line. The 
corresponding lines in the different projections are used to reconstruct each plane 
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in tm'n. Computationally, the problem is thus reduced from three dimensions to 
two. The planes are then stacked to get the three-dimensional reconstruction. 
Other methods of data. collection can be used, but  they do not allow for reduction 
of the dimensionality of the reconstruction problem as do the coaxial projections. 
For these other methods the entire three-dimensional reconstruction must be 
calculated simultaneously; this poses complex mathematical and computational 
problems. However, true 3-D reconstruction is of interest because it increases 
the flexibility of data acquisition and may  be advantageous in situations such 
as electron microscopy where the range of viewing angles is limited. 

The prime obieetive of this work is the modification of iterative algebraic 
algorithms to perform true 3-D reconstructions from projections; the algorithms 
considered are summation, the Algebraic Reconstruction Technique (ART) [41, 
the Simultaneous Iterative Reconstruction Technique (SIRT) [51, and the 
Iterative Least Squares Technique (ILST) [6-1. The concept of tomographic 
projections is introduced. These projections are useful because they simplify the 
calculations and because there are many devices that  can collect data in this 
manner. For example, the data-collection methods of Har t  I-7~ in electron 
microscopy essentially produce tomographic projections. In nuclear medicine, the 
rotating slant-hole collimator camera and the multiwire proportional-chamber 
positron camera [8-1 both produce tomographic projections although in the 
latter ease some preprocessing of the data is necessary. In holographic inter- 
ferometry, the thin-beam reconstruction method [9J can also be used. 

A further goal is an experimental evaluation of the 3-D reconstruction proce- 
dure using computer-generated synthetic images. Although it can be shown that 
iterative algorithms are all gradient methods [10~ this does little to predict their 
performance and a general theory does not exist. Consequently, an experimental 
investigation was undertaken. This consisted of building test objects and taking 
their projections, applying the various algorithms to the projection data, and then 
comparing the reconstructions with the original, The first experiment was designed 
to ascertain the advantages, if any, of 3-D reconstruction over serial 2-D recon- 
struction. Using SIRT, reconstructions from linear tomographic (coaxial) 
projections are compared with reconstructions from circular tomographic projec- 
tions. In the second experiment, the effect of varying the number of views on 
the performance of SIRT is evaluated. Finally, the four algorithms are compared 
with respect to resolution and noise characteristics. 

2. THE RECONSTRUCTION PROBLEM 

Images formed by penetrating radiation represent a projection of densities. 
By  using an external source of radiation, one obtains a transmission picture 
(projection) of the 3-D object onto a surface such as the film of an x-ray o1" 
eIectron mierogrsph. Considered mathematically, a point on the image represents 
the line integral of a density function. Thus, examining an object from many 
views effectively generates sets of equations. The reconstruction problem is to 
estimate the internal density distribution from these equations. 

Reconstruction techniques can be grouped into three broad classes. In the 
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first, called tomography o1' summation, the rays through each point are simply 
added to obtain an estimate of the density at the. point. The second class formu- 
lates the problem in terms of integral equations and employs Fourier transforms, 
convolutions, or orthogonal expansions [-12]. The third class uses algebraic 
approaches and involves matrix inversion or iterative approximation. Each of 
these classes is now discussed briefly in turn. 

Tomography is the oldest and most widely used technique for imaging a plane 
in a three-dimensional body. In radiological applications, the source and film 
pivot about a selected plane during exposure so that the image of this plane, the 
tomographic plane, remains stationary on the moving film while the images of 
other planes are displaced and blurred. Grant [13] proposed the use of a sampled 
system in which a series of images are proiected onto separate films, thus per- 
mitting the reconstruction of all object planes. The central tomographie plane is 
obtained by superimposing all the films. Other planes are obtained by displacing 
the various radiographs relative to each other and then superimposing them. The 
application of tomography in electron microscopy has been described by Hart  [7-] 
and Hart and Yoshiyama [-14]. images are obtained by  tilting the specimen in 
the electron microscope and taking transmission micrographs of the same area 
along different directions. 

Several methods of reconstruction based on integral equation formulations 
have been proposed. As noted earlier, most of these methods are based on two- 
dimensional integral equations and hence require coaxial projections. However, 
some of these 2-D techniques can be modified to apply to the 3-D problem. In 
theory, Fourier techniques [-].2] can easily be extended, since the projection 
theorem holds. This theorem states that the 2-D Fourier transform of the projec- 
ti0n is identical to the corresponding central section of the 3-D transform of the 
object. Crowther, Klug, and coworkers have employed Fourier reconstruction ex- 
tensively in electron microscopy for the reconstructior~ of symmetrical objects such 
as viruses [-15]. However, the extension to nonsymmetric particles presents tech- 
nical problems, in particular the registration of different views. 

In the algebraic or iterative techniques, the object is partitioned into cells. The 
density within each cell is assumed uniform and the measure of the line integral 
along a single ray is related to the densities through a linear relationship. This 
results in a set of linear equations, one for each ray. Estimates of the cell density 
values are made and the linear equations ~Lre used to calculate projection data. 
Errors between calculated and measured projection data are then used to modify 
the cell density wflues. 

These iterative techniques appear to be the most promising for reconstruction 
from tomographic projections. Since they have been formulated in terms of 
linear algebra their extension to 3-D reconstruction requires only a description 
of the path of a ray through a volume. Some work in this area has already been 
done by other investigators. Rt~dulovic and Vest [-16] presented the results for 
the "grid" method, which involves a least squares solution. Schmidlin [-17-] 
presented a iter~tive algorithm, referred to by Budinger as the Simultaneous 
Iterative Geometric h~ean Technique. It  was not used in our investigation 
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Fro. 1. The projection geometw is indicated for eiretflar tomographic projections. The displace- 
ment angle ¢~ and the tomographic angle 0, correspond to the angles normally defined in a spherical 
coordinate system. 

because i t  involved considerable multiplication, a computa t iona l ly  expensive 
operation.  

3. ALGORITHMS 

In  this section the  per t inent  quantit ies are defined and the  algori thms are 
explained. The reconstruction volume is divided into individual cells or voxels 
(volume cells) D(i, j, k) where i -- 1 . . . .  , I ;  j = 1, . . . ,  J,  and k -- - - X  . . . .  , K 
divide the volume into 2K + 1 plane sections of I by  J cells each. For  the sym- 
m e t r y  or center plane k = 0 and in general I = Y. D represents the  densi ty and 
is assumed constant  within a voxel. 

A projection is determined by  two angles: the temographic angle, 8n, and the 
displacement angle, ¢4 (Fig. 1). These correspond to the  angles normal ly  defined 
in a spherical coordinate system. In general there are N projections,  each divided 
into pixels (picture cells) P(l, m, n) in which l = 1, . . . ,  L, m = 1, . . . ,  M, and 
n = 1, . . . ,  N. Each  pflxel corresponds to the  measured projection densi ty  along 
a par t icular  ray.  Thus,  there are L X M X N rays. These projections are defined 
so t h a t  they  are parallel to the plane sections or, to s tate  it another  way, perpen- 
dicular  to the k axis. Fur ther ,  the project ion coordinates are defined so tha t  they  
correspond to those of the symmet ry  plane;  i = l and j = m for k = 0. The 
coordinates of any  voxel are related to the project ion coordinates by  the  following 
equations,  where integer ar i thmetic is assumed. 

l = i - - k t a n S ~ c o s ¢ , ,  

m = j - -  k tan  8,, sin ¢,,. (1) 

Consider the series of projections at a constant tomographie  angle, i.e., 
8,, = 45 °, and various displacement angles given by  ¢,  = (n -- 1) (360°/N) where 
~t = 1, . . . ,  N. Geometrically, this describes the projections obtained in N-sample 
circular  tomography.  For proiections corresponding to  N-sample l inear tomog- 
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raphy, the displacement angle ¢,, = O and the tomographic angles 0~ are equally 
spaced between -0m~x and 0m~x. 

Note that the projection calculations are greatly simplified for tomographic 
projections. On]y two arrays of numbers of dimension (2K 9- 1) X N containing 
the displacement values (k tan 0n eosCn, k tan 0~ sin ~n) are required to determine 
all the rays through a voxel, or alternatively all the voxels intersected by a ray. 
Complicated 3-D ray-tracing equations are avoided. This concept of tomographie 
projections is a generalization of the concentric-squares raster of Mersereau [18] 
and also corresponds to the weighted coaxial projections of Gordon et aL [4]. The 
procedure is general since one can interchange the i or j axis with the k axis for 
values of tomographic angle greater than 45 °. 

Each projection is composed of L X M rays that intersect various voxels as 
they propagate through the reconstruct, ion volume. The ray values (raysums) 
are related to the densities D(i,  j, k) by a linear relation. A raysum P(l, m, n) is 
given by 

P(Z, m, ~) = E E E m(4  5, 7~, z, m, n)(D(i ,  y,/~), (2) 
j' k 

where the W are weights that correspond to the volume of intersection of a given 
ray and voxel. Since it is both difficult and computationally slow to evaluate 
the weights W exactly, an approximation is made. 

W (i, j, k, l, m, n) -- ~ (l, i - /~ tan 0~ cos ¢~) ~ (m, j -- k tan 0,~ sin ¢,~) (3) 

where S is the Kronecker delta function and $(a, b) = 1 if a = b ~nd S(a, b) = 0 
if a ~ b. This is equivalent to the approximation made in most implementations 
of iterative algorithms (3). Essentially it includes only those voxels whose centers 
are contained within the ray. After applying this approximation, the above 
raysum equation reduces to 

K 
P(1, m ,n )  = ~, D( l - j - lc tanO,~cos¢ , , ,m~- lc tanO,~cos¢ , , ,# ) .  (4) 

k ~ - - K  

Note that 2K 9- 1 cells contribute to each raysum (Fig. 2). 
We now have a system of linear equations in which there are L × M X N 

equations in I X J X K unknowns. However, the normal methods of linear 
matrix dgebra are not particularly useful in solving these equations. For a typical 
problem with 12 projections of 55 X 55 points and a volume of 25 sections of 
55 X 55 points, the W matrix is of dimension 36,300 X 75,625. This represents a 
formidable task for even the largest computers. Furthermore, the problem is often 
underdetermined, as it is in the above example, so that a unique solution does 
not exist unless one specifies additional criteria such as minimum norm. :For an 
underdetermined system of equations there are an infinite number of solutions. 
However, there is only one for which the magnitude (Euclidean norm) of the 
solution is a minimum. This is called the minimum norm solution; it also is the 
minimum varianee solution. Tanabe [19] has shown that  the ART algorithm 
converges to this solution. Although it has not been proved, the other iterativc 
algorithms appear also to converge to this solution. 
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Re£onstr~ction 
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Fro. 2. Schematic representation of the reconstruction volume and a projection. The voxels 
shown are those intersected by the ray P (l, m, n) after making the approximation given in Eq. (3). 

Various iterative schemes have been developed to circumvent these difficulties. 
As noted, they all involve guessing at the densities D(i, j, k) and calculating 
raysums/~ (1, m, n) by using Eq. (4). The calculated raysums R (1, m, n) then are 
compared to the projection data P(l, m, n) and the errors are used to modify 
the density values. The procedure is repeated or iterated until the error terms 
drop below some predefined value. Summation and three iterative algorithms are 
now considered; the implementation for direct reconstruction from tomographic 
projections is briefly described below. 

3.1. Summation 

This algorithm, the simp]est approach, does not attempt to solve the equations 
exactly. I t  is included mainly for historical reasons, because it is a digital imple- 
mentation of conventional tomography. 

The density of a voxel is estimated by the average of all rays through the point. 

1 
D (i, j, k) = ~ P (i -- k tan 8~ cos ¢,, j - lc tan 0, sin ¢ n, n), (5) 

N ' ( 2 K  + 1) - 

N' is the total  number of rays intersecting the voxel and can differ from N. The 
factor N' (2K q- 1) scales the values so that  the total density of the reconstruction 
equals the total density of a projection. 

This algorithm has also been called back-projection, because it smears the rays 
back across the reconstruction volume. To see that  it produces a blurred recon- 
struction, consider the reconstruction of a point. For the specific case of circular 
tomographic projections discussed earlier, the reconstruction consists of a point 
with spokes radiating out conically. In fact, the point-spread-function always is 
a scaled version of the projection geometry. 

3.2. Algebraic Reconstrzeclion Technique (ART)  

The ART algorithm was first discovered by Kaczmarz in 1937 [20-7. He 
discussed it as a technique for solving a system of linear equations. I t  was dis- 
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covered independently and applied to image reconstruction by Gordon and 
coworkers [4] and by Honnsfield [21]. 

Assuming that  estimates of the densities D (i, j, k) exist, the raysums can be 
calculated as before 

K 

Rq,~(1, m, n) = ~ Dq.~(l + k tan O,, cos ¢, ,  m -t- k tan O~ sin ¢~, n). (6) 
k ~ K  

The superscript q, n refers to the qth iteration and the nth projection. The error 
term of any ray is 

Eq."(l, m, n) = P(l,  m, n) -- Rq.~(l, m, n). (7) 

The ray equation can be satisfied by adding the corrections to the D (i, j, k) along 
the ray such thai  the sum of the corrections equals Eq, ' ( l ,  m, n). Since no a priori 
knowledge exists regarding the source of the error, it is equally distributed to 
each voxe] along the ray. Hence, the density at the voxel is changed according to 

1 
V ~+~," (i, j ,  k) = Dq, ~ (i, j ,  k) + - - E ~ ,  ~ (i - lc tan O, cos ¢,,, 

(2K + i )  
j -- k tan O~ since, n). (8) 

All rays in a given projection are considered in turn, then other projections are 
chosen and the procedure is repeated for each. The raysum equations are satisfied 
only for the last projection used because changing the density values disturbs the 
raysums of other projections. Therefore, the entire process is repeated until some 
chosen error criterion is satisfied. 

8.8. Simultaneous Iterative Reconstruction Technique ( S I R T )  

SIRT (5) is a modification of ART that uses data from all the projections 
simultaneously. The value of a voxel is modified by the average error of all rays 
through the voxel 

1 
D '~+~ (i, j ,  k) = D'~ (i, j ,  k) = E ~" (i - k tan 8,~ cos ¢~,, 

N'  (2K q- 1) ,, 
j -- k tan 0,, sill ¢,,, n). (9) 

The factor 1 / N ' ( 2 K  + 1) distributes the error equally among all the points 
contributing to the summation. Note that the correction term corresponds to 
back-projecting the raysum errors. 

3.4. Iterative Least Squares Technique ( I L S T )  

Goitein [-63 derived an algorithm that minimizes the mean square error 
(residual) between the calculated raysums and measured projections. The residual 
after the qth iteration is defined by 

~q = ~ ~ ~ [P ( l ,  m, ~l) - R"(/, m, n)-]"~/a'~(/, m, ~l), (10) 
l m ~t 

where z2(/, m, n) is the vari~mce of the noise in the /, m, nth ray. Irl this imple- 
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mentation, it is assumed that the noise is additive with uniform variance. By 
following the derivation of Budinger and Gullberg [2] bu t  using this assumption 
instead of their assumption of Poisson statistics, we arrive at the  formula for the 
change in density 

ADq(i, j ,  It) = D~+~(i, j,  lc) - D~(i, j ,  k) 

1 
- ~ g"( i  -- 1~ tan 0,, cos tn, j - -  l~ t$1.n On sin qS,,, u). (11) 

Note that  this algorithm initially assigns all the error to the voxcl under con- 
sideration. Hence, the sum of the changes will exceed the sum of the errors and 
produce diverging behavior. Therefore, a damping factor/~ is introduced. It is 
chosen to minimize the mean square error between the new raysums and the 
projections 

R~+~(l, m, n) = ~ IDa(1 -b lc tan 0~ cos ¢~, m + k tan 0,~ sin tn, /~) 

-kflADq(l -f- k tan 0~ cos ¢,~, m -f k tan 0~ sin ¢~, lc)]. (12) 

Again following the derivation of Budinger and Gullberg, one obtains 

B -- Y'. ~ ~. [ E ~ ( l , m , n )  Y:. ADq(1 -b lc tan 0,~ cos t , ,  m -t- /ctan O.s in¢ , , , k ) ' ] /  
l m * /~ 

~ ~ lAD's( /+  lc tan 0,~ cos ¢,,, m -t- 1¢ tan 0,~ sin ¢,,, lc)] ~. (13) 

Each of the algorithms as presented is unconstrained, in that negative density 
values are permitted. Since density values cannot be negative, a constraint 
requiring the calculated value to be nonnegative can be introduced. Let/)q(i ,  j, k) 
be the adjusted density after the qth iteration; the constrained density value 
Dq(i,  j ,  k) is given by 

Dq(i, j,  k) = max[0,/~q(i, j,/~)]. (14) 

An algorithm using this procedure is partially constrained. A fully constrained 
algorithm would also require the density to be less than some maximum value. 

4. EXPERIMENT AND I~ESULTS 

4.1. Computer-Generated Synthetic Images 

In order to avoid the problems associated with testing algorithms on pseudo- 
projection (consistent) data a computer program to generate synthetic test 
images was written. The program calculates analytically the  projections of 
spheres for specified angles (0n, ¢,~). Calculation of the projections using the 
raysum equations generates data consistent with the equations and thus does not 
permit one to check the validity of the approximations associated with the 
weights W. I'¢econstructions using pseudoprojection data  are generally more 
exact than those using analytically calculated or experimentM data. Random 
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noise with either uniform or Gaussian distribution can be added to the  projections.  
The program also generates test images or "ideal" reconstructions [5]  to  be used 
for comparison with the reconstructions. To test the algorithms, three series of 
projections were generated. In each, the reconstruction volume was par t i t ioned 
into 25 sections of 85 × 85 points. The  projections were digitized to 55 × 55 
points. 

The first test series consists of two spheres surrounded by a shell. The  shell is 
se~ at  density 1 5 0  and the spheres at density 1 2 5  and 175. The outer radius of 
the shell is 11 units and the radius of each sphere is 2 units. Th e  background 
density is 50. Thus,  the mean object-to-background density is 3 to 1, correspond- 
ing roughly to the densi ty range for stained biological material as viewed b y  
electron microscopy. In  the second test series, there are nine spheres of different 
size and density. The densities range from 45 to 95 and the radii fi-om 2 to  7 units  
with the background density set a~ 20. A third series consists of uniform gray  
projections to which random noise was added. The noise is Gaussian dis t r ibuted 
with zero mean and coefficient of variation equal to 5, 10, and 20o/o. The coefficient 
of variat ion is the  s tandard  deviation expressed as percent  of the mean. 

The choice of reconstruction volume deserves some consideration. An extended 
field, in which the i and j dimensions are greater than the corresponding project ion 
dimensions, is required if every projection does not include the entire object under  
study, i.e., if outer  rays are excluded from the field of view. Such situations arise 
in the electron microscopy of tissue sections if only a subarea is being reconstructed 
and in nuclear medicine if the field of view of a scintillation camera is less t h a n  
the width of the  patient.  For such extended fields, the  reconstruction volume 
consists of three regions (Fig. 3). All the voxels in the central region are inter-  
sected by the same number  of rays, voxels in region 2 are intersected by a variable 
number of rays, and voxels in region 3 are not intersected by  any rays. Note  the  
problems tha t  could arise if other choices were made. For  example, if the  size of 
the reconstruction section was equated to the projection size, any density occur- 

j 
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I / I 
C e n t r a l  r e g i o n  5 ', 
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\ \ 
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\ \ 
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Fro. 3. l~eeonstruct.ion volume showing the extended field. All the voxels ill the central region 
(region 1) are ir~ersec~ed by the same nuinber of rays; voxels in region 2 are intersected by 
varying number of rays; and voxcls in region 3 '~re not intersected by any r~ys. Densities in region 
2b (shaded) would be "folded back" if the extended field were not used. 
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ring in region 2b could be "folded back" into the central region. Of course, the 
reconstruction is only meaningful in the central region. 

All the reconstruction calculations were done on a CDC-7600 computer using 
integer arithmetic. Considerable savings in computer memory were obtained by 
storing the reconstruction, projections, and some of the auxiliary arrays as 12-bit 
words, 5 to each 60-bit computer word. 

Several error measures can be used to evaluate the reconstructions. Detailed 
discussions of most of the criteria are given in Herman [22J. Since discrepancy, 
a normalized Euclidian distance function, was ~ound to be the most useful measure 
of performance, it is the only one used in this paper. Discrepancy is defined as 

~(q) = ~)-~ ~ ~, (D~(i, j, k) -- T(i,  j, k ) )2 /~  ~ ~ (T(i, j, k) -- T)~]~, (15) 
i k i j k 

where Dq is the reconstruction density at iteration q, T is the density of the test 
image, and T is the mean density of the test image. The numerator is the root- 
mean-square error and the denominator is the standard deviation of the test 
picture. A value greater than one indicates that  a uniform gray image is closer 
to the test image than is the reconstruction. 

The results of three experiments are now presented. In the accompanying 
illustrations, the reconstructions are represented only by the central 55 × 55 
points of each section. The sections are displayed left to right and top to bottom 
so a ~hree-dimensional object can be constructed by stacking the sections. Each 
picture was scaled and displayed with 64 gray levels so the contrast varies 
depending on the maximum value. For the iterative algorithms 15 iterations were 
calculated. 

4.2. Comparison of 2-D and 3-D Reconstruction 

Two projection geometries are compared for the partially constrained sIrCT 
algorithm. The linear case consists of 12 projections equally spaced between 
±45 °. This geometry is particularly interesting because it yields projections that  
correspond to the weighted coaxial projections of Gordon et al. [-41 and the 
concentric-squares raster of Mersereau E18~. Hence one can compare direct 3-D 
reconstruction with serial 2-D reconstruction using the same test images. The 
cfl'cular case consists of 12 projections at a displacement angle of 30 ° and a 
tomographic angle of 45 °. The reconstruction of the shell-surrounded spheres by 
these two projection geometries are shown in Figs. 4a and 4b. Fifteen iterations 
were calculated. Both reconstructions give what appear to be blurred approxima- 
tions of the original. The shell and spheres are clearly delineated in each; the 
reconstruction using the circular projections has better definition with a less 
pronounced background artifact. The shell extends into the upper and lower 
sections indicating an elongation in the vertical (k axis) dfl'ection. The elongation 
is greater for the reconstruction using the linear projections (Fig. 4a), since for 
this reconstruction the two spheres are also visible in the central section. Note 
tha t  for the linear projections, some sections of the shell do not appear circular, 
particularly in the top and bottom sections. The same general comments also 
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TABLE 1 

Discrepancy Measures for Linear and Circular Geometries ~ 

Geometry Shel l -  Multiple 
surrounded spheres 

spheres 

Linear 0.77 0.75 
Circular 0.61 0.65 

Values are after 15 iterations of SII~T. 

apply to the reconstructions of the multiple spheres test series. Both  reconstruc- 
tions are blurred approximations of the original. With  the linear projections 
(Fig. 4c) there is considerable elongation of the spheres in the vertical direction, 
an artifact tha t  is less pronounced with the circular projections (Fig. 4d). 

Discrepancy measures for these reconstructions are given in Tab le  1. For  both 
test series the discrepancy is lower for the reconstruction from circular proj ections, 
indicating a more exact reconstruction. A value of zero corresponds to complete  
agreement;  it is not  obtained in practice because of the approximations made in 
deriving the weights. As noted earlier, a value greater than  one indicates t h a t  a 
uniform gray image is a bet ter  approximation to the tes~ image than is the  
reconstruction. 

4.3. Number of Projections 

The effect of the number  of projections on the quality of the reconstructions is 
examined using the part ial ly constrained SIP~T algorithm and considering 6, 12, 
18, and 24 synthetic  circular projections. All projections are at a tomographic 
angle of 45 ° . The  reconstructions for the shell-surrounded spheres are shown in 
Fig. 5. The  shell and spheres are visible in each reconstruction but  are be t te r  
delineated as the  number  of projections increases. The leaf pa t te rn  that  appears 
as a background artifact results from using a limited number  of proiections;  it 
decreases with increasing number  of projections. Similar results are obtained with 
the multiple spheres test  series (not shown). Discrepancy values for these recon- 
structions are given in Table  2. For  both test series, the largest decrease in value 

TABLE 2 

Discrepancy Measures vs Number of Projections a 

No. of She l l -  Multiple 
projections surrounded spheres 

spheres 

6 0.66 0.67 
12 0.61. 0.65 
18 0.60 0.65 
24 0.59 0.65 

" Values are after 15 iterations of SIRT. 
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TABLE 3 

Computer Time (One Iter~iion) and Memm'y t~equirements of the Four Al~;orithms 

Algorithm Computer 
time 
(see) 

Computer storage reqldrements 

Reconstruction Projection Total 
arrays urrays 6O-bit words 

Snmrnation 3.0 1 1 43,385 
ART I I..8 l 1. I" 44,111 
8IRT 5.4 I 2 50,645 
ILST 8.8 2 3 94,030 

,' AI~T aelually requires only 1 + 1/N where N is the number of projections. 

occurs between 6 and 12 projections; little improvement is obtained by adding 
additional projections. 

4.4. Comparison of Algorithms 

T h e  performance  of the four  algori thms summation,  Al tT ,  S I l tT ,  and I L S T  
are compared  using the three series of synthe t ic  images described above. Each  
series consisted of 12 projections with a displacement  angle of 30 ° and a tomo-  
graphic  angle of 45 ° . 

T h e  compute r  execution t imes and m e m o r y  requirements  for the  a lgor i thms 
are given in Tab l e  3 ; the t imes are for one i terat ion of the algorithm. T o t a l  t ime, 
a more  i m p o r t a n t  parameter ,  depends on the number  of i terat ions required for 
convergence.  An indication of this p a r a m e t e r  can be obta ined by  p lo t t ing  dis- 
c repancy  as a funct ion of i terat ion (see Fig. 6). The  A R T  algorithm, a l though  the 
slowest  per i teration, converges in the fewest  iterations. However ,  these t imes  are 
v e r y  much compute r  and p r o g r a m m e r  dependent .  The long i tera t ion t ime for  the 
A R T  algori thm results f rom randomly  accessing the by t ed  reconstruct ion ar ray .  

1.0 

0.9 ! 

m .~0.7 

0.6 

0.5 

~ I  I 1 i I 1 1 1 1 I I I 

I J  I f I [ I I I [ I [ I 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

I t e r a t i o n  

Fro. 6. Convergence of the iterative algorithms is indicated by plotting discrepancy as a func- 
tion of iteration number. The At~T algorit, hm converges in the fewest iterations; SIRT requires 
the most it.er~tions for convergence. Discrepancy is the root-mean-square error between the 
reconstrucLion and the test image normalized to the standard deviation of the test image. 
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I t  is not a problem if the array is accessed sequentially which is the ease for the 
other algorithms. Storage requirements are specified by enumerating for each 
algorithm all of the arrays equal in dimension to the reconstruction and projection 
arrays (Table 3). The total storage requirements in 60-bit computer words are 
given also. The storage requirements of summation, ART, and SIRT are com- 
parable ; ILST requires approximately twice the memory of the other algorithms. 

The algorithms are partially constrained for the shell-surrounded spheres and 
multiple spheres test series but are unconstrained for the noisy-test series. For 
the iterative algorithms, the initial guess is taken to be the reconstruction using 
summation. This differs from the procedure described previously [23]. Setting all 
voxels to zero or to the average density produces equivalent results with one 
exception. The ART algorithm with an extended field produces disturbing edge 
effects if the initial guess is zero. 

The reconstructions for the shell-surrounded spheres are shown in :Fig. 7. All 
the algorithms gave reconstructions that appear to be blurred approximations of 
the original. The shell extends into the upper and lower sections indicating an 
elongation in the vertical direction. The two inner spheres are cle,My delineated 
by the three iterative algorithms, but not by summation. The reconstruction 
using ART shows the most detail. There appears to be little difference between 
SIRT and ILST in the quality of reconstruction, although the 12-leaf pattern 
around the shell is more pronounced in the ILST reconstruction. This pattern is a 
low-intensity artifact that results from the limited number of views j it can be 
removed by varying the threshold for the image. Discrepancy values for the 
reconstructions are given in Table 4. For the iterative algorithms, the values are 
for the 15th iteration. The measure confirms the visual interpretation of the 
reconstructions; the ART reconstruction has the lowest value, the ILST is the 
nex~ best. The values for summation are considerably higher than those for the 
iterative algorithms. 

The reconstructions for the multiple-spheres test object is shown in Fig. 8. In 
general, the comments about the shell-surrounded spheres apply to this series 
also. All the algorithms produced bhm'ed approximations of the original; sum- 
mation gave the most blurring. The reconstruction using ART showed the most 
detail. Again, the background artifacts were less pronounced with SIRT than 
with ILST. The discrepancy measures are given in Table 4. This measure pre- 

TABLE 4 

Discrepancy Measures for Algorithms 

Algorithm Shell- M~fltiple 
surrounded spheres 

spheres 

Summation 0.85 0.88 
ART 0.56 0.63 
SIP~T 0.(~i 0.65 
ILST 0.58 0.64 
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TABLE 5 

Noise Amplification Factor of Reconstruct.ions Using Noisy Projections" 

Algorithms Noise amplification factor' 

5% lo% 2o% 

Summation 0.30 0.33 0.30 
AP~T 2.62 3.43 --" 
SII~T 0.58 0.84 1.36 
ILST 0.98 2.20 --" 

The noise amplification factor is the rat~io of the coefficients of variation for the reconsl~ruetions 
and projecl~ions. For the iterative algorithms, values ~re ~ffter 15 iterations. 

The bhree different noise levels are expressed ms coelticients of w~riation (C.V.) of the pro ieetion. 
Since noise h)r a lower noise level was amplified, Lhis wfiue wins not. c~ficuh~ted. 

ferred AI~T, but the difference between it and the other iterative algorithms is 
not as gl'ea~ for this test series. 

The noisy-test series w~s used to deduce the effects of noise on the algorithms. 
For unconstrained algorithms the reconstruction process is a linear oper'.~tion and 
the effects of additive noise can be considered separately. This can be accomplished 
by inputting projection data consisting of pseudor,mdom Gaussian variables 
superimposed on a uniform background level. The coefficient of w~riation of the 
reconstruction is then ~ numerical factor by which the noise in the projections is 
increased or decreased by a given algorithm. Table 5 presents the noise amplifica- 
t ion factor which is defined as the C.V. (coefficient of vt~riation) of the reconstruc- 
t ion divided by the C.V. of the projections; w~lues greater than one indic~te noise 
amplification. With summation and SIRT, the noise level of the reconstruction is 
better than that  of the projections, except that  SIRT amplified the 20% noise. 
The  ILST performed well for the 5% noise but amplified the 10% noise. ART 
amplified projection noise at both levels tested. 

5. DISCUSSION AND CONCLUSIONS 

This paper considers several aspects of the problem of performing direct three- 
dimensional reconstruction. In particular, iterative algorithms are extended to 
perform reconstructions from tomographie projections and an experimental 
investigation uses computer-generated synthetic images to compare the tech- 
niques. Rather than employ coaxial projections for their computational simplicity, 
it was decided to use true three-dimensional data. This posed a complex com- 
putational problem, but it offered several advantages, principally by increasing 
the flexibility of data acquisition. For the particular method of data collection 
employed (tomographic projections), the iterative algorithms appeared to be the 
most promising since they a'e the easiest to adapt to this projection geometry. 
Although it has not been demonstrated in this context, it appears that  additional 
constraints could be inb'oduced into this algebr~ic formulation. For example, 
Kash-~p ~md h~[ittal [24] consider minimum norm and COl~tinuity. Another 
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possible constraint is maximum entropy. This may be useful for underdetermined 
systems. 

An experimental investigation was undertaken, because there is no acceptable 
theoretical basis on which to compare the techniques. This investigation con- 
sisted of three separate experiments. In the first experiment, reconstructions from 
circular projections were shown to be superior to the reconstructions from linear 
projections, verifying the hypothesis that true 3-D reconstruction is usefut when 
the range of viewing angles is limited. This is not surprising, since circular projec- 
tions span a wider range than the linear projections and hence introduce more 
"independent" information. This agrees with observations using coaxial projec- 
tions [-25~ in which it was found that the range of viewing angles is more important 
than the number of views. 

The superiority of circular projections is important for several applications in 
which the range of viewing angles is limited. Even though tilting stages capable 
of 180 ° rotation have been constructed for electron microscopes, views at large 
angles of tilt are useless since the electron beam intersects the supporting grid. 
Also, experimental setups in holographic interferometry that  allowed a 180 ° angle 
of view would be very complex and require numerous optical components. In 
addition, if an enclosed test ceil is required, it is a formidable task to design a 
cell which does not introduce severe optical distortions and which avoids multiple 
reflections at the glass/air interface. In these eases it is more important to devise 
reconstruction schemes that make maximum use of the available information 
and forgo the computational simplicity of coaxial projections. 

In the second experiment, reconstructions were done from a varying number 
of projections. The purpose was to determine the number of views required for 
• ~ satisfactory reconstruction and in some sense to determine the resolution of the 
reconstruction. For the quantization used in the reconstruction, 12 views seem 
suftleient ; little detail is gained with additional projections. However, this experi- 
ment does not directly address the question of resolution. Since there is blurring 
in the vertical direction, the resolution is obviously not isotropie. Furthermore, 
simply stating that  spheres of a certain diameter appear in the reconstruction is 
also unsatisfactory, since their appearance or nonappearance depends on the 
contrast and complexity of the image. An appropriate experiment would permit 
frequency limits to be specified and the results to be expressed in terms of the 
system transfer function. 

Finally, reconstructions were also calculated by means of four different algo- 
rithms. The results obtained are subject to many interpretations depending on 
the application and its requirements. Summation always produced a blurred image 
and is generally not considered useful for digital reconstruction. I t  can be imple- 
mented more conveniently by  analog methods, as it is in radiography. The AI~T 
requires the  ]east computer memory and converges in the fewest iterations. How- 
ever, it is very sensitive to noise. Modifications of the AIt~T algorithm to handle 
noise have been made by Herman [-26], but they were not implemented for 3-D 
reconstruction. Further testing of the ART algorithm with these modifieations 
might be justified where computer storage is a problem. 

The reconstructions using the SIRT and ILST algorithms were similar, with 
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the discrepancy measure favoring ILST.  Nonetheless, there are two reasons for 
favoring g I R T :  It  requires considerably less computer  memory  than  ILS T  and 
performs considerably bet ter  with the noisy-test  series. Since m an y  applications 
deal with noisy projection data, this is perhaps an overriding reason for preferring 
the g IRT algorithm. 

The methodology developed for these analyses can be extended to any  recon- 
struction algorithm. Proper testing of any  new algorithm requires procedures 
similar to those employed in this investigation. At a minimum, tes t  objects 
representative of the objects one encounters in practice should be reconstructed 
for varying numbers of projections, projection geometries, and noise levels. The 
importance of noise cannot be overestimated. Other experimental  conditions as 
determined by  the application should also be considered. 

Since many existing experimental setups can collect tomographie projections, 
the reconstruction methods developed here for synthetic  images can be extended 
to electron microscopy, nuclear medicine, and other applications of practical 
importance. 
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