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<function>' in the command line.  
 
The graphical user interface has its own, built-in helps. Further 
information is available from  http://elecwww.vub.ac.be/fdident/.  
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Modern system identification methods heavily use matrix 
calculations, usually based on complex numbers. Therefore, 
algorithms for system identification can be very effectively 
implemented in MATLAB. Its interactive environment and the 
graphics possibilities offer an easy-to-use and flexible tool for 
specific applications and for further development of the 
implemented methods. This toolbox is a collection of frequency 
domain system identification procedures, covering the 
wholeidentification process from excitation signal design, 
through data preprocessing, parameter estimation, graphics 
presentation of the results, to model verification. 
 

Installation of the Toolbox 
 

Installation instructions come from the distributor or along 
with your electronically downloaded software. Demonstration 
are most easily available through the graphical user interface. 
Start this by typing  fdtool, the demonstrations are accessible 
under the help menu. 
The demonstrations recalculate several of the results given in 
the book of Schoukens and Pintelon, Identification of Linear 
Systems: A Practical Guideline for Accurate Modeling, 
London, Pergamon Press, 1991. 
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Introduction
Introduction
Identification means determining models of physical systems from noisy 
measured data. Since the modeling of nature is the basis of our understanding 
of the world, identification methods have applications in virtually every field of 
sciences, especially technical ones.

One of the most often used models for dynamic physical systems is an ordinary 
linear differential equation with constant coefficients. This model appears in 
the same mathematical form in very different fields. Thus, the common 
properties of these equations, and the measurement and estimation procedures 
of their coefficients can be treated independently of the dimensions of the 
physical quantities. This is done in the frame of linear system theory.

Linear dynamic systems have two equivalent descriptions: in the time domain 
(differential equations), and in the frequency domain (transfer functions in the 
f-domain or in the s-domain). Also the discrete-time descriptions exhibit this 
duality: difference equations are equivalent to the z–domain transfer functions.

Time domain and frequency domain have different advantages and 
disadvantages, they are in several respects complementary to each other. 
Engineers often prefer frequency domain descriptions, because of the following 
reasons:

• While the solution of a differential equation needs convolution in the time 
domain, this convolution is substituted by simple multiplication in the 
frequency domain. This often makes it possible to explain system behavior in 
a visual way.

• It is often possible to decompose signals/noises into different frequency 
bands. Signal-to-noise ratios can often be improved in the frequency domain 
by choosing appropriate bands, and an occasional dc offset can also be easily 
removed. Moreover, the energy (power) of periodic signals is concentrated to 
discrete points in the frequency domain. Thus, frequency domain is very 
selective with respect to periodic components.

• By selecting the Fourier coefficients of the appropriate frequency band only, 
significant data reduction can be achieved.
1-3
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• It is often easier to calculate accurately a good model of a 
(continuous-domain) physical system in the s-domain, using a digital 
computer, than in the time domain. Continuous-time linear systems can be 
modeled without systematic errors by difference equations, if the excitation 
is piecewise constant (Ljung, 1987). If this  assumption is not met, modeling 
errors are introduced, resulting in a limited accuracy of the results.

• The attainable dynamic range is usually significantly larger in the frequency 
domain than in the time domain.

• Slight nonlinearities are easier detected and measured by frequency domain 
methods.

• FFT is a very powerful tool for fast time domain to frequency domain 
conversion, and thus, e. g., the evaluation of a correlation function is much 
quicker via the frequency domain, than directly in the time domain.

On the other hand, time domain has also important advantages:

• It is very “natural” to deal with time domain signals (although after some 
practice, even the two-sided frequency axis becomes very visual, too).

• Recursive methods often provide on-line calculation possibilities.

• Time varying systems are easier modeled in the time domain.

• The transient behavior of systems can be directly measured in the time 
domain.

• Time domain digital methods are not very sensitive to the type of the signal, 
while frequency domain methods suffer from leakage effects when 
non-periodic signals are processed.

• Certain nonlinearities (clipping, slew rate etc.) are easier detected in the 
time domain.

Although the two descriptions are basically equivalent to each other, the 
formulation of the identification problem leads to very different methods in the 
two domains. Thus, time domain identification methods and frequency domain 
identification methods form two distinct groups.

Time domain methods are covered by several books, and a comprehensive 
System Identification Toolbox is available for MATLAB. However, frequency 
domain parametric methods are usually not treated, and these are not 
incorporated in the System Identification Toolbox.



Introduction
This Frequency Domain System Identification Toolbox has been written to fill 
this gap. It is based mostly on the book of Schoukens and Pintelon (1991), and 
covers the whole identification procedure from excitation signal design through 
data preprocessing and system parameter estimation to model validation. It is 
also possible to convert identified parameters to the System Identification 
Toolbox and vice versa.

The Tutorial chapter contains the essentials for the use of these methods, thus 
the toolbox can be used in its own right. However, for a more profound 
understanding of the methods, the book of Schoukens and Pintelon is highly 
recommended.

MATLAB proved to be an ideal frame for all these methods, because most 
algorithms are based on complex vector/matrix calculations and array 
manipulations, and since interactive graphical checking of the results is often 
essential. MATLAB also provides an easy-to-use environment for the 
embedding of the prepared routines into a dedicated program, written for use 
in a given field. Thus, the use of the toolbox may be twofold: it can be used as a 
tool for the design and evaluation of experiments, and also as a frame to check 
ideas before writing a lengthy special-purpose measurement and data 
processing program.

The demonstrations accompanying the toolbox are not merely illustrations to 
the use and the power of the functions, but also work with the measured data 
used in the examples of Schoukens and Pintelon. Thus, the toolbox is an ideal 
supplement to the book.

The author of this toolbox is very much indebted to Johan Schoukens and Rik 
Pintelon for long and fruitful discussions on the implemented methods, and 
also to the Vrije Universiteit Brussel and to the National Fund for Scientific 
Research of Belgium for providing the conditions of this project.

Thanks are due also to Yves Rolain, Patrick Guillaume, Hugo Van hamme, 
Béla Pataki, Tadeusz Dobrowiecki, Frank Louage, Françoise Renneboog and 
Johan Top for their useful suggestions and remarks.

Budapest, Aug. 23, 1993.

István Kollár
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Frequency Domain Formulation and Solution

Basic Concepts
A general model used in the frequency domain identification of dynamic linear 
systems is shown in Figure 2-1. The system is represented by its transfer 
function H(Ω), where Ω = s = jω = j2πf in the Laplace-domain, or 
Ω = z-1 = exp(–jωTs) in the z–domain, respectively, and H is a rational form, 
eventually extended by a delay term, (see Equation (1).

Figure 2-1:  The general model used in frequency domain system 
identification.
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Frequency Domain Formulation and Solution
(1)

The excitation signal has complex amplitudes Xk at angular frequencies ωk, the 
response of the system is Yk = H(Ωk)Xk. The measured input and output 
complex amplitudes are both corrupted by noises Nx and Ny 
(errors-in-variables model), which are usually assumed to be Gaussian, 
uncorrelated between input and output, and also uncorrelated between 
different frequency points. Input-output correlation may also be considered, 
see Equation (14) later in this chapter.

Measurements are made at angular frequencies ωk, k = 1...F, the measured 
complex input and output amplitudes are Xmk and Ymk, respectively. The 
unknown parameters are those of the transfer function (vector P), and the 
complex input and output amplitudes (vectors X and Y). The basic equations 
can be written as

(2)

and

(3)

Assuming that the noise on the complex amplitudes is Gaussian and 
uncorrelated, its joint probability density function can be written as

(4)

where NRxk, NIxk, NRyk and NIyk are the real and imaginary parts of the input 
and the output noise samples, respectively. N is the complex conjugate of N, σxk 
and σyk are the corresponding standard deviations, Nx and Ny denote the

H Ω( ) e
j– ωTd

b0Ω0
b1Ω1 …bnnΩnn

+ +

a0Ω0
a1Ω1 …andΩnd

+ +
----------------------------------------------------------------=

Yk H Ωk P( , )Xk    k 1 2…F,,=,=

Ymk H Ωk P( , ) Xmk Nxk–( ) Nyk+    k 1 2…F,,=,=

p Nx Ny( , ) =

1

2πσxk
2

---------------
k 1=

F

∏ exp
NRxk

2
NIxk

2
+

2σxk
2

-----------------------------–
 
 
  1

2πσyk
2

---------------
k 1=

F

∏ exp
NRyk

2
NIyk

2
+

2σyk
2

-----------------------------–
 
 
 

=

1

2πσxk
2

---------------
k 1=

F

∏ exp
NxkNxk

2σxk
2

------------------–
 
 
  1

2πσyk
2

---------------
k 1=

F

∏ exp
NykNyk

2σyk
2

------------------–
 
 
 

=
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vectors formed of Nxk, Nyk, respectively. Here the input and output noises are 
assumed to be uncorrelated. Correlatedness will be considered later in this 
section.

By expressing the noise variables in (2.3) by Xmk and Xk (Nxk = Xmk-Xk, NRxk = 
XRmk-XRk etc.), and taking the logarithm, with the assumption that σx and σy 
are known from a preceding noise analysis, the log-likelihood function is 
obtained:

(5)

X, Y and P are not independent of each other, since Equation (2) must be 
fulfilled.

The maximization of Equation (5) is equivalent to the minimization of

(6)

subject to the constraints

(7)

The constraints can be substituted into Equation (6), to eliminate Y. The result 
is a nonlinear weighted least squares problem. Since generally we are not 
interested in X either, a better way of the minimization of Equation (5) with 
the constraints Equation (7) is to use the Lagrange multiplier technique to 
eliminate both X and Y. Fortunately, X, Y and the multipliers can really be 
eliminated, and the following expression is obtained for minimization:

(8)

where N(Ω,P) and D(Ω,P) are the numerator and the denominator of the 
transfer function, respectively.

ln L X Y P, ,( )( ) =

const
Xmk Xk–( ) Xmk Xk–( )

2σxk
2

-----------------------------------------------------
 
 
 

k 1=

F

∑–
Ymk Yk–( ) Ymk Yk–( )

2σyk
2

----------------------------------------------------
 
 
 

k 1=

F

∑–=

CLS X Y P, ,( )
Xmk Xk–( ) Xmk Xk–( )

2σxk
2

-----------------------------------------------------
 
 
 

k 1=

F

∑
Ymk Yk–( ) Ymk Yk–( )

2σyk
2

----------------------------------------------------
 
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 

k 1=

F

∑+=

Yk H Ωk P( , )Xk= k 1= 2…F,,

C P( ) 1
2
---

e
j– ωkTdN Ωk P( , )Xmk D Ωk P( , )Ymk–

2

σyk
2

D Ωk P( , )
2 σxk

2
N Ωk P( , )

2
+

------------------------------------------------------------------------------------------
k 1=

F
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Frequency Domain Formulation and Solution
The cost function in Equation (8) may look somewhat strange. However, a quite 
simple explanation of the underlying idea can be given as follows. This is by no 
means a proof of the maximum likelihood nature of the estimate, but can help 
to understand its structure.

A “natural” way of developing an appropriate estimate of the transfer function 
is to minimiz

(9)

This is a weighted least squares type cost function. The weights have to be 
chosen equal to the variances of the terms whose absolute values are taken, in 
order to have an approximately chi-squared cost function. (The chi-squared 
cost function is the one usually obtained in maximum likelihood estimations for 
Gaussian data.)

The problem is that the terms between the absolute value signs are not any 
more Gaussian distributed because of the division by Xmk, moreover, the 
division makes the distribution asymmetric, introducing a bias. So this is not 
a proper way to obtain a cost function that provides high accuracy.

An alternative formulation for avoiding division is to investigate the terms in 

(10)

For zero noise, and a proper model, this expression equals zero. The terms are 
Gaussian, and independent of each other, so if the proper weights Wk can be 
found to form a chi-squared cost function, minimization of this may provide a 
good estimate.

Since

(11)

we are looking for the variances of the remaining terms

(12)

Ctf P( ) 1
2
--- Wtfk e

j– ωkTd
N Ωk P( , )

D Ωk P( , )
--------------------

Ymk

Xmk
---------–

2

k 1=

F

∑=

CWLS P( ) 1
2
--- Wtfk e

j– ωkTdXmkN Ωk P( , ) YmkD Ωk P( , )–
2

k 1=

F

∑=

e
j– ωkTdXkN Ωk P( , ) YkD Ωk P( , )– 0=

ek e
j– ωkTdNxkN Ωk P( , ) NykD Ωk P( , )–=
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The variances are equal to

(13)

for independent Nxk and Nyk . Setting Wk =1/var{ek}, the cost function Equation 
(8) of ELiS is obtained. For correlated input-output noise, a more general 
weighting can be developed (see Equation (14)).

Since Equation (8) is a sum of quadratic terms (though nonlinear in P because 
of the denominators), C(P) can be minimized using powerful numerical 
techniques developed for nonlinear least squares problems (Newton-Gauss 
method, Levenberg-Marquardt method). This can be done in complex terms, 
paying attention to maintain that the elements of P are real, or alternatively, 
Equation (8) can be written as a sum of squared real terms. Because both N and 
D are linear in P, the cost function is insensitive to the multiplication of P by 
a scalar. Therefore, an additional constraint has to be introduced in order to 
obtain a well-defined solution: e. g., the norm of the vector P, or the value of at 
least one nonzero parameter can be fixed.

In order to obtain starting values for the iteration, the sum of the numerators 
in Equation (8) can be minimized. This is an ordinary linear least squares 
problem, having a unique solution, and can be readily solved by standard 
procedures. However, this LS step does not provide any information on the 
delay Td, thus an initial value has to be given by the user.

In the following sections the above described estimator will be referred to as 
ELiS (Estimator for Linear Systems).

Input-Output Correlation
An even more general approach is to assume that the input and output noises, 
belonging to the same frequencies, may be mutually correlated. This 
correlation can be the result of different sources:

• The input signal of the system can be noisy. In this case the noise is no more 
an observation noise, since it excites the system under test, and the output 
noise is at least partly produced from the input noise. A preceding noise 
analysis, assuming observation noises only, gives too large input and output 
variances, and without introducing a correction, leads to an erroneous cost 
function. Considering input/output noise covariance, this error source can be 
corrected for.

var ek{ } E NxkNxk{ } N Ωk P( , )
2

E NykNyk{ } D Ωk P( , )
2

+=

2σxk
2

N Ωk P( , )
2

2σyk
2

D Ωk P( , )
2

+=



Frequency Domain Formulation and Solution
• When the system under test is inside a feedback loop, the process noise is at 
least partly led back to the input, resulting in a noisy excitation1.

• The excitation signal generator may produce slightly unstable amplitudes, a 
phenomenon that can be considered by an additive noise at the input.

• Slight synchronization imperfections of measurements may virtually 
increase the instability of Fourier coefficients, an effect that can also be well 
compensated for by considering the input/output correlation. (Strictly 
speaking, this is a kind of phase noise that may violate the complex Gaussian 
assumption. ELiS will not be a maximum likelihood estimate any more, but 
since it is also a least squares estimator, robust with respect to the noise 
distribution (see the “Key Features of ELiS” on page 2-10), it will still 
perform well.)

It can be shown that for consideration of the covariances, the cost function 
must be modified as follows:

(14)

with

(15)

and

(16)

1. R. Pintelon, P. Guillaume, Y. Rolain and F. Verbeyst, “Identification of Linear Sys-
tems Captured in a Feedback Loop,” IEEE Trans. on Instrumentation and Measure-
ment, Vol. 41, No. 6, pp. 747-754, Dec. 1992.

C P( ) 1
2
---

e
j– ωkTdN Ωk P( , )Xmk D Ωk P( , )Ymk–

2

σyk
2

D Ωk P( , )
2 σxk

2
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Covariance of the Estimate
The above estimator is a maximum likelihood one in the Gaussian case. 
Practice shows that the covariance matrix is usually  close to the corresponding 
Cramér-Rao lower bound. Let us maintain the constraints Equation (7) during 
the derivations. In this case the Cramér-Rao bound is

(17)

where T denotes the transpose of the row vector, and X, Y and P denote the 
true (exact) values.

Equation (17) has an alternative form: 

(18)

which gives the very same values as Equation (16). The lower bound is 
asymptotically approximated when the number of observations is large, or 
when the signal-to-noise ratio is large.

Since we are interested in the covariance matrix of PML only,  it is desirable to 
bring Equation (17) or Equation (18) into a form that does not contain the 
covariances of XML. After a long derivation, the following expression can be 
obtained:

(19)

An alternative form can be given as follows. The cost function can be expressed 
as 

(20)

with the elements of the error vector EScm being,
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Frequency Domain Formulation and Solution
(21)

see Equation (8) and Equation (14), and the second derivative is

(22)

With the substitutions Xm =X, Ym =Y made,  we will denote the noise-free 
error vector as ESce. This still depends on the parameter vector P. For P=Ptrue 
the elements of ESce are all zero,  since the true values of the parameters 
satisfy the system equation, so the second sum in Equation (22) disappears, 
and Equation (19) becomes:

(23)

The problem with Equation (19) or Equation (23) is that  the exact values Ptrue, 
X and Y are not known in practice. When the noise on the measured complex 
amplitudes is small, these expressions can be well approximated by leaving Xm 
and Ym  alone, and substituting PML for P.

The above statements are true when the system under test can be perfectly 
modeled by the given model structure (rational form in s-domain or in 
z-domain, with given orders, maybe with a given delay). If this is not true 
(which is the case in a few practical cases when an approximate model is 
identified, e. g., for the approximate description of a distributed system), the 
estimate is not a maximum likelihood one any more, and the above variance 
expressions cannot be used. In such a case the approximate covariance matrix 
can be given as follows.

The uncertainty of the estimated parameters is due to the noise on the 
measurements. Random deviations from the mean values are due to the fact 
that the parameters are selected for each noise record to minimize the actual 
cost function C. Therefore, the variations of the parameter values directly 
depend on the variations of the complex amplitudes (through the cost function 
C), caused by the noise. For large signal-to-noise ratio let us develop the cost 
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function into Taylor series around the true values X, Y and the expected value 
of  PML, in terms of the noise and in terms of the parameters,  respectively. By 
comparing the two series up to the second-order terms (the first series is 
second-order, anyway), it is obtained that 

(24)

with

(25)

The approximation of this expression is implemented in elis. Since the exact 
values are not known, Xm, Ym, and the estimate PML are used instead. The 
second term of Equation (25) will usually be small if no systematic modeling 
errors are present, thus it will not introduce a serious error, especially since the 
substitutions Y~Ym , etc., also mean approximations in the same order of 
magnitude. A heuristic argument is that E{EScm} equals zero, and EScm is 
small and more or less independent from the second derivative, so the 
summation effectively averages out the random terms. 

Serious model errors will cause a significant difference between Equation (24) 
(Cp) and the approximation of Equation (19) (CR), this is why both quantities 
are calculated in elis.

Key Features of ELiS
ELiS has been developed to handle the most important practical situations. 
First of all, it takes into consideration both input and output observation noise. 
These noises are present in every situation when both the input and the output 
signals are measured, e. g., quantization noise can be taken into consideration 
by ELiS very easily. Disregarding the input noise — a common practice in 
identification — can lead to severe modeling errors.

However, if the input observation noise is for some reason negligible, this can 
also be taken into consideration by setting σxk = 0.

The use of measured input and output signals has the advantage that only 
relative calibration of the measurement channels is necessary: as long as the 
transfer functions of the two channels are close to each other, their 
imperfections do not cause additional errors.
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Frequency Domain Formulation and Solution
In the maximum likelihood approach it was assumed that the frequency 
domain noise is Gaussian. This is not a severe restriction, because signals are 
usually measured in the time domain, and it is easy to see that the DFT, which 
is the commonly used procedure to obtain complex amplitudes, leads to 
approximately Gaussian frequency domain noise, even if the time domain noise 
is not Gaussian. Moreover, as shown in Pintelon and Schoukens (1991), the 
properties of the estimate are robust with respect to the noise distribution2.

ELiS as an estimate has further attractive properties. The estimator is 
asymptotically normally distributed, and it converges very well even for rather 
small signal-to-noise values. An important factor of the good convergence 
behavior is the well chosen initial LS step. 

As a frequency domain method, ELiS is based on band-limited measurements 
of the input and the output signals, and can directly identify s-domain transfer 
functions. These measurements are quite easy to do with commercial 
measurement devices, and by avoiding the need of intermediate discrete-time 
identification, the systematic errors can be kept at a low level3.

An important cause of small estimation errors is the improved signal-to-noise 
ratio in selected bands. There is however one important requirement: the 
frequency domain data must not exhibit systematic errors, otherwise the 
estimated transfer function can be biased. An important source of such 
distortions is leakage: because of the always limited time record length, the 
calculated digital spectrum is “smeared”, unless the signal consists of integer 
periods of sine waves, or it is limited in time (transient signal). However, 
transient signals have usually worse signal-to-noise ratio, and the Fourier 
transform is subject to aliasing (if the signal is of limited duration, the 
spectrum theoretically cannot be band-limited). Because of this fact, ELiS 
should be used whenever possible with periodic excitation signals, in order to 
exploit its accuracy. Nevertheless, aperiodic signals can also be used for 
excitation, but the transfer function will be accurate in the order of leakage and 
aliasing only. With sufficiently high sampling frequency and record length, or 
by using advanced signal processing techniques (interpolated FFT and so on) 
both effects can be reduced to an acceptable level.

2. See also: I. Kollár, “On Frequency Domain Identification of Linear Systems,“ IEEE 
Trans. on Instrumentation and Measurement, Vol. 42, No. 1, pp. 2-6, Feb. 1993.
3. J. Schoukens and R. Pintelon, “Identification — Why do we need it, how to use it?” 
Conference Record of the Instrumentation and Measurement Technology Conference 
IMTC/93, 93CH3292-0, Irvine, Orange County, CA, May 18-20, 1993. pp. 246-251.
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The “Excitation Signals for Identification in the Frequency Domain” on page 
2-20 discusses the possibilities to design optimal excitation signals for the 
frequency domain identification procedure.

Imposing Constraints on the Estimates 
Sometimes certain properties of the transfer function are known. In these cases 
you may want to impose these properties as constraints to the estimate. In this 
section some possibilities for this will be discussed, as:

• Fixing some parameters

• Fixing some of the poles/zeros

• Maintaining known partial transfer function

• Fixing the value of the transfer function at certain frequencies

• Looking for special forms, like allpass or linear phase

Fixing Some Parameters
In a few situations, some of the parameters can be set a priori to certain values. 
For example, in the s-domain, when the bandpass or highpass nature of the 
transfer function is known, some of the trailing coefficients of the numerator 
(belonging to s0, s1 etc.) should be set equal to zero. (The leading coefficients 
need not be set equal to zero for the bandpass/lowpass case, because the order 
on the numerator can simply be chosen lower.) In elis, the value of selected 
parameters can be fixed, using the input argument fixp.

Fixing Some Poles/Zeros
This is a somewhat more complicated case, since poles/zeros can be fixed by 
means of the coefficients only if the whole numerator or denominator can be 
fixed. Therefore, the only solution is to precompensate the complex amplitudes to 
be fitted (and also the variance vectors) by the term formed of the fixed poles/
zeros: instead of the equations

(26)

the modified model

(27)

Ymk Hf ix Ωk P( , )Hest Ωk P( , ) Xmk Nxk–( ) Nyk+=

Ymk
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-------------------------- Hest Ωk P( , ) Xmk Nxk–( )

Nyk
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Frequency Domain Formulation and Solution
can be identified. The routine modifyfv generates the modified complex 
amplitudes and variances.

Maintaining Known Partial Transfer Function
Sometimes a multiplicative term of the transfer function is a priori known, 
perhaps from earlier identification, or because it represents a well-designed 
building block of the system. In such cases the effect of this term can be 
removed from the measured data by using modifyfv. This is essentially the 
same case as fixing some poles and zeros.

Fixing the Value of the Transfer Function at Certain 
Frequencies
The simplest case is when the lowpass, highpass or bandpass character of an 
s-domain transfer function is known: see “Fixing Some Parameters.” However, 
in the z-domain this is not a solution any more. There may be other situations 
as well, when one would like to fix, e. g., the transfer function at dc to a given 
value. Using elis, there is a very simple solution for this: artificially set 
complex amplitude(s) are to be added to the Fourier vector, with the input and 
output variances set equal to a small value (e. g., eps or even smaller). If any 
of the variance values is set to a larger value, the constraint will be 
approximately followed; thus, for example, the maximum absolute value of the 
transfer function in a non-measured band can be controlled by introducing 
artificial zero transfer function points with large variance.

Looking for Special Forms
Sometimes the transfer function is sought in a special form, like allpass, linear 
phase, imaginary (differentiator/integrator) etc. This happens when elis is 
used for filter design, as in the allpass design.

The allpass constraint in the z-domain is a built-in service of the basic elis 
routine. However, the other cases enumerated above will usually be well 
approximated, if the amplitude vector is given in the appropriate form. For 
example, linear phase FIR filters, fitted in LS sense, can be designed by setting 
the delay to (order/2), and defining real amplitudes for fitting.
2-13
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Solutions for Some Special Cases
It may happen that the available measurement setup does not completely 
correspond to the assumptions of ELiS, or you experience difficulties fitting 
your data. The purpose of this section is to provide some hints for such cases.

Dealing with Data from a Network Analyzer (Dynamic Signal 
Analyzer)
When input-output measurements are made by a digitizer, the input-output 
Fourier amplitudes can be determined and used for estimation. However, you 
may already have an analyzer that provides the measured transfer function 
points (Ymk/Xmk) at given frequencies, usually on a linear grid from zero to 
about half of the sampling frequency, and a parametric model of the system is 
sought. 

Theoretically, if you have to rely on the above transfer function estimate points 
only, the noise on Xmk  may introduce an annoying bias through the division. 
Variance can be reduced by simple averaging, but this will not remove this kind 
of bias. You may consider taking the complex geometric mean of estimates (see 
gmean), which has a smaller bias.

Having assured a possibly small bias of the transfer function points, you may 
try to use elis, accepting limited accuracy. The input amplitudes can be all set 
to ones, and the output ones can be set to the complex transfer function points.

A more or less acceptable result can be achieved by setting zero input and 
uniform output variances, but without a correct absolute variance value the 
actual value of the cost function will provide no information about the quality 
of the fit and about the bias actually introduced. A plot of the complex residuals 
(see rdueelis) can give some idea about the trends in the fitting error. Strongly 
correlated complex error is an indication of modeling errors.

However, you can do somewhat better. If repeated measurements can be done, 
you should consider variance analysis using varanal, even if only a few data 
sets are available. In such a case the cost function and the mean model error 
can be used for characterization of the bias.

If repeated measurements are not available, but you have some knowledge 
about the input and output noises, stdtfm can be used. For this, you should 
know not only the forms of the spectra of the input and output noises, which 
are often white if quantization noise dominates, but also their absolute levels 
or at least their levels relative to each other, to be able to combine them into 
4
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stdAm. Proper noise variances may improve the accuracy of your estimates 
(with the above limitations due to the bias of the transfer function points). 

Extensive bias can cause that elis tends to “concentrate” poles/zeros to given 
frequency bands. Quite often, people incline to increase emphasis to other 
frequency parts by repeating transfer function points or by artificially increase 
weighting in these bands, decreasing the variance values passed to the 
estimation algorithm. This is not a good practice. The general recipe is to make 
better measurements by designing optimized excitation signals, improvement 
of the signal-to-noise ratio, by provision of input-output Fourier amplitudes 
instead of transfer function points, and so on. Or, if all these are not practicable 
for some reason, partial subband fits can be tried out, as described below.

Wide-Band Model Fitting
When a system has to be modeled in a very wide band (the frequency range 
stretching to several orders of magnitude), the cost function can have a very 
complicated surface, and the iteration algorithms may iterate to unacceptable 
local minima. In such cases it is often possible to select subbands of the 
frequency range where fitting by a lower-order subsystem seems to be 
reasonable. Such “subfits” have to be made with care, because the effect of such 
subsystems can be quite intensive in neighboring bands, so the combinations 
of independent subsystems can provide a very poor overall fit. A better strategy 
is to use modifyfv after each fit, removing the effect of the subsystems already 
obtained. By this strategy a more or less acceptable compound system can be 
obtained with poles/zeros in every band of importance. Finally, the subsystems 
can be refitted cyclically using the residuals of the other fits, or the whole 
compound transfer function can be polished using the combination as a 
starting value, and using Levenberg-Marquardt iteration in order to assure 
decreasing steps of the cost function during iterations. In very wide bands, 
however, the evaluation of the transfer functions, based on polyval, may 
become inaccurate, so all the results should be used with precaution.

Numerical Stability and Speed of the Procedures
When performing simple calculations, MATLAB has virtually infinite precision. 
However, for larger equation sets, as for the frequency domain identification of 
systems of order 15-20 or higher, finite precision may play an important role, 
and the results may become unreliable if elis is not applied with proper care.
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The speed of calculations has been dramatically increased with the 
development of modern CPU-s. However, the calculation time of certain 
iterations is still not negligible. By proper use of the built-in possibilities of the 
functions of this toolbox, the speed can be remarkably increased.

This subsection discusses the above aspects of the usage of the toolbox.

Numerical Stability
In elis, often a large set of linear equations is solved in every iteration step, in 
order to find the necessary correction of the parameter vector. In the s-domain 
the parameters are coefficients of polynomials of the variable s. It is easy to see 
that when having roots around 103 Hz, the coefficients of higher powers of s will 
be very small, typically in the order of 10-3n for the coefficient of sn. From the 
numerical point of view, to handle parameters of different orders of magnitude 
in parallel is very disadvantageous.

A measure of the numerical behavior of the equations is the condition number 
of the matrix in the basic equation to be solved. The condition number is the 
ratio of the maximum and minimum singular values of this matrix, and it 
should not reach the order of magnitude of 1/eps on the given machine.

In the toolbox functions, and especially in elis, an attempt is made to avoid 
numerical problems. If this cannot be maintained, warning messages are sent, 
describing the concrete cause. It is therefore advisable to take each warning 
message seriously, and try to find a way of better conditioning. Some hints are 
given below.

In some cases elis cannot “catch” the problems in time, and the internal 
routines of MATLAB will send messages like

Warning: Matrix is close to singular or badly scaled. 
Results may be inaccurate. RCOND = 1.617346e-17

or

Warning: Divide by zero

These messages usually warn about bad conditioning.

In order to avoid numerical problems, scaling is introduced in elis for s-domain 
calculations. According to experience, the equations behave the best when the 
majority of the poles/zeros have their magnitudes around 1.
6
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However, when starting identification, no usable information is at hand about 
poles/zeros. This is why in elis a simple rule of thumb is used, based on the 
excitation band, which is available from the Fourier data. The center radian 
frequency of the excitation band:

(28)

is applied, supposing that a reasonable excitation will inject the energy in the 
band of interest, where most of poles and zeros are located.

After having made a more or less acceptable fit, a better guess of the optimum 
scaling frequency can be made. elis will display a suggestion for a new scaling 
frequency after the last iteration, if the ratio of the actual one and the 
suggestion is larger than 2 or smaller than 0.5. In the case of a system of order 
20, a change of factor 2 in the scaling frequency may mean a change of 220≈106 
in the condition number! However, the decision is left to the user; the new 
scaling frequency can be set for elis in a repeated run. The suggestion is made 
either on the basis of the mean of the absolute values of all the poles and zeros, 
or if these are not calculated in elis, on the basis of the ad hoc formula in 
exppar (see in the Reference chapter). This latter value is accessible in the 
workspace after the run of elis as pvect(2).

Bad conditioning can result from a few other causes, too. Its basic meaning is 
that for the algorithm no sufficient information is provided about the 
parameters, and/or the machine precision is not sufficient for the treatment of 
the given problem. This can mean, for example, that the measurement 
bandwidth is not wide enough, and we try to let elis extrapolate the behavior 
of the system far beyond the band limit of our measurement. In such a case, no 
better advice can be given than repeating the measurements in a wider band. 
The treatment of high-order, wide-band systems may sometimes also require 
high machine precision, even with proper measurement design.

Bad signal-to-noise ratio also results in bad conditioning: if this is the cause, 
averaging can be suggested, or the redesign of the whole experiment.

A further cause can be overmodeling: the algorithm has no information for the 
placement of the “nonsense” poles/zeros, and this fact is reflected in bad 
conditioning. Decrease of the order may immediately improve the condition 
number. Even undermodeling might cause bad conditioning, if the model is far

fs
ωmin ωmax+

2
------------------------------=
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too simple even to roughly describe the system. Improper fixing of nonzero 
parameters can also increase the condition number: the default setting (no 
fixed parameters) is usually optimal with respect to the condition number. 

elis provides three condition numbers in the vector fit.

The most relevant information about the conditioning of the solution is 
provided as “the condition number of the matrix actually decomposed or 
inverted in the last iteration.” The description is somewhat general, but this is 
the way to have a number relevant for all the algorithms. For reliable results, 
this number should be well below 1/eps.

However, the above condition number may depend on the applied iteration 
algorithm. Newton-Raphson usually has the worst condition number, so if bad 
conditioning is a danger, it should be avoided. The other extreme is 
Levenberg-Marquardt (without svd): if lambda is large enough (the value 0.1 is 
sufficient in general), the equations are well conditioned, but the iteration may 
be painfully slow.

Most of the iteration schemes operate on the Jacobian J of the error vector. The 
condition number of J is therefore relevant to the problem itself. (It should be 
mentioned, however, that also scaling and measurement band selection 
influence conditioning.) Should the condition number of J be too large, it is 
better to rescale or to make new measurements.

The so-called approximate covariance matrix (Cp) is obtained by inverting the 
approximate Hessian (see Equation (24)). Since this matrix is usually close to 
JTJ, its condition number equals approximately the square of the condition 
number of J. As a consequence, the approximate covariance matrix may be 
unreliable even if the solution is good. In such cases, when no or small modeling 
error is anticipated, the approximate Cramér-Rao bound can be used instead 
(CR), because this is calculated by singular value decomposition of J.

Speed of the Procedures
The speed of the calculations depends on two important factors: the number of 
iterations performed, and the time spent on each iteration.

The number of iterations can be influenced by the starting values, the iteration 
method, and the stop criteria, but depends also on the investigated problem 
and the selected model order.
8
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Most iterating functions in this toolbox have a good default setting of the 
starting values, thus these should be changed with care. An example for such a 
justified decision is when a more or less reasonable estimate is at hand, and 
iteration is used primarily for polishing these values. This can happen when a 
very wide-band fit (covering several orders of magnitude) is being done. In such 
cases it can be extremely difficult to find the global minimum (or a reasonable 
local minimum) of the cost function. A strategy could be to fit certain bands 
separately with low-order subsystems, modify the Fourier and variance data 
after each partial fit using modifyfv, and at the end, “polish” the compound 
system in a global fit.

There is a wide choice of iteration methods in elis. As a general rule it can be 
stated that the Newton-Gauss type iteration schemes (Newton-Gauss and 
singular value decomposition) have about the same rate of convergence. 
Newton-Gauss is quicker, but numerically less robust than svd. Near to the 
optimum, Newton-Raphson is usually the quickest, but far from the optimum 
it behaves worse than other algorithms. The Levenberg-Marquardt algorithms 
are the most robust, but they converge rather slowly. With proper setting of 
rpalg an attempt can be made to set lambda to zero (switch to the 
Newton-Gauss algorithm) after a few successful iteration steps, which can 
accelerate convergence. If the Newton-Gauss step is not successful, the 
Levenberg-Marquardt iteration continues.

The setting of the stop criteria can also be decisive. According to experience, the 
default setting (relative change of the cost function is smaller than 10-6) is 
appropriate for most cases. A too small prescribed value may prevent stopping, 
since because of numerical roundoff the derivatives will never exactly equal 
zero.

The selection of the model order can also seriously influence the number of 
necessary iteration steps. A too high model order means “nonsense” poles or 
zeros, for which the measured data do not provide information. The iteration 
often wanders around rather flat portions of the cost function surface.

The cycle time is also an important factor of calculation speed. In identification, 
much depends on your skill, and we made an attempt to provide you with as 
much graphics information as possible. But the sophisticated graphics 
procedures may cost a lot of time. In most iterative algorithms the plots can be 
made more rarely than in every cycle, or can even be completely suppressed. 
This can dramatically improve the speed of elis, dibs, msinclip and 
optexcit, but total elimination of plots can be extremely dangerous, since this 
will mean “blind” acceptance of the results of numerical methods that might 
sometimes even diverge.
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Excitation Signals for Identification in the Frequency 
Domain

As mentioned previously, frequency domain methods work best if periodic 
excitation is applied. Nevertheless, there is still a lot of freedom left. One can 
select the harmonic frequencies where the system is to be excited, and also the 
amplitude and the phase of the sinusoids. Thus, criteria are necessary for the 
correct decision.

The final aim is clear: the parameters of the transfer function are to be 
estimated with as small error as possible. However, practical limitations may 
be present: an arbitrary waveform generator is at hand or not, the actuator in 
the system may allow continuous amplitude changes, or it may be an on-off 
relay, the measurement equipment usually has limited amplitude resolution, 
etc.

Roughly speaking, as much energy is to be injected at the “interesting” 
frequencies, as it is possible under the given restrictions. Thus, the first task is 
to select these frequencies, and determine the optimal power distribution4,5,6.

If at least a rough model of the system is at hand, the volume of the information 
matrix can be maximized, by distributing the energy among the frequency 
points. This can be done by using the routine optexcit. However, this 
maximization is to be done with care, since after some iteration steps the 
information only slightly increases, but the spectrum becomes spiky, and the 
possibility of crest factor minimization (see the following “Multisine” on page 
2-21) becomes limited.

A less systematic approach is to try to localize the “sensitive” frequency bands 
(where the transfer function has a large value, or it changes rapidly, or it has 
its important poles/zeros). Here users are left to their own skill and knowledge 
about the system.

4. J. Schoukens and R. Pintelon, Identification of Linear Systems: a Practical Guideline 
for Accurate Modeling, London, Pergamon Press, 1991.
5. K. R. Godfrey, ed.: Perturbation Signals for System Identification. Englewood Cliffs, 
Prentice-Hall, 1993.
6. F. Delbaen, “Optimizing the Determinant of a Positive Definite Matrix,” Bulletin So-
ciété Mathématique de Belgique — Tijdschrift Belgisch Wiskundig Genootschap, Vol. 42, 
No. 3, pp. 333-346.
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Excitation Signals for Identification in the Frequency Domain
While in MATLAB it is easy to define a linear grid, is not that simple to design 
a quasi-logarithmic one (near to logarithmic, on the linear grid of the FFT). The 
routines lin2qlog and log2qlog serve this purpose.

The following subsections deal with the two most important cases: the first one 
is when there is no restriction imposed on the time domain signal form, i. e., a 
general multisine can be used, the other one is the case of a binary excitation 
signal.

Multisine
Having determined the desired power distribution, users can still choose the 
phases. The phases of the components of a multisine have important influence 
on the time domain signal shape: by proper choice of the phases the maximal 
peak can be significantly compressed, allowing larger energy to be injected for 
the given input range of the measurement device, or keeping the system in the 
linear working region. This procedure is called crest factor minimization. The crest 
factor is defined as the ratio of the maximal absolute peak value to the effective 
value of the signal in the frequency band of interest:

(29)

The achievable decrease in the crest factor is a factor of 2-3 for nearly uniform 
spectra, compared to the crest factor of a random phase sine wave.

Crest factor minimization can be performed on a single signal, or on two signals 
related to each other by a linear system (input-output optimization). Both tasks 
are implemented in the routine msinclip. This routine is based on consecutive 
transforms from the time domain to the frequency domain and vice versa, 
applying a mild clipping in the time domain, and combining the new phases 
with the desired amplitudes in the frequency domain7.

The optimized signal can be applied to the system, using an arbitrary 
waveform generator. This usually works with a zero-order hold (a D/A 
converter), which introduces some amplitude distortion:

7. E. van der Ouderaa, J. Schoukens and J. Renneboog, “Peak Factor Minimization, Us-
ing Time—Frequency Domain Swapping Algorithm,” IEEE Trans. on Instrumentation 
and Measurement, 1988, Vol. 37, No. 1, pp. 144-147.
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(30)

where ∆t is the reciprocal of the clock frequency. This distortion increases 
towards the half of the clock frequency: here the value of the transfer function 
is approximately 2/π≈0.6366, instead of 1 (see Figure 2-2).

Figure 2-2:  The amplitude distortion introduced by a zero-order hold

The routine msinprep, which generates a time series for the arbitrary signal 
generator, can perform a precompensation for this distortion. This prepares the 
data vector to be downloaded in to the arbitrary signal generator, producing 
the desired waveform (if no other amplitude or phase distortion is introduced 
in the chain).

Binary Excitation Signals
There are situations when only binary excitation signals can be used. 
Theoretically the state transition instants can be anywhere within the signal 
period, but in practice these signals are produced using a high-frequency clock. 

Hzoh f( ) πf t∆( )sin
π f t∆( )

-----------------------=
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Excitation Signals for Identification in the Frequency Domain

on
Thus, users can choose the clock periods where the state is inverted (discrete 
interval binary sequence). This does not achieve exactly the desired power 
distribution, but the approximation is generally usable.

In order to approximate the desired spectrum, a similar algorithm, 
implemented in msinclip, can be applied. The difference is that instead of 
clipping, a comparator is used in the time domain, resulting in a binary signal8. 
This algorithm, implemented in the routine dibs, converges rapidly, but in the 
result there may be frequencies where only a fraction of the desired power is 
present. To improve this property, a systematic search can be performed using 
the routine dibsimpr, which tries to maximize the minimum relative power 
(calculated with respect to the desired power at a given frequency)9.

If an approximately white spectrum is acceptable, the so-called maximum 
length binary sequences (or pseudorandom binary sequences, PRBS)10 can be 
also used (routine mlbs). These sequences are produced using binary shift 
registers with appropriate feedback. Since mlbs can be considered as a 
pseudorandom sequence applied to a zero-order hold, it is easy to see that the 
amplitude spectrum is modified again by the transfer function depicted in 
Figure 2-2.

This spectrum is valid for the continuous case; however, because of the rich 
overharmonic contents, the use of an anti-aliasing filter in the measurement 
setup is advisable to avoid undesirable spectral distortions due to aliasing.

The length of the sequence is N = 2n-1, where n is the register length, thus with 
synchronized sampling the length of the time record is not a power of two. 
Consequently, instead of standard base-2 FFTs, some special DFT algorithm 
has to be used (see the section “Transformation into the Frequency Domain”). 

However, there is also another possibility: by careful adjustment of the 
sampling frequency, the number of samples in a period of the excitation signal 
can be set to a power of two, thus a standard FFT can be applied.

8. A. van den Bos and R. G. Krol, “Synthesis of Discrete-Interval Binary Signals with 
Specified Fourier Amplitude Spectra,” International Journal of Control, 1979, Vol. 30, 
No. 5, pp. 871-884.
9. K.-D. Paehlike and H. Rake, “Binary Multifrequency Signals — Synthesis and Appli-
cation,” Proc. 5th IFAC Symposium on Identification and System Parameter Estimati, 
Darmstadt, FRG, Sept. 24-28, 1979. Vol. 1, pp. 589-596.
10. K. R. Godfrey, ed.: Perturbation Signals for System Identification. Englewood Cliffs, 
Prentice-Hall, 1993.
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Preprocessing of Data
Before starting the estimation procedure, the measured data have to be 
prepared. Though ELiS works well for rather small signal-to-noise ratios, the 
quality of the estimate can be improved by decreasing the measurement noise. 
Thus, for precise estimations averaging is usually recommended. Moreover, 
the noise often has to be analyzed in order to determine the necessary variance 
values; variance analysis can be done in parallel with averaging.

According to experiences with ELiS, the measurement of a few periods is often 
sufficient for obtaining a usable estimate. By segmenting the records into 
equal-length parts which contain full periods of the periodic excitation signal, 
an approximate noise analysis can be performed, and then the estimation can 
be performed on the averaged data.

Preprocessing in the Time Domain
Averaging can be done directly in the time domain. For this, the measurements 
have to be started in synchronization with the excitation signal. To achieve 
perfect synchronization, the clock of the measurement equipment and that of 
the signal generator have to be synchronized (it is not enough to have very 
stable clocks, because they may slip slowly with respect to each other). With no 
proper synchronization, time domain averaging and noise analysis are 
hopeless; however, as shown in the next subsection, in the frequency domain 
there is a quite effective way to “synchronize” the measurement records even if 
the measurements themselves were not synchronized.

The time domain variance can be determined in parallel with the averaging. 
Since the noise on the signals is assumed to be ergodic, the following formula 
can be applied:

(31)

where M is the number of measurements, N is the number of measured points 
in each measurement, and xav denotes the result of averaging over different 
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Preprocessing of Data
measurements. This estimate is c2 distributed, with r = N(M-1) degrees of 
freedom. The confidence interval for the confidence limit a can be obtained 
using the corresponding c2-values (see also Table 2-1):

(32)

The χ2-values can be taken from statistical tables.

For r = N(M-1) > 30 and small α, a useful approximation11  for the terms in 
Equation (32) is:

(33)

where β = α/2 or β = 1-α/2, and uβ is the corresponding abscissa of the standard 
normal distribution.

11. G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers: 
Definitions, Theorems and Formulas for Reference and Review, 2nd ed, London, 
McGraw-Hill, 1968.

Table 2-1:  Confidence intervals for the variances (multipliers of the empirical 
variance)

r 90% 95% 98%

10 0.55 2.54 0.48 3.12 0.43 3.91

20 0.64 1.84 0.58 2.10 0.53 2.42

30 0.69 1.62 0.63 1.80 0.59 2.01

40 0.72 1.51 0.67 1.64 0.63 1.81

50 0.74 1.44 0.70 1.55 0.66 1.69

100 0.80 1.28 0.77 1.35 0.74 1.43

200 0.85 1.89 0.83 1.23 0.80 1.28

P
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If you assume that the noise spectrum is approximately white, the time domain 
variance data can be directly used for the calculation of the variances of the 
real and of the imaginary parts of the complex amplitudes:

(34)

However, when the noise spectrum is to be determined, and/or the 
input-output noise covariances have to be calculated, the auto- and 
cross-correlation functions have to be estimated. This is usually done via the 
frequency domain, using FFTs; in this case it is better to do averaging and 
noise analysis in the frequency domain.

Transformation into the Frequency Domain

The standard procedure of time domain to frequency domain conversion is the 
fast Fourier transform (FFT). In the case of periodic signals this will not 
introduce spectral leakage if the time record contains integer numbers of 
periods of each component. Leakage can be detected by throwing a glance at the 
frequency spectrum, if the signal contains a few spectral lines only: it appears 
as “skirts” around spectral lines (Figure 2-3).

N = 100; t = [0:N-1]; %N = 100 points
%two sine waves:
xt = sin(2*pi*10/N*t)+0.5*sin(2*pi*20/(N-1)*t);
Xfa = abs(fft(xt)); %spectrum
Xsh = [zeros(1,N);Xfa;zeros(1,N)];
Xsh = [0;Xsh(:);0]; %prepare for “bar” plot
tsh = [t;t;t]/N; tsh = [0;tsh(:);1]; plot(tsh,Xsh)

500 0.90 1.11 0.89 1.14 0.87 1.16

100
0

0.93 1.08 0.92 1.09 0.90 1.11

Table 2-1:  Confidence intervals for the variances (multipliers of the empirical 
variance)

r 90% 95% 98%

σx
2 N

2
----σxt

2
=
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Preprocessing of Data
Figure 2-3:  Absolute value of the DFT of two sine waves

The first sine wave (f1 = 10/100 = 0.1) exhibits no leakage because exactly ten 
periods have been measured, while the second one (f2 = 20/99 ≈ 0.2) shows 
considerable leakage.

The FFT is base N, where N is the record length. If N is not a power of two, 
special techniques (like the chirp z-transform12) have to be applied. MATLAB’s 
fft routine can effectively transform sequences of arbitrary length. The 
applied formula is

12. L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing, En-
glewood Cliffs, NJ, Prentice-Hall, 1975, pp. 393-399.

Xk xie
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Preprocessing in the Frequency Domain
When the measured input and output signals have been transformed into the 
frequency domain, averaging and noise analysis (including the estimation of 
the input/output covariances) can be performed using the routine varanal. 
This routine provides the results in the form necessary for elis, and even 
calculates the 95% confidence intervals of the variances. As a rule of thumb, 
input-output covariances should be calculated and passed to elis. If they are 
small, they make no harm; if they are large, they have to be considered.

Post-Measurement Synchronization
The routine varanal can, if required, make an attempt to “synchronize” the 
measurements to the first one, by looking for the delay which results in the 
smallest phase differences. The routine works well even for as small as 3 dB 
frequency domain signal-to-noise ratios. If the synchronization attempt fails, it 
sends an error message.

The synchronization algorithm in varanal is based on an approximation of the 
maximum likelihood estimation of the delay13. It is worth mentioning that for 
the maximum likelihood estimation of the delay between records elis can also 
be used, identifying a hypothetical pure delay transfer function between the 
two records, considering them as input and output.

A rough guess of the shape of the transfer function can be quickly obtained by 
averaging the transfer function estimates, calculated as the ratio of the 
measured output and input complex amplitudes. Since the bias is much 
smaller for the geometric mean of the transfer function estimates than for the 
simple arithmetic one14,15, the geometric mean is to be used for averaging. The 
routine gmean calculates this mean value for complex numbers, without 
suffering from phase wrapping problems.

13. I. Kollár, “Signal Enhancement of Non-Synchronized Measurements for Frequency 
Domain System Identification,” IEEE Trans. on Instrumentation and Measurement, 
Vol. 41, No. 1, pp. 156-159, Feb. 1992.

14. J. Schoukens and R. Pintelon, “Measurement of Frequency Response Functions in 
Noisy Environments,” IEEE Trans. on Instrumentation and Measurement, Vol. 39, No. 
6, pp. 905-909, Dec. 1990.

15. P. Guillaume, R. Pintelon and J. Schoukens, “Nonparametric Frequency Response 
Function Estimates Based on Nonlinear Averaging Techniques,” IEEE Trans. on In-
strumentation and Measurement, Vol. 41, No. 6, pp. 739-746, Dec. 1990.
8



Preprocessing of Data
A Priori Known Partial Transfer Function
Sometimes a term of the transfer function is already known (e. g., from earlier 
identification or because it represents a block which was carefully installed to 
meet strict specifications). It is not worthwhile to identify this term again, 
since this may deteriorate the variance of the estimates of other parameters. 
The routine modifyfv can be used to precompensate Fourier and variance files.
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Presentation of the Results
Identification is a science and an art at the same time. Much depends on the 
skill and imagination of the person, who identifies a given system. This toolbox 
seeks to provide as much illustrative information as it is possible during the 
whole procedure.

Therefore, during the most important procedures of the Frequency Domain 
System Identification Toolbox, it is possible to follow the iterations on graphs. 
Though this “movie” can be switched off, to accelerate the run, we recommend 
that the user follows the iterations, and intervenes if necessary. Nothing is 
more dangerous than to blindly believe the results of programs, even if they are 
well tested and reliable.

In addition to the graphs, there are two plotting programs for the illustration 
of the result of elis.

ploteltf plots magnitudes and phases of parameter files. It can plot the 
transfer function of two parameter sets and, in addition, the data given in a 
Fourier file, in order to facilitate comparisons. Moreover, on one of the transfer 
functions confidence intervals can also be plotted, to give an insight into the 
reliability of the estimation results.

The uncertainty of the estimated transfer function is usually much smaller 
than the scattering of the Ymk/Xmk points. This has to be so, since the estimated 
transfer function is based on all measured data, and like that, its variance is 
roughly inversely proportional to the number of measurement points, while the 
variance of the points Ymk/Xmk  depends only on the input and output 
amplitudes and measurement noises. On the other hand, almost all of the 
confidence intervals of the nonparametric transfer function estimates Ymk/Xmk  
should cover the parametric transfer function estimates calculated from pdat1 
or pdat2.

The confidence interval plots are made by internally using the results of the 
routines stdtf and stdtfm. When nonstandard forms of plots are preferred, 
these routines can be directly used for the calculation of the standard 
deviations of the magnitudes and phases.

If possible, we suggest you plot not just one amplitude set, but the result of 
averages. If for some reason synchronization failed even with the routine 
varanal, it is recommended to average the ratios of output and input 
amplitudes via the routine gmean (see Section 4.3).
0



Presentation of the Results
plotelpz plots pole/zero patterns of identification results, along with the 
uncertainty ellipses. This is an often studied plot of dynamic systems.

However, this plot does not provide information on the coupling of poles and 
zeros. The standard deviations and covariances of the poles and zeros can be 
directly calculated by the routine stdpz for the preparation of special-form 
plots. Coupling between poles and zeros can be detected from high-value 
cross-correlation terms in the output argument rzp.

Both plotting routines have a number of optional arguments. Besides the usual 
purposes, they can be used as sophisticated statements in script files, 
preparing graphs for documentation, archiving and illustration of papers.

Only a small part of the demands can be covered by standard routines. Since 
the Frequency Domain System Identification Toolbox uses the standard 
MATLAB representations of s- and z-domain polynomials, script files can be 
easily written to show other possible plots, as Nyquist, Nichols diagrams etc.

To obtain high-quality illustrations for scientific papers, etc., the plots made in 
MATLAB can be saved in PostScript form. Data vectors can be stored into 
ASCII files, using the routine expvect, for export to sophisticated graphing 
programs.
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Model Validation and Simulations
A basic rule for scientists and engineers using powerful computers is to never 
believe the results of any numerical procedure, unless these can be checked in 
an independent way. This is especially true for identification, where even the 
right order of the system model is unknown. Therefore, model validation is 
crucial. In this section the validation possibilities will be summarized, in the 
Frequency Domain System Identification Toolbox and in the environment of 
MATLAB.

The First Quick Checks
The best thing one can do is to observe the internal iteration steps of the 
procedures on the presented graphs, and to plot the transfer function and the 
pole/zero pattern of the result with the uncertainties (see the “Presentation of 
the Results” on page 2-30). From these plots rough errors (instability, roughly 
bad fit, outliers, etc.) can be easily detected.

Stability and the Choice of the Proper Delay 

Instability of the fitted models is often a problem. The studied physical systems 
are usually stable (otherwise measurements cannot be done, except if the 
unstable system is stabilized by a feedback loop), thus for our purpose unstable 
models are usually not acceptable.

Unstable identified model of a stable system can be due to several causes, like

• Overmodeling or undermodeling (too large or too small model orders)

• Improperly chosen value of the delay

• Outliers

• Too small signal-to-noise ratio

• Local minimum of the cost function

Overmodeling and undermodeling are going to be discussed in the next section.

Improper choice of the delay is a common source of instability. The reason is 
that a too large or a too small delay value drastically changes the phase 
behavior of the identified rational form, and thus can easily deteriorate the 
fitting.
2



Model Validation and Simulations
One possibility is to let also the delay be estimated. This is an attractive idea, 
however, especially for high-order systems, the convergence region of the delay 
is narrow, thus the estimated value will strongly depend on the starting one.

One can make fits with different delay values around the a priori guess. 
Usually the fits become better when approaching the true value.

Another possibility is the study of the estimation results. In the z–domain too 
small delay values usually result in small values of the leading coefficients of 
the numerator16. In both domains, a too small delay value often gives unstable 
models. The gradual increase of the delay can lead to the good estimate.

The rest of the causes can usually be recognized by looking at the transfer 
function or pole/zero plots, estimation with different (eventually more 
effectively averaged) measurements, or eventually by estimations on 
simulated data.

Detection of Undermodeling and Overmodeling
Overmodeling means that the model order is too high, while undermodeling 
means that it is too small. Both should be avoided. However, in practical 
situations two important limitations should be considered. First, a linear 
transfer function is often an approximate model only of the physical system: 
some small nonlinearities, some distributed parameters, etc., may always be 
present. Therefore, we usually have to content ourselves with a limited 
modeling error of our identification result. Second, it cannot be expected to 
decrease modeling errors significantly below the random errors, unless new 
measurements with smaller noise (more averaging, etc.) are done.

Undermodeling is treated in detail in Chapter 5 of the book of Schoukens and 
Pintelon (1991). Here only the most important statements will be summarized.

The best indicator of a bad model is the too large value of the cost function. As 
it was established in Section 2, in the case of a good model the double of the cost 
function is a random variable of χ2-distribution, with 2F–np degrees of 
freedom. Consequently, the standard χ2-test can be applied: if the value is too 
large, modeling errors are present. 

However, not only undermodeling can result in a large value of the cost 
function. A wrong value of the delay, or incorrectly small variance values can 
also increase the value of it.

16. L. Ljung, System Identification Toolbox for Use with Matlab. User's Guide, July, 
1991. The MathWorks, Inc. p. 1-64.
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If modeling errors are present, it is often desirable to obtain some information 
about the extent of these errors. The so-called mean model error may provide a 
rough measure. For an approximately constant transfer function value He (the 
subscript e refers to the exact values), approximately constant excitation signal 
amplitudes, and approximately flat noise spectra with variances of the real and 
the imaginary parts  and 

the mean model error is

(35)

where  h = H - He is the complex modeling error of the transfer function, C is 
the value of the cost function, F is the number of frequencies, and np is the 
number of estimated parameters. For non-uniform He, the mean modeling 
error can be averaged over the frequencies used in the estimation, as it is done 
in elis, but the result has to be interpreted with precaution.

Using hmean, special care has to be taken to use correct variance values, since 
these directly scale the value of C. Too large variance values lead to a too small 
cost function (and maybe to an imaginary hmean), too small variance values 
result in a too large cost function and a large mean model error.

A confidence interval plot of the magnitude and phase of the estimated transfer 
function may provide important information. The standard deviations of the 
magnitude and phase are also accessible using stdtf.

When overmodeling occurs, the estimation procedure is forced to find additional 
poles/zeros which are not relevant to the measured data. This will increase the 
condition number of the normal equations (the condition number is accessible 
as an output argument of the routine elis). Moreover, the variance of the 
estimated parameters will also increase, which can be detected easily if 
additional estimations are done on different measurement data.

For a too large number of parameters, much more iteration steps are necessary 
to reach the minimum of the cost function.

It is even easier to detect overmodeling using the pole/zero plot, preferably with 
the uncertainty ellipses. The “superfluous” poles and zeros will have a large 
uncertainty, poles and zeros often appear in pairs (nearly canceling each 
other), and at different locations in identifications of different measurement 
data. They are often located outside the measured band. (Note that sometimes 
out-of-the-band poles and zeros do belong to the desired model, far from the 
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Model Validation and Simulations
imaginary axis in the Laplace-domain, or far from the unit circle in the 
z-domain.)

The standard deviations of the poles and zeros are also accessible using stdpz. 

Unnecessary pole/zero pairs can also be detected by studying the correlation 
coefficients between poles and zeros (see the output argument rpz of stdpz).

Pole/zero uncertainties can be studied by calculating several sets of roots using 
random perturbations of the parameters, according to the covariance matrix, 
and by plotting all the pole/zero sets using plotelpz. 

A further possibility is to evaluate the Akaike criterion for identification results 
of different orders, and find the one with the smallest AIC value:

(36)

When two or more independent data sets are available, cross validation can 
indicate overmodeling (see also “Cross Validation with Another Set of 
Measured Data” on page 2-40). A too high-order model tends to follow the noise 
patterns. The cost function for this model, evaluated with an independent data 
set, is therefore significantly larger than with the data used for  modeling. 

Finally, the so-called F-test (Söderström and Stoica, 1989) can also be used. If 
two identified models are available with cost function values C1 and C2, and 
numbers of estimated parameters np1 < np2, where second model contains the 
first one as a special case, and both models are good, the expression

(37)

is F-distributed (this has nothing to do with the number of frequencies F !), with 
the degrees of freedom (np2-np1,2F-np2), and can be tested using standard 
statistical tables. If the hypothesis can be accepted, the lower-order model is to 
be chosen.

For large values of F the relative variance of C2 becomes negligible, thus 
C2 2F-np2 2F, and the variable

(38)

is approximately χ2-distributed with np2-np1 degrees of freedom, allowing the 
use of the χ2-test.

AIC = 2(C+np)
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Study of the Residuals
As shown in statistics, whenever a good model of the system is obtained from 
the maximum likelihood formulation for Gaussian noise, the residuals (the 
deviations of the data from the estimated values) will exhibit some 
characteristic properties. They will be approximately independent and 
normally distributed with zero mean and the given variances. These properties 
can be tested.

The routine rdueelis calculates the residuals for the model given in Equation 
(3). However, care should be taken, because estimates of the so-called nuisance 
parameters (X and Y) are not consistent: with the increase of the number of 
measured points, their variance remains finite. Their estimation error can only 
be decreased by processing several data sets (several experiments) in parallel. 
As an effect, though the input and output residuals will have the above 
approximate properties, they will be correlated with each other at each point. 
Therefore, the routine calculates also the equation error vector:

(39)

The two terms in Equation (39) are positively correlated, since a deviation of 
Ym/Xm from its theoretical value will “pull” the estimates in the direction of 
the deviation. It can be shown that

(40)

The second variance in Equation (40) is usually much smaller than the first 
one, since the estimated parametric transfer function is a kind of average over 
the noisy Fourier amplitudes. It is calculated by stdtf.

When the above two variances are in the same order of magnitude, the variance 
of the residual may become very small. This small variance should be 
interpreted with care: it usually means that the model follows the noise, so the 
averaging effect of the model fitting does not work at the given frequency. The 
best check of this is to compare the variance with the result of stdtf and 
stdtfm. Theoretically, Equation (40) is non-negative, if evaluated with the 
same variance values as used for the estimation. However, because of the 
approximations, sometimes small negative values may appear in Equation 
(40).
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Model Validation and Simulations
The first variance in Equation (40), or rather its half, that is, the variances of 
the real and imaginary parts of Ym/Xm, can be calculated as follows:

(41)

using the substitution

(42)

which usually has a smaller error than the estimated value of Yk/Xk.

These variance values result from the linear approximation of the division, and 
Equation (41) uses the inconsistent estimates of Yk and Xk, but for large 
signal-to-noise ratios the approximation is good.

A very powerful method is cross validation (see “Cross Validation with Another 
Set of Measured Data” on page 2-40). Overmodeling is indicated by large 
residuals. Undermodeling means modeling errors that appear in the residuals 
for any data set. Statistical analysis of residuals of a series of data sets can 
quickly reveal such patterns.

Simulations
An important tool for the study of the properties of the estimates and of the 
behavior of the whole procedure is the simulation of data vectors. The 
Frequency Domain System Identification Toolbox provides two possibilities for 
this purpose.

simfou generates simulated frequency domain data from the system model and 
the given variance vectors. This means that the preprocessed data are 
simulated.

It is also possible to simulate time domain data, using the routine simtime. This 
simulation has the advantage that the whole data processing chain is checked, 
from the actual measurements to the estimates. Moreover, by using this 
facility, frequency domain identification can be compared directly to time 
domain methods. simtime can generate both the transient response and the 
steady-state response of the system.
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cxy

X
ˆ

kY
ˆ

k

------------
 
 
 

–+
 
 
 

≈ ≈

Ĥ Ωk( )
Yk

Xk
------≈
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There is just one difficult point in this simulation. elis uses a nonparametric 
representation of the noise variances, defined only at the frequencies of 
interest. However, for the time domain simulation full information on the 
correlation function or the power spectral density of the noise is required. The 
routine simtime will read in the parameters of a filter, which produces the 
colored system noise from a white input sequence.

If the noise is approximately white, there is no such problem, the transfer 
function of this filter is constant. However, for colored noise a solution still 
needs to be found.

In ELiS, the noise characteristics are “hidden” in the variance vectors. In 
principle, an additional identification step would be necessary to obtain the 
values of the parameters of the noise shaping filters. The difficulty is that 
amplitude-only information is available, thus this identification cannot be 
directly done by using elis. A correct solution is to construct an estimate for 
this purpose, but this is rather involved17,18. Fortunately, the required 
accuracy allows the use of approximate methods, since the exact modeling of 
the noise spectrum is usually not critical in the evaluation of the identification 
procedures.

The knowledge of the physical system may often help. If the noise source is 
located in the system under test, and you have some idea about the path of the 
noise to the measurement point, a rough approximation can be given.

The phase of the transfer function can be freely chosen. Thus, filter design 
methods which approximate a given magnitude response can be used. In 
MATLAB, the Signal Processing Toolbox routine yulewalk can be used for IIR 
filter approximation with orders n/n, or the routine remez for linear phase FIR 
approximation. However, care should be taken with both methods, because the 
variance values usually have stochastic nature, and this can lead to gross 
errors. Furthermore, yulewalk fits the autocorrelation function in the time 
domain, and this may result in unexpected bias, especially because the built-in 
Hamming window19. For these reasons, the above possibilities should be 
considered as rough approximations of the noise spectrum.

17. Y. Rolain, R. Pintelon and J. Schoukens, “Amplitude-Only versus Amplitude-Phase 
Estimation,” IEEE Trans. on Instrumentation and Measurement, Vol. IM-39, No. 6, pp. 
818-823, Dec. 1990.
18. Y. Rolain, Identification of Linear Systems from Amplitude Information Only, Ph.D 
Thesis, Vrije Universiteit Brussel, Dienst ELEC, Brussels, Belgium, 1993.
19. The built-in Hamming window can be switched off, as it has been done in the routine 
ywalk.
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Model Validation and Simulations
Figure 2-4 shows a simulation example of the approximation of a second-order 
noise variance shape, where the variance values were estimated from 20 
measurements, using the expression of the empirical variance. The simulation 
has been performed using the following statements:

num = 1; r = 0.7; phi = pi/4;
den = real(poly(r*[exp(j*phi),exp(-j*phi)])); %denominator
F = 50; fv = [0:F]'/F/2; %frequency points
%Exact transfer function:
ea = j*fv*2*pi; N = 20;
tf = polyval([0,0,num],exp(ea))./polyval(den,exp(ea));
%simulated random variables:
tfn = abs(tf).*sum(randn(2*N-2,length(fv)).^2)'/(2*N-2);
%transfer function by no windowing version of yulewalk:
[num2,den2] = ywalk(2,2*fv,tfn);
tf2 = polyval([0,0,num2],exp(ea))./polyval(den2,exp(ea));
plot(fv,abs(tf),':w',fv,abs(tf2),'-w',fv,tfn,'+w')
title('Magnitude')

Figure 2-4:  Result of the approximation of the noise spectrum, using ywalk
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The “+” signs denote the measurements, the continuous line shows the result 
of ywalk, while the dotted line marks the exact shape.

Simulations can even be performed starting from pole-zero models. The 
function fdcovpzp converts these models with their uncertainties into transfer 
function data, used by simfou and simtime.

Cross Validation with Another Set of Measured Data
A final test of the quality of the identified model is cross validation. This means 
that the model is evaluated using a different measured data set. The residuals 
and the cost function of a model can be evaluated for different data sets (see 
“Detection of Undermodeling and Overmodeling” on page 2-33 and the “Study 
of the Residuals” on page 2-36). A further possibility is to make a new fit, with 
the LS starting values or to start from the previous model. The identified 
parameters should be equal to the previously obtained ones within the 
uncertainty bounds; large deviations may indicate overmodeling.
0



Model Conversions from/to the System Identification Toolbox
Model Conversions from/to the System Identification 
Toolbox

The basic aim of the Frequency Domain System Identification Toolbox is the 
same as of the System Identification Toolbox: to identify linear systems from 
measured data. The main difference is that the Frequency Domain System 
Identification Toolbox works in the frequency domain, while the System 
Identification Toolbox works in the time domain. Thus, they are 
complementary to each other, and both can sometimes be used to solve a given 
problem. In this case, their results should be directly compared. This 
comparison can be easily done if the identified models are in the same format, 
because the results (pole/zero pattern, transfer function etc.) can be presented 
in a similar form. This section discusses the possibilities of conversion between 
the two toolboxes.

In the Frequency Domain System Identification Toolbox the investigated 
system model is as follows:

(43)

where Xk, Yk (k = 1,2...F) are the complex input and output amplitudes, and δ  
is a delay operator:

(44)

in the s- or the z-domain, respectively, and Td is the delay, N(Ωk) and D(Ωk) are 
polynomials of Ωk, and Ωk = sk = jωk in the s-domain, or Ωk = zk = exp(jωkT) in 
the z-domain. The observation equations are

(45)

where Xmk and Ymk are the measured complex amplitudes, while Nxk and Nyk 
are the measurement noises.

Yk δ
N Ωk( )
D Ωk( )
----------------Xk=

δ e
s– Td= or δ e

j– 2π fsTd ι
fs– Td= =

Ymk Yk Nyk+= and Xmk Xk= Nxk+
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Substituting Equation (45) into Equation (43), the following equation is 
obtained:

(46)

In Equation (46) the statistical properties of the noises are assumed to be 
known at the beginning of the identification of N(Ωk), D(Ωk) and eventually δ. 
Thus, the noise analysis is to be done separately, using the available measured 
data.

In the time domain System Identification Toolbox, identification is performed 
in the discrete time domain. The general model of the system (with the 
exception of the nonparametric methods) is in z-notations:

(47)

where A(z), B(z), C(z), D(z) and F(z) are polynomials of z, Y(z) is the measured 
signal, nk is the delay (an integer value), U(z) is the input signal, and E(z) is 
white noise. The orders of the polynomials are na, nb and so on. The methods 
included into the System Identification Toolbox treat special cases of the 
general model:

• ARX: nc = nd = nf = 0 (instrumental variables can be used)

• ARMAX: nd = nf = 0

• ARARX: nc = nf = 0 (generalized least squares model)

• ARARMAX: nf = 0 (extended matrix model)

• OE: na = nc = nd = 0 (output error model)

• BJ: na = 0 (Box-Jenkins model)

The methods usually minimize the prediction error; for the ARX case the 
instrumental variable method can also be used.

The parameters of the model Equation (47) are stored in the so-called 
theta-format. In what follows, this model will be referred to as theta.

Ymk δ
N Ωk( )
D Ωk( )
---------------- Xmk Nxk–( ) Nyk+=

A z( )Y z( ) B z( )
F z( )
-----------z

nk–
U z( ) C z( )

D z( )
-----------E z( )+=
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Model Conversions from/to the System Identification Toolbox
When comparing the two models given in Equation (46) and Equation (47), the 
following significant differences can be noticed.

Because of the above important differences, the models can only be converted 
into each other with restrictions. Also, there are some less important 
differences: the theta-format can handle integer delays only, and the leading 
coefficients of A(z), C(z), D(z) and F(z) must be ones, while in the Frequency 
Domain System Identification Toolbox there are no such restrictions.

Conversions are facilitated by the routines elis2tha and tha2elis in this 
toolbox.

Conversion from ELiS to the theta-Format
It is clear from Equation (46) and Equation (47) that for z-domain models the 
conversion is more or less straightforward, while s-domain models need special 
considerations.

Conversion of Discrete Time Models
The main model parameters have direct equivalents:

(48)

With na set equal to 0, the only remaining task is to define the equivalents of 
the noises. Here troubles arise again, since on the one hand ELiS does not use 
a parametric model of the noise, and on the other hand, the theta-format does 
not model the input noise.

Table 2-2:  Comparison of system model

ELiS theta

s- and z-domain z-domain

input and output noise one noise source (output noise)

nonparametric noise model parametric noise model

also fractional delay delay integer multiple of 1/fs

single input (presently) also multiple input

N z( ) B z( )⇒ D z( ) F z( )⇒ τfs nk⇒, ,
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Let us assume first that the input noise is negligible, and the variance of the output 
noise is approximately constant along the frequency axis. In this case, since na = 0, 
{Nyk} will correspond to a white time domain noise, thus simply nc = nd = 0 can 
be chosen in Equation (47) (C(z) = 1, D(z) = 1), and the variance value can be 
passed.

For the comparison of identification results, the properties of the estimates of 
the transfer function itself are important. This is the suggested procedure even if 
the above assumptions do not hold.

Approximations for Colored Noise and input/output Noise. If the results of 
ELiS are to be used for simulations of time domain data, and the variance is 
significantly different at different frequencies, the above described solution for 
model conversion may not be acceptable. In this case, the user has to provide a 
parametric description of the noise spectrum. However, rather than trying to 
convert the model into the theta-format, we suggest using the simtime 
simulation routine, which generates time domain data that can be used by both 
toolboxes. (Be aware of the fact that simtime also requires a parametric 
description of the noise spectrum.)

For obtaining a usable (but approximate) parametric model of the noise, 
solutions are suggested in the “Simulations” section.

If the input noise cannot be neglected, the situation is even more complex. 
simtime can simulate both input and output noises, thus this routine can be 
used to get realistic simulation data.

Here the question arises, what will the time domain methods identify in the 
case of input-output noises. Since they will consider the input data as the exact 
input sequence, it is easy to see that in the result they will reduce the input noise 
to the output of the system. The resulting noise they identify in the model is in the 
prediction error method

(49)

Since the frequency domain noises are assumed to have a rotationally 
symmetric two-dimensional probability distribution at each frequency:

(50)

the variance of the combined noise will be

Nred z( ) H– z( )Nx z( ) Ny z( )+=

var Re Nx( ){ } var Im Nx( ){ }= cov Re Nx( ) Im Nx( ){ , } 0=,
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Model Conversions from/to the System Identification Toolbox
(51)

with

C(z)/D(z) will approximate the spectrum of this reduced noise.

Conversion of the Covariances. The routine elis2tha will also accept the 
covariance matrix of the estimated parameters, and pass it to the theta-format. 
However, since the leading coefficient of F(z) must be equal to 1 in the 
theta-format, the polynomial needs to be scaled by the first coefficient. If this 
coefficient has been estimated (i. e., its variance is not zero), the scaling will 
change the variances of the denominator coefficients. elis2tha will make an 
attempt to calculate the new covariance matrix by linear approximation. If the 
linear approximation cannot be applied, it sends a warning message, and 
passes a covariance matrix full of zeros.

Conversion of Continuous-Time Models
Continuous-time and discrete-time systems should be transformed into each 
other with extreme care20. Since ELiS is based on band-limited measurements, 
the best recipe is to repeat the identification in the z-domain with the same 
data. Those who like adventures can also try the standard s–domain to z–
domain mapping methods (bilinear transform, impulse invariant transform 
etc.21), but generally the results will be much worse.

Conversion from the theta-Format to ELiS
In this direction there are fewer difficulties. Let us divide Equation (47) by A(z):

(52)

20. J. Schoukens and R. Pintelon, “Identification — Why do we need it, how to use it?” 
Conference Record of the Instrumentation and Measurement Technology Conference 
IMTC/93, 93CH3292-0, Irvine, Orange County, CA, May 18-20, 1993. pp. 246-251.

21. see e.g. L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Process-
ing, Englewood Cliffs, NJ, Prentice-Hall, 1975.

var Nred{ } H z( ) 2
var Nx{ } var Ny{ } 2H z( )cov Nx Ny{ , }–+=

cov Nx Ny{ , } 0.5E Nx Ny{ , }=

Y z( ) B z( )
A z( )F z( )
----------------------z

nk–
U z( ) C z( )

A z( )D z( )
-----------------------E z( )+=
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Most of the parameters in Equation (46) can be immediately recognized:

(53)

The input noise is equal to zero. The variance vector can be easily generated 
from the coefficients of E(z) in Equation (52). If the model in the theta-format 
is for multiple inputs, in ELiS an individual model will correspond to each 
input.

Conversion of the Covariances
The routine tha2elis will try to pass the covariance matrix of the estimated 
parameters to ELiS. However, since the denominator of the transfer function 
is a product of A(z) and F(z), if the coefficients of A(z) have been estimated, i. e., 
their variance is not zero, the covariance matrix of the result of this 
multiplication will be a nonlinear function of the original covariances. 
tha2elis will make an attempt to calculate the new covariance matrix by 
linear approximation. If the linear approximation cannot be applied, it sends a 
warning message, and passes a covariance matrix full of zeros.

B z( ) N z( )⇒ A z( )F z( ) D z( )⇒ nk fsτ⇒, ,
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Data Formats and File Handling
Data Formats and File Handling
For the Frequency Domain System Identification Toolbox, standard data and 
file formats are defined. The functions of the toolbox exchange data with each 
other via variables in the workspace, and these variables generally have a 
straightforward definition. There are some compound variables like the ones 
comprising the parameters of an estimated transfer function, the delay, the 
sampling frequency and the domain (s or z), to be used by different functions. 
Such variables must have a standard form. Moreover, since the purpose of the 
toolbox is working on real measurement problems, we attempted to facilitate 
data exchange between it and other programs, like the ones for the control of the 
measurement setup, data logging and preprocessing, etc., by providing a 
standard archive format. The data and file formats cover

• Time vectors and files containing measured or simulated time domain data

• Fourier vectors and files containing measured, simulated or calculated 
frequency domain complex amplitudes or input-output point pairs

• Variance vectors and files containing variances of the real parts (that is, also 
of the imaginary parts) of the measured frequency amplitudes

• Parameter vectors and files containing parameters of the transfer functions

• Covariance vectors and files, containing the covariance matrix of the 
estimated parameters

There are also so-called report files, containing all relevant information about a 
run, in textual format. These files are ASCII files, and they are not 
standardized.

Data vectors usually contain different kinds of data, belonging to the same 
measurement or estimation procedure, in a long vector form. The data vectors 
can be “taken apart” by using the imptim, impfou, impvar, imppar, and impcov 
functions. This allows direct access to the numerator and denominator 
coefficients, so that the user does not need to worry about the internal 
structure of the vector. The data vector formats are defined in Appendix A1.

Each file type listed above (but not the report file) has an ASCII and a MATLAB 
binary version as described below. The ASCII and binary versions can be 
generated from MATLAB using the exptim, expfou, expvar, exppar, and 
expcov functions, respectively. Both the ASCII files and the binary files can be 
read into MATLAB using the imptim, impfou, impvar, imppar, and impcov 
functions.
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The binary files can also be directly loaded into (or saved from) MATLAB, if the 
conventions are followed (see Appendix A). This allows much quicker data 
transfer. However, this must be done properly, because the variable names are 
fixed in direct load/save, and the checkings otherwise performed by the export/
import routines are bypassed.

The full ASCII files can also be read in MATLAB, using the above import 
functions, but this may be a rather slow procedure. The read-in is based on the 
function loadasc, which ignores comments (preceded by a % mark in a line) in 
an ASCII file, and generates a vector with a user-defined name, containing all 
the numbers present in the file.

The different file formats can be converted to each other using the file 
conversion function elisfcnv.

The file types and formats are recognized by their extensions. The first 
character of the extension refers to the contents of the file (Fourier, variance, 
etc.), the second and third to the file format: nt is reserved for ASCII files with 
no text (flat ASCII files), and bn is reserved for binary files. The standard 
extensions are:

The complete definition of the file formats is given in Appendix A.

An extra facility, incorporated into the toolbox, allows the export of vectors into 
flat ASCII files (expvect), for data transfer to graphing programs.

Time files: .tim, .tnt, .tbn

Fourier files: .fou, .fnt, .fbn

Variance files: .var, .vnt, .vbn

Parameter files: .par, .pnt, .pbn

Covariance files: .cov, .cnt, .cbn
8



A Typical Identification Session
A Typical Identification Session
This section illustrates the frequency domain identification procedure for the 
identification of a flexible robot arm. The procedures described below include a 
few typical steps, applicable under a variety of circumstances. However, every 
identification task has its own flavor. For systems other than this robot arm, 
other procedures may be adequate. Therefore, while this section serves as an 
example, and suggests a series of good solutions, it should not be followed 
blindly for other systems.

The procedures described below are implemented in the M-file rarmdemo. The 
code fragments do not necessarily constitute a full program; their purpose is 
rather to illustrate a simple way of calculation.

The behavior of a flexible robot arm was measured by applying controlled 
torque to the vertical axis at one end of the arm, and measuring the tangential 
acceleration of the other end. The excitation signal was a multisine, generated 
with frequency components at [1:2:199]*df, with df = 500/4096 Ý 0.122 Hz; 
that is, the frequency range was about 0.12 Hz – 24 Hz. The originally flat 
multisine was distorted by the nonlinear behavior of the actuator. The odd 
harmonic frequencies provided that components produced by a squaring 
nonlinearity would not disturb the identification. The input and output signals 
were sampled with sampling frequency fs = 500 Hz. Sampling was 
synchronized to the excitation signal so that 4096 samples were taken from 
each period. The data records contain 40960 points; that is, 10 periods were 
measured. The data are available in the file robotarm.mat22. The time series 
are scaled to 16-bit integers in order to reduce the file size.

22. This measurement was made at the Department of Mechanical Engineering, Cath-
olic University of Leuven (KUL), in cooperation with Department ELEC, Vrije Univer-
siteit Brussel (VUB), as a part of the Belgian program "Interuniversity Attraction Poles 
(IUAP50: Robotics and Industrial Automation)" initiated by the Belgian State, Prime 
Minister's Office, Science Policy Programming. These data belong to the public domain 
and can be freely used by anyone.
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Investigation of the Time Domain Data
First the time domain data and the autocorrelation function can be 
investigated. Let us have a look at the time domain data.

load robotarm.mat
     %xt = scaled input time record, 40960x1
     %yt = scaled output time record, 40960x1
     %fs = sampling frequency, 500 Hz
     %ascale = scaling factor of the time records
     %N = number of points in a period (4096)
     %freqind = index numbers of sine waves in DFT of
                %a period, [1:2:199]' 
xt = xt*ascale; yt = yt*ascale; dt = 1/fs; df = fs/N;
Nl = length(xt); expno = Nl/N;
T = Nl*dt; timevtot = [1:Nl]'*dt; freqindtot = freqind*expno;
clf, hold off
subplot(2,1,1), plot(timevtot,xt,'-w')
title(sprintf(['Input data (torque), number of points:',...
        ' .0f'],Nl))
xlabel('Time, s')
subplot(2,1,2), plot(timevtot,yt,'-w')
title(sprintf(['Output data (acceleration), ',...
         'number of points:  .0f'],Nl))
xlabel('Time, s')
0



A Typical Identification Session
Figure 2-5:  Time domain data

Not much can be stated on the basis of the time functions; not even the period 
length can be read. The input signal apparently has a smaller crest factor than 
the output one, but that's about all we can see. More can be determined from 
the autocovariance function. We will evaluate the so-called circular correlation, 
which is the inverse Fourier transform of the periodogram, (1/Nl)*abs(X).^2. 
We will suppress the dc component to get the autocovariance. In order to have 
immediate information about the periodicity, we will connect every 4096th 
point by a dotted line.
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%Calculations:
X = fft(xt); dcx = X(1); X(1) = 0; Sx = (1/Nl)*abs(X).^2;
Cx = real(ifft(Sx));
%Plotting:
clg
subplot(2,1,1)
axv = [0,max(timevtot),1.1*min(Cx),1.1*max(Cx)];
plot(timevtot,Cx,'-',timevtot([1:4096:Nl,Nl]),...
     Cx([1:4096:Nl,Nl]),':')
axis(axv)
title('Circular autocovariance function'), xlabel('time, s')

From the autocovariance function (see below)  several conclusions can be 
drawn. First of all, there is indeed a periodicity of 4096*dt = 8.192 s. The 
autocovariance function corresponds to a bandlimited white spectrum; the 
negative peaks verify the use of odd harmonics at [1:2:199]*df. The signal 
was oversampled by a factor of 2048/199 = 10, that is, from the  sin(x)/x 
shaped main lobes of the autocovariance function, about 20 points are sampled. 

p1h = axes('Position',[0.1300,0.1100,0.3175,0.3375]);
pv = 1*4096+1+[-15:15];
axv = [min(timevtot(pv))-dt,max(timevtot(pv))+dt,...
           1.2*min(Cx(pv)),1.1*max(Cx(pv))];
plot(timevtot(pv),Cx(pv),'o',timevtot(pv),Cx(pv),':')
axis(axv)
mpv = median(pv); hold on
plot(timevtot(mpv)*[1,1],[0,Cx(mpv)],':w',...
           axv(1:2),[0,0],':w')
title('Lag No. 1')
hold off
p2h = axes('Position',[0.5825,0.1100,0.3175,0.3375]);
pv = 5*4096+1+[-15:15];
axv = [min(timevtot(pv))-dt,max(timevtot(pv))+dt,...
          1.2*min(Cx(pv)),1.1*max(Cx(pv))];
plot(timevtot(pv),Cx(pv),'o',timevtot(pv),Cx(pv),':')
axis(axv)
mpv = median(pv); hold on
plot(timevtot(mpv)*[1,1],[0,Cx(mpv)],':w',...
          axv(1:2),[0,0],':w')
title('Lag No. 5'), hold off
2



A Typical Identification Session
Figure 2-6:  The autocovariance function

It is obvious from the enlarged peaks that synchronization is very good 
between the excitation signal and the sampling clock. This can also be verified 
in the frequency domain. If there was a slip, it could not be more than about 
0.003% (dt/2 in a time of 4*4096*dt).
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Examination of the Signal-to-Noise Ratios
The autocovariance function can be used for approximate determination of the 
signal-to-noise ratio; the power of the periodic components is given by one of 
the peaks at nonzero lag, the total power is given by the covariance value at 
zero.

PtotxC = Cx(1); PperxC = mean(Cx([1:9]*N+1));
%
fprintf(['Cx(0) = %.3g, Cx(k*Tp) = %.3g, SNRx = %.1f',...
    ' dB\n'],Cx(1),Cx(N+1),10*log10(PperxC/(PtotxC-PperxC)) )
Cx(0) = 0.0293, Cx(k*Tp) = 0.0288, SNRx = 17.3 dB

However, this is not exactly what we need.  The useful signal has power at the 
given frequencies only; the rest are spurious components, produced by the 
nonlinearities.

%Calculations:
freqvtot = [0:Nl/2-1]'/Nl*fs;
Y = fft(yt); dcy = Y(1); Y(1) = 0; 
Sy = (1/Nl)*abs(Y).^2; clear Y
%Plotting:
clg, hold off, subplot(2,1,1)
plot(freqvtot,abs(X(1:Nl/2)) )
title('Input amplitudes'), xlabel('Frequency, Hz')
subplot(2,1,2), plot(freqvtot,abs(Y(1:Nl/2)) )
title('Output amplitudes'), xlabel('Frequency, Hz')
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A Typical Identification Session
Figure 2-7:  Input and output Fourier amplitudes

The input amplitude spectrum is not really flat. The cause is most probably the 
nonflat transfer function of the system composed of the actuator and the device 
under test. The two dips at 7.2 Hz and 15.7 Hz in the input spectrum 
correspond to resonance points of the system, where  the actuator is not capable 
of maintaining the signal level. This is not a serious problem since the 
frequency range of interest is sufficiently covered by nonzero excitation 
amplitudes. The powers of the useful signal, of the harmonic components, and 
of the noise, can be calculated for both the input and the output signals.
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%Calculations:
Pux = 2*sum(Sx(freqindtot+1))/Nl; Ptotx = sum(Sx)/Nl;
Pperx = real(exp(j*2*pi*N*[0:Nl-1]/Nl)*Sx)/Nl;
Puy = 2*sum(Sy(freqindtot+1))/Nl; Ptoty = sum(Sy)/Nl;
Ppery = real(exp(j*2*pi*N*[0:Nl-1]/Nl)*Sy)/Nl;
%Display results:
fprintf('  Input signal:\n')
fprintf(['    Total power: %.3g, useful power: %.3g, ',...
     'noise power: %.3g\n'],Ptotx,Pux,Ptotx-Pperx)
fprintf(['    Power of spurious periodic components: ',...
     '%.3g\n'],Pperx-Pux)
fprintf(['    SNR: %.1f dB, for useful components only:',...
     ' %.1f dB\n'],10*log10(Pperx/(Ptotx-Pperx)),...
     10*log10(Pux/(Ptotx-Pux)) )
fprintf('  Output signal:\n')
fprintf(['    Total power: %.3g, useful power: %.3g,',...
     ' noise power: %.3g\n'],Ptoty,Puy,Ptoty-Ppery)
fprintf(['    Power of spurious periodic components: ',...
     '%.3g\n'],Ppery-Puy)
fprintf(['    SNR: %.1f dB, for useful components only: ',...
     '%.1f dB\n'],10*log10(Ppery/(Ptoty-Ppery)),...
     10*log10(Puy/(Ptoty-Puy)) )

Input signal:
    Total power: 0.0293
       useful power: 0.0286, noise power: 0.000508
    Power of spurious periodic components: 0.000218
    SNR: 17.5 dB, for useful components only: 16.0 dB
  Output signal:
    Total power: 0.0828
       useful power: 0.0797, noise power: 0.00139
    Power of spurious periodic components: 0.00171
    SNR: 17.7 dB, for useful components only: 14.1 dB

The signal-to-noise ratios are quite good, although the nonlinearities produce 
significant components. Since the noise is larger than the nonlinearity 
products, these will hopefully not deteriorate the identification significantly. 
Let us select the excitation lines [1:2:199] only, so the SNR will be improved 
by a factor of about 20 (13 dB).
6
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Conversion to Frequency Domain
Now periodwise conversion to frequency domain follows. Ten periods were 
measured. We will treat each period as a separate experiment, thus noise 
analysis can be performed. The time vector of a period (one experiment) is 
shorter than the measurement data vectors xt and yt. Therefore, the easiest 
way for passing the data to tim2fou is to use exptim.

timevect = [1:N]'*dt; freqv = freqind*df;
F = length(freqind);
[x,y] = tim2fou(exptim(timevect,xt,yt),freqv);

Variance Analysis
Frequency domain noise analysis can be performed using varanal. In parallel 
with noise analysis, a test of synchronization could be performed, making use 
of the post-measurement synchronization possibility. This would take 
considerable time. We already know that the measurements were made with 
good synchronization, so testing of synchronization will not be done.

%Variance analysis:
[vx,vy,cxy,mx,my,Na,Np,cfl,dv,sd] = ...
               varanal(expfou(freqv,x,y));
%Calculation of the SNR’s:
PNx = 0; Px = 0; PNy = 0; Py = 0;
Px = 2*sum(abs(mx).^2/N)/N; Py = 2*sum(abs(my).^2/N)/N;
PNx = 2*sum(2*vx/N)/N; PNy = 2*sum(2*vy/N)/N; 
%Plotting:
subplot(2,2,1)
plot(freqv,vx,'+'), title('Input variances')
xlabel('Frequency, Hz')
ylabel(sprintf('SNR = %.1f dB',10*log10(Px/PNx)))
subplot(2,2,2)
plot(freqv,vy,'+'), title('Output variances')
xlabel('Frequency, Hz')
ylabel(sprintf('SNR = %.1f dB',10*log10(Py/PNy)))
subplot(2,2,3)
plot(freqv,abs(cxy),'+'), title('I/O covariances'), 
xlabel('Frequency, Hz')
subplot(2,2,4)
plot(freqv,abs(cxy)./sqrt(vx.*vy),'+')
title('I/O corr. coefficients'), xlabel('Frequency, Hz')
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Figure 2-8:  The results of noise analysis

The total SNR is increased by the selection of the points of interest:

fprintf('SNRinp = %.1f dB, SNRoutp = %.1f dB\n',...
         10*log10(Px/PNx),10*log10(Py/PNy))
SNRinp = 22.6 dB, SNRoutp = 23.7 dB

The increase of about 5-6 dB is due to the oversampling and selection of points 
of interest only. It is less than expected, probably because the noise has less 
power at higher frequencies than in the lower frequency band.
8
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The input-output covariances are quite large so they can not be ignored. This 
could mean that a part of the noise goes through the system, that is, the 
estimation is corrupted by less noise than calculated above. This can be verified 
by plotting cxy./vx.  If an important part of the noise goes through the system, 
this plot will have a shape similar to the transfer function:

We will make this plot when the approximate shape of the transfer function is 
plotted.

A rough guess about the gain in SNR can be obtained by calculating  the SNR 
of the nonparametric estimate of the transfer function. The SNR of this 
nonparametric estimate is smaller than those above, because the division 
ym./xm amplifies the noise significantly where xm is small. In elis, this division 
is not used, as it can be seen from the cost function.

[tfm,stdAm] = stdtfm([freqv,mx,my],[vx,vy]);
[tfmc,stdAmc] = stdtfm([freqv,mx,my],[vx,vy,cxy]);
SNRtfm = 10*log10(sum(abs(tfm).^2)/sum(2*stdAm.^2));
SNRtfmc = 10*log10(sum(abs(tfmc).^2)/sum(2*stdAmc.^2));
fprintf(['SNRtfm without covariance: %.1f dB, with ',...
     'covariance: %.1f dB\n'],SNRtfm,SNRtfmc)
SNRtfm without covariance: 13.6 dB, with covariance: 14.2 dB

The SNR can also be studied at the selected points by calculating it both for the 
input and the output. However, it is much quicker to plot the nonparametric 
transfer function estimates with uncertainties using ploteltf. 

ploteltf('','',[freqv,x(1:F),y(1:F)],'','',[vx,vy,cxy])

cxy 0.5E NxNy{ } E NxNxtf{ } vx∗ tf=∼=
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Figure 2-9:  Uncertainties of the nonparametric transfer function estimate

The SNR is quite good indeed. Now cxy./vx will be plotted to check that a 
significant part of the noise goes through the system.

ploteltf('','',[freqv,ones(100,1),cxy./vx])
0
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Figure 2-10:  The shape of cyx./vx, showing a pattern similar to the transfer 
function

cxy./vx has a shape very similar to the transfer function. A large part of the 
noise goes through the system.

Identification
We can now proceed with identification. Since the experiments are well 
synchronized, the average of the complex amplitudes, mx and my,  can be used. 
Since these averaged quantities have smaller variances, vx, vy , and cxy have 
to be divided by the number of averaged experiments, Na. For the run of elis, 
the numerator and denominator orders of the transfer function have to be 
given. From the nonparametric plot it is obvious that at least two complex pole 
pairs and two complex zero pairs will be necessary. So, let us start with a 
system 4/4.

Fdat = [freqv,mx,my]; vdat = [vx,vy,cxy]/Na;
[pv,fit,Cp] = elis(Fdat,vdat,['s',4,4],[],'',10); 
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Figure 2-11:  Result of the 4/4 fit

The fit is quite good, but the cost function is still large, and there is an apparent 
mismatch at the higher frequency band. It seems reasonable to increase the 
orders. Let us try a 6/6 system.

[pv66,fit66,Cp66] = elis(Fdat,vdat,['s',6,6],[],'',10); 
2
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Figure 2-12:  Result of the 6/6 fit

The fit is much better. The cost function got quite close to the theoretical value, 
however, it is still larger than the theoretical value by about a factor of 2.5, so 
there are probably still small modeling errors. A model of order 8/8 can still be 
tried. 

[pv,fit88,Cp] = ...
              elis(Fdat,vdat,['s',8,8],[],[NaN,NaN,100],25);
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Figure 2-13:  Result of the 8/8 fit

The 8/8 model is not much better than the 6/6 one. The cost function decreased 
from 220.5 to 207.6 only and the theoretical values are 91 and 93, respectively. 
The large number of necessary iterations is also an indicator of probable 
overmodeling. Now other attempts can be made with different numerator and 
denominator orders, but none of them is successful finding a better fitting 
stable model than the 6/6 one. The modeling error is probably due to 
nonlinearities. The order need not be further increased.

However, there is still a chance that a lower-order system can be as good as the 
6/6 one. Let us make a pole-zero uncertainty plot of the 6/6 model. 

plotelpz(pv66,[],Cp66,2)
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Figure 2-14:  Uncertainty ellipses of the 6/6 fit

The confidence ellipses are quite small, so they are of no use in this case. What 
can be seen is that the one zero pair and one pole pair have larger variance than 
the rest. However, we can speculate that the real zero pair far from the 
imaginary axis plays no important role, so it is reasonable to decrease the 
numerator order by 2. This will also allow the transfer function to decrease for 
higher frequencies, the usual behavior of physical systems. The two poles may 
correspond to the resonance around 42 Hz, shown in the complex output 
amplitude plot. At this frequency there was no excitation applied, however, the 
nonlinearities produced enough overharmonics to show this resonance. For a 
proper identification of it, the complex input/output amplitudes around this 
frequency should also be used, and a broader excitation signal should have 
been applied. We are not going to specifically deal with this resonance, but will 
proceed with the above used data. But before making the 4/6 fit, let us have a 
closer look at the uncertainties of the important poles and zeros. 
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plotelpz(pv66,[-0.8,0,-200,200],Cp66)

Figure 2-15:  Uncertainties of the important zeros and poles

The dominant error is in the damping of the poles and zeros; their frequencies 
are well determined.
6
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Let us do now a 4/6 fit. For a thorough study of this fit, a report file can be 
generated.

[pv46,fit46,Cp46] = elis(Fdat,vdat,['s',4,6],[],'',10,[],...
'robotarm.rep');

Figure 2-16:  Result of the 4/6 fit
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Model Validation
type robotarm.rep
FREQUENCY DOMAIN SYSTEM IDENTIFICATION TOOLBOX FOR MATLAB
ELiS RUN PROTOCOL, date and time: 13-Dec-93, 17:54:48
Report file: robotarm.rep
Default run parameters, modified in command line

Fourier data given in command line
Experiment: 1, number of frequencies: 100
Variance data given
Input-output covariances are taken into account
Fit in s-domain, frequencies normalized internally
   by omegasc = 76.699 rad*Hz
   suggestion: omegasc = 109.48 rad*Hz
Orders: 4/6
No fixed nonzero parameters (norm=1 solution)
Fixed value of the delay:  0 s
Algorithm: Singular value decomposition
Initial value setting: WLS, by singular value decomposition

Allowed maximum number of iterations: 50,
   iterations performed: 4
Total run time: 0.43 min, time used for plots: 0.28 min
   time used for pole/zero calculations: 0.00 min
Stop if relative change of cost function is smaller than
   1.00e-06
   last relative variation: -2.03e-11
Stop if maximum relative change of parameters is smaller than
   0.00e+00
   last max. rel. variation: +1.09e-06
Condition number of the decomposed or inverted matrix:
                       70.001, reciprocal: 0.014285
Condition number of J: 70.001, reciprocal: 0.014285
Condition number of Q=d^2C/dp^2: 4496.6,
   reciprocal: 0.00022239
eps = 2.220e-16
Value of the cost function: 247.49, its double: 494.99
Theoretical value of the cost function: 94.0
Degrees of freedom of the chi-square value (2*cfth): 188
8
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5%-95% points of the theoretical distribution of the cf:
   75.959, 113.93
Approximate mean model error: 0.2232
Mean absolute value of the transfer function: 1.3037
Approximate relative mean model error: 0.17121
Akaike criterion: 518.99
Number of free parameters: 12

Values of the parameters (with standard deviations, calculated 
from the approximate covariance matrix):
Numerator:
s^0    2.573756993444797e-02    std: 2.5441e-05  (0.098848%)
s^1    9.551589736680904e-06    std: 4.4310e-07  (4.639%)
s^2    4.165357328394967e-05    std: 1.7078e-08  (0.041%)
s^3    2.261458387371986e-09    std: 4.5396e-11  (2.0074%)
s^4    2.026311165334144e-09    std: 1.3721e-12  (0.067713%)
Denominator:
s^0   -2.311031465095138e-01    std: 2.0162e-04  (0.087241%)
s^1   -1.209269285803730e-04    std: 2.4367e-06  (2.0151%)
s^2   -1.379252065522331e-04    std: 1.5389e-07  (0.11158%)
s^3   -5.572203126063595e-08    std: 1.0717e-09  (1.9233%)
s^4   -1.355803200968540e-08    std: 2.7230e-11  (0.20084%)
s^5   -3.740349830798937e-12    std: 7.8835e-14  (2.1077%)
s^6   -2.006123724224281e-13    std: 1.3813e-15  (0.68853%)
Delay:
0 s    fixed

Zeros (rad*Hz):
-4.5424e-01 -1.4113e+02*j
-4.5424e-01 +1.4113e+02*j
-1.0378e-01 -2.5252e+01*j
-1.0378e-01 +2.5252e+01*j

Poles (rad*Hz):
-8.7516e+00 -2.3556e+02*j
-8.7516e+00 +2.3556e+02*j
-4.4728e-01 -9.9527e+01*j
-4.4728e-01 +9.9527e+01*j
-1.2343e-01 -4.5749e+01*j
-1.2343e-01 +4.5749e+01*j
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First nonzero numerator coefficient is b(4)=2.0263e-09
First nonzero denominator coefficient is a(6)=-2.0061e-13
b(4)/a(6)=-1.0101e+04
Static gain: -1.1137e-01, -19.1 dB

Parameter file to save data: -
Covariance file to save data: -
%%%%% End of report file robotarm.rep %%%%%

The fit seems to be very reasonable. We have a good identified model.

The  4/6 model can be verified using the standard techniques of the  toolbox. We 
will not do all the possible tests, but will do some of the typical ones. One of the 
most important indicators of the quality of the fit is the value of the cost 
function, already discussed above. It is also important to examine visually the 
quality of the fit on the plot of elis. In this case the error is too small to be 
easily detected on the plots. The phase errors at the zeros are not really 
important, since here the phase information of the measurements is small. The 
confidence interval plots using ploteltf could also be used, but the confidence 
intervals have to be magnified for visual checking.

ploteltf(pv46,[],expfou(freqv,x(1:F),y(1:F)),'','',Cp46,100)
0
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Figure 2-17:  Magnified confidence bounds of the 4/6 fit
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Even with a bound of 100*sigma, not much can be seen. It is better to look for 
other tests. We think that there are modeling errors, so let us check the 
approximate mean model error.

fprintf('Approximate mean model errors:\n')
fprintf('4/6 model   6/6 model   8/8 model\n')
fprintf('  %.2f        %.2f        %.2f\n',...
     fit46(10),fit66(10),fit88(10))
fprintf('Mean absolute value of the transfer function:\n')
fprintf('  %.2f        %.2f        %.2f\n',...
     fit46(11),fit66(11),fit88(11))

Approximate mean model errors:
4/6 model   6/6 model   8/8 model
  0.22        0.21        0.20
Mean absolute value of the transfer function:
  1.30        1.31        1.31

These values illustrate that the modeling error is not negligible, and is in the 
same order of magnitude for all three fits. Because of the modeling error, the 
Akaike criterion cannot be used. For closer investigation of the quality of the 
fit, the residuals can be calculated.

[rx,ry,ryx,vryx,xe,ye] = ...
          rdueelis(pv46,Cp46,expfou(freqv,x,y),[vx,vy,cxy]);

rx, ry and ryx can be studied for normal distribution and whiteness. We will 
do a few tests for ryx. First, it has to be standardized, dividing the residuals at 
each frequency point by the standard deviation.

il = [1:F]'; il = il(:,ones(1,expno)); il = il(:);
ryxn = ryx./sqrt(vryx(il));

If the fit is good, the standardized residuals have to exhibit circular standard 
normal distribution at each point, and they have to be independent. These 
properties will be checked by simple tests. First, let us draw the histograms of 
the real and imaginary parts. The dotted lines show the standard normal 
probability density function, scaled up to the histogram, which is  made of 1000 
points, with dx = 0.2.
2
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%Calculations:
dx = 0.2; X = [-3.8:dx:3.8];
Nhr = hist(real(ryxn),X); Nhi = hist(imag(ryxn),X);
fX = 1/sqrt(2*pi)*exp(-X.^2/2);
np = F*expno;
%Plotting:
clg
subplot(121), bar(X,Nhr), hold on, plot(X,fX*np*dx,':g'), hold 
off
title('Histogram of real part'), xlabel('real(ryxn)')
subplot(122), bar(X,Nhi), hold on, plot(X,fX*np*dx,':g'), hold 
off
title('Histogram of imaginary part'), xlabel('imag(ryxn)')

Figure 2-18:  Histograms of the real and imaginary parts of the complex 
residual of  y./x
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The fit is good. The chi-squared value can also be evaluated for both 
histograms, simply by using the approximate probabilities.

i = find((X >= -2)&(X <= 2)); NPiv = fX(i)*dx*np;
chir = sum(((Nhr(i)-NPiv).^2)./NPiv);
chii = sum(((Nhi(i)-NPiv).^2)./NPiv);
fprintf(['E{chi^2} = %.0f, chi^2_real: %.1f,',...
     '  chi^2_imag: %.1f\n'],length(i)-1,chir,chii)

E{chi^2} = 20, chi^2_real: 22.5,  chi^2_imag: 10.4

The test shows no significant deviation from the standard normal distribution.
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As a last test, let us plot the autocorrelation function of the frequency domain 
residual series.

Cf = real(fft(1/np*abs(ifft(ryxn)).^2));
clg, plot(Cf), title('Frequency domain correlation of ryxn')
xlabel('Indices (through all experiments)')

Figure 2-19:  Frequency domain autocorrelation of the residual of the non-
parametric estimate y./x

The autocorrelation function has a dominant peak at zero, an indication of the 
approximate uncorrelatedness of the residuals. The repeated smaller peaks are 
at lag distances of experiment lengths each, which indicates a small modeling 
error again, since it corresponds to a repetitive pattern in the residuals.
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A last thing we will try in this session is to make a fit using the input and 
output variances, but not the covariances, in order to explore what happens in 
this case. 

[pv,fit,Cp] = elis(Fdat,[vx,vy]/Na,['s',4,6],[],'',10); 

Figure 2-20:  A 4/6 fit without taking input-output covariance into account

The fit seems to be as good as with the covariances and the cost function is even 
smaller. But this small cost function is wrong, and has to be avoided. This is 
one reason why it is advisable to use the covariance values whenever possible; 
the cost function will only have a reasonable value by application of a correct 
noise model. But the most important reason for using the covariances is to 
utilize the available information correctly, with more emphasis on the bands 
where the amplitudes are measured with smaller error.
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3 Reference
This section contains detailed descriptions of all Frequency Domain System 
Identification Toolbox functions. It begins with a list of functions grouped by 
subject area and continues with the reference entries in alphabetical order. 
Information is also available through the online Help facility.
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Function Tables
Function Tables
Most functions have several default arguments. Under the Syntax heading, the 
function is listed first with all necessary input arguments, then with all 
possible input arguments. The functions can also be used with  fewer input 
arguments. Missing trailing arguments are given default values. Default 
values are also obtained by entering the arguments as empty arrays or strings.

In MATLAB, all output arguments do not need to be specified. Unspecified 
output arguments are not returned.

Excitation Signal Design

Function Purpose

dibs Discrete interval binary sequence design

dibsimpr Discrete interval binary sequence improvement

lin2qlog Quasi-logarithmic frequency set from linear grid

log2qlog Quasi-logarithmic frequency set from log grid

mlbs Maximum length binary sequence (PRBS)

msinclip Crest factor minimization of multisine

msinprep Time domain multisine for download

optexcit Excitation signal with optimum power spectrum
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Preprocessing of Data

Estimation

Presentation of the Results

Function Purpose

modifyfv Data prefiltering by inverse of known partial “tf”

tim2fou Time domain to frequency domain conversion

varanal Variance analysis and averaging of data

Function Purpose

elis Iterative minimization of the LS cost function

elisqa Generate run parameter settings for elis

elrpf2v List run parameter file or convert to run parameter 
vectors

elrpv2f List run parameter vectors or convert to run parameter 
file

gmean Geometric mean of complex vectors and numbers

Function Purpose

expvect Export vectors to ASCII files for plotting

gmean Geometric mean of complex vectors and numbers

ploteltf Plot transfer functions and confidence intervals

plotelpz Plot pole/zero patterns with uncertainty ellipses
3-4



Function Tables
Model Validation

Model Conversions

Function Purpose

Function Purpose

fdcovpzp Pole-zero model to transfer function conversion

rdueelis Calculate residuals after identification

simfou Generate simulated frequency domain data

simtime Generate simulated time domain data

stdpz Calculate zero/pole uncertainties

stdtf Calculate transfer function uncertainties

stdtfm Calculate uncertainties of Ym/Xm points

Function Purpose

elis2tha ELiS to theta format conversion

tha2elis Theta format to ELiS conversion
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Data Vector and File Read/Write

Function Purpose

elisfcnv Conversion between different file formats

expcov Write data to covariance vector or file

expfou Write data to Fourier vector or file

exppar Write data to parameter vector or file

exptim Write data to time domain data vector or file

expvar Write data to variance vector or file

expvect Export vectors to ASCII files for plotting etc.

impcov Read data from covariance vector or file

impfou Read data from Fourier vector or file

imppar Read data from parameter vector or file

imptim Read data from time domain data vector or file

impvar Read data from variance vector or file

loadasc Load contents of ASCII file into variable
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Other

Function Purpose

fdiddemo Demonstrations for the toolbox

fnamanal Analysis of filenames

gmean Geometric mean of complex vectors and numbers

loadvar Load value of single variable from MAT-file

pairs Find closest point pairs in two complex vectors

savevar Save variable into existing MAT-file

yesinput “Intelligent” input function with default value

ywalk yulewalk without windowing
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dibs, dibsimprPurpose Discrete interval binary sequence design. 

Syntax bitser = dibs(N,dt,freqv,ampv)
[bitser,ampopt,Puf,Ptot] = dibs(N,dt,freqv,ampv,trialno,graphmod)
[bitser,ampoptn] = dibsimpr(bits0,dt,freqv,ampv)
[bitser,ampoptn,Puf,Ptot] = ... 

dibsimpr(bits0,dt,freqv,ampv,itno,graphmod)

Description dibs generates a zero-mean discrete interval binary sequence of length N, with 
interval size dt, approximating the power spectrum given in ampv for the 
frequency points freqv. The algorithm is started trialno times from random 
starting values. The iteration can be followed on the screen, unless graphmod is 
given with a value 'nograph'. 

The bit sequence (values ±1) is returned in bitser, and the complex amplitudes 
of the generated sequence at the points freqv in ampopt. The complex 
amplitudes are scaled in such a way that the total power of the designed signal 
equals the total power Ptot, defined by ampv.

In order to have a measure of the quality of the design, a so-called “equivalent 
crest factor” is calculated (it is shown in the plots). The basic idea is as follows. 
The crest factor of a zero-mean binary signal is 1. However, in our case the 
spectrum is not equal to the desired one, it only approximates it. If the smallest 
relative amplitude is increased to 1, by amplification of the binary signal, in 
order to assure that the system is excited at each frequency at least at the 
desired level, the peak value is multiplied by the reciprocal of the smallest 
relative amplitude: eqcr = max(abs(ampv./ampopt)).

Puf gives the useful power (the sum of the power at the desired lines), as a 
fraction of the total signal power, that is, the theoretical maximum of Puf is 1. 
Ptot is the total signal power, calculated from ampv.

dibsimpr attempts to improve the properties of a discrete interval binary 
sequence given in bits0: it maximizes the smallest relative amplitude of the 
actual amplitude vector, normalized by ampv. The bit series is searched for 
improvements by changing the sign of a pair of bits: this search is started by 
itno times.

dibsimpr may take quite a long time. To make it possible to follow how it 
proceeds, each already processed bit is marked by a dot on the screen. 
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A typical example of the plot of dibs is shown in the next figure. trial  is the 
serial number of the actual trial (or at the end of the iterations the serial 
number of the one in which the optimum was found), iter is the number of the 
iteration cycles in the given trial, trials is the total number of the trials (given 
in trialno), eq. cr is the "equivalent crest factor" (see above), N is the length of 
the bit series, and dt is the length of the sampling interval.

In the frequency domain plot the desired amplitudes are given by dotted lines, 
the actual ones by solid lines. Puf is the part of the total signal power, which is 
concentrated at the given frequencies. The minimum and maximum values of 
the relative amplitudes (actual amplitudes vs. the desired ones) are also given 
in percents. For these numbers the actual amplitudes are scaled to have the 
same total signal power as prescribed by ampv.

The frequency axis is scaled in “frequency indices,” that is, the unit is df, the 
reciprocal of the period length.

The labels of the plots of dibsimpr are similar.
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Default 
Argument 
Values

ampv = ones(size(freqv)), trialno = 25, graphmod = 'graph', itno = 1.

Examples Let us assume that a system is to be excited at uniformly distributed frequency 
points between 500 Hz and 2 kHz, with 100 Hz resolution. A good choice for the 
sampling frequency is four times the highest harmonic defined in freqv. A 
possible program is as follows:

freqv = [500:100:2e3];
fs = 4∗2e3; N = round(fs/100); %N = 80
bits0 = dibs(N,1/fs,freqv,[],10);
bitser = dibsimpr(bits0,1/fs,freqv);

bitser can be directly used for the control of a relay, a thyristor, etc.

Diagnostics The sizes of freqv and ampv must be the same, otherwise an error message is 
generated:

freqv and ampv must have the same size

Since the discrete interval binary sequence is periodic, the frequency 
components must be at the points k/T, where T is the period length. If N, dt and 
freqv are inconsistent, the error message is:

a df value in freqv is smaller than 1/(N∗dt)

The condition of the sampling theorem must be fulfilled, further the elements 
of freqv must be non-negative, otherwise an error message is sent:

freqv is out of range

dibsimpr iterates until the maximum iteration number is reached, or no 
further improvement is found. In this latter case an information message is 
sent:

dibsimpr cannot further improve signal
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er 
Algorithm dibs is based on [1], with the modification that the returned signal is the one 
with the largest minimum relative amplitude. The algorithm generates a 
multisine with the amplitudes in ampv, takes the sign of the time function, 
combines the obtained phases with the given amplitudes, generates a new 
multisine, and so on. The mean value of the binary signal will be kept equal to 
zero if N is even, or will be equal to ±1/N if N is odd.

dibsimpr changes the sign of two intervals of length dt at a time, observing the 
change in the minimum relative amplitude [2].

See Also mlbs

References [1] A. van den Bos and R. G. Krol, “Synthesis of Discrete-Interval Binary 
Signals with Specified Fourier Amplitude Spectra,” International Journal of 
Control, 1979, Vol. 30, No. 5, pp. 871-884.

[2] K.-D. Paehlike and H. Rake, “Binary Multifrequency Signals — Synthesis 
and Application,” Proc. 5th IFAC Symposium on Identification and System Paramet
Estimation, Darmstadt, FRG, Sept. 24-28, 1979. Vol. 1, pp. 589-596.

[3] K. R. Godfrey, ed.: Perturbation Signals for System Identification. Englewood 
Cliffs, Prentice-Hall, 1993.
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elis, elisqa, elrpf2v, elrpv2fPurpose Basic iteration routine to calculate parametric estimate of linear transfer 
functions (elis); treat run parameters (elisqa, elrpf2v, elrpv2f).

Syntax elis(Fdat,vdat,rppar)
[pvect,fit,Cp,CR,cfv] = ...
     elis(Fdat,vdat,rppar,fixp,rpalg,rppl,initp,rpfs)

elisqa
rpfout = elisqa(rpf,defaults)
elrpf2v(rpfile)
[rppar,fixp,rpalg,rppl,initp,rpfs] = elrpf2v(rpfile)
elrpv2f(rpfile,rppar)
elrpv2f(rpfile,rppar,fixp,rpalg,rppl,initp,rpfs)

Description elis is the routine which performs the desired nonlinear least squares 
iteration to obtain the parameter estimates. elisqa is an optional question/
answer routine. elis is rather complex, and the possibilities may generally 
need some explanation; in elisqa such explanations are given, and run 
parameters may be set. elrpf2v and elrpv2f perform conversions between run 
parameter vectors and a run parameter file.

The run parameters of elis can be set by its input arguments, or they can be 
passed through a so-called run parameter file, generated by elisqa. Most run 
parameters have default values, thus it is not necessary to give the values of 
all parameters for every run.

Fdat contains the input and output Fourier amplitudes: it may be defined as 
[freqv,x,y] (N-by-3 array), where freqv is the frequency vector, x is the 
complex input vector, and y is the complex output vector; or it may be a 
compound Fourier vector, generated by expfou; or it may be the name of a 
Fourier file.

vdat sets the variance values. It may be an N-by-2 or N-by-3 array, 
[varx,vary] or [varx,vary,covxy]; an 1-by-2 or 1-by-3 row vector, containing 
the constant variances; a variance vector (see expvar); or it may be a string 
with the name of a variance file.

Instead of either Fdat or vdat, the name of a run parameter file may also be 
given: this must be a string which ends by '.ebn'. It may not contain any other 
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period, and the given run parameter file must define the Fourier or the 
variance data, respectively.

rppar, rpalg, rppl, rpfs are run parameter vectors, each composed of a set of 
run parameters. These prescribe the running of the algorithm, by elements 
that are either letters or numbers. It does not matter whether the vectors are 
given as strings or a numerical vectors, elis will take care of the proper 
meanings. The vectors may be shorter than their maximum length, or may 
contain NaN elements; in such a case the default values will be assigned to the 
corresponding run parameters. Some parameters may be influenced in 
different ways (e. g., the setting of starting values by rpalg(2) and by initp); 
in such cases the last setting will be valid, e. g., the one defined by initp in the 
above case.

rppar is the vector of the most often changed run parameters, associated with 
the model structure.

rppar(1) = domain: 's' or 'z'

rppar(2) = numord: order of the numerator

rppar(3) = denomord: order of the denominator

rppar(4) = fs: scaling angular frequency (in s-domain) or sampling frequency 
(in z-domain)

rppar(5) = 'a' for allpass design. 

In the absence of a run parameter file, at least rppar(1:3) must be given.

fixp defines the fixed parameters. If it is given as an M-by-2 array, the first 
column must contain the serial numbers of the fixed parameters in the vector 
[num,denom,delay]', and the second column the values. For example, if the 
numerator order is 4 and the denominator order is 8, the parameter vector has 
(4+1+8+1+1=15) elements. The first denominator coefficient and the delay can 
be fixed by fixp = [6,1;15,0]. The delay alone can be fixed by 
fixp = [15,0]. 

If fixp is empty, previously set fixed parameters (by default or by a run 
parameter file) will not be changed.

A special form is when fixp is just a one-character string: 'n' for no fixed 
parameters at all (the delay is variable, too); 'f' for fixed delay, or 'v' for 
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variable delay (for these two values the fixing of numerator and denominator 
coefficients remains untouched). Another special form is fixp = '0', for which 
the delay is fixed (to zero, or to the value defined by initp) and the zero-order 
coefficient of the denominator is set to 1.

rpalg provides control over the iteration possibilities.

rpalg(1) is the type of the iteration algorithm

'g' (Newton-Gauss),

'l' (Levenberg-Marquardt),

'm' (LM with svd), 

's' (singular value decomposition),

'r' (Newton-Raphson)

rpalg(2) = initset, way of setting the initial values: 

'l' (ordinary least squares),

'w' (weighted least squares),

's' (WLS with svd), 

'f' (file or parameter vector, see initp), 

'e' (equation error method of the Signal Processing Toolbox)

rpalg(3) = itmax: maximum number of iterations

rpalg(4) = rcostvar: stop if relative variation of cost function is smaller than 
this value.

rpalg(5) = rparvar: stop if relative variation of all parameters is smaller than 
this value.

Levenberg-Marquardt settings: 

rpalg(6) = lambdadecr: number of consecutive decreases of the cost function 
before trial with lambda = 0

rpalg(7) = lambda: initial value of lambda

rpalg(8) = lambdalim: minimum value of lambda which allows stopping of 
iteration for small variations of the cost function or of the parameters.

rppl controls the plots during the iterations:
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rppl(1) = plotdens: make plots after every plotdens cycle and after the 
initial setting and the last cycle if plotdens is finite; if it is inf, no plots will be 
made at all; if it is negative, the procedure is the same as for a positive number, 
except that the result of the initial setting will not be plotted.

rppl(2:5) = [fmin,fmax,amin,amax]: axis vector for the magnitude plots 

rppl(6) = plotmode: type of frequency axis, 'i' for linear, 'o' for logarithmic

rppl(7) = calcrnum: calculate zeros from numerator polynomial, 'c' or 'n'

rppl(8) = calcrdenom: calculate poles from denominator polynomial, 'c' or 
'n'

rppl(9:12): axis vector for zero/pole plots. Special meanings (the strings are 
always 4-character long, with appropriately set trailing spaces): [n,n,n,n] 
(four identical numbers): limit plotted zeros/poles by n∗2∗π∗max(freqv) in the 
s-domain, or by just n in the z-domain; 'a' to show all zeros and poles; 'p' to 
show all zeros and poles, with the same scaling on the two axes.

rppl(13) = pzfollown: follow movement of zeros and poles by plotting several 
zero/pole sets, the number given by pzfollown.

initp may have different meanings: it may be the parameter vector of the 
initial parameter values; or a parameter filename; if it is a scalar number, it is 
the new value of the delay. 

rpfs may contain the names of files to be generated, in the form of a string 
array, with trailing spaces if the filenames have different lengths. Possibilities: 
∗.rep for elis a report file, ∗.par, ∗.pbn or ∗.pnt for generation of a parameter 
file, and ∗.cov, ∗.cbn or ∗.cnt for a covariance file. Other extensions are not 
allowed in rpfs.

If no argument is given for elis, elisqa will be started, with the name 
elisrpar.ebn. 

elisqa offers default answers to the questions, these can be accepted by simply 
pressing Enter or Return. 

The output arguments of elis are as follows.

pvect is the calculated parameter vector (see exppar).
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fit is a vector containing information relevant to the results of the fit: 

fit(1) = cost function
fit(2) = theoretical value of the cost function (c2/2)
fit(3) = 95% point of the theoretical distribution of the cf
fit(4) = number of frequencies
fit(5) = number of free parameters
fit(6) = performed iterations
fit(7) = last change of the cost function
fit(8) = last maximum of the relative changes of parameters
fit(9) = last lambda (for Levenberg-Marquardt, otherwise NaN)
fit(10) = approximate mean model error
fit(11) = mean absolute value of the transfer function
fit(12) = Akaike criterion
fit(13) = condition number of the matrix actually decomposed 

or inverted in the last iteration step
fit(14) = condition number of J
fit(15) = condition number of Q=d^2C/dP^2, inverted when 

calculating the approximate covariance matrix 
(see Eq. (2.23)).

fit(16) = scaling frequency for internal calculations

The meaning and significance of the above condition numbers is explained in 
“Numerical Stability and Speed of the Procedures” on page 2-15.

The approximate mean model error is calculated according to “Detection of 
Undermodeling and Overmodeling” on page 2-33. The value of hmean is given, 
which will be imaginary if the cost function is too small (e. g., because the 
variances were overestimated, or simply because the cost function may be 
somewhat smaller than its expected value). This can be best checked from the 
information given in the report file. Hek and Xk are usually not even nearly 
constant. In these cases the square of the mean model error is averaged over 
all the frequencies given.

The mean model error can be compared to the mean absolute value of the 
transfer function, computed from the values at the same frequency points as 
above.

Cp is the approximate covariance matrix of the parameters (see “Covariance of 
the Estimate” on page 2-8). CR is the approximate Cramér-Rao lower bound for 
the covariance matrix of the estimates. Cp and CR are calculated from the 
3-16



elis, elisqa, elrpf2v, elrpv2f
Jacobian of the last iteration (therefore at least one iteration step is necessary 
to calculate them). The covariances are usable only if the algorithm has 
converged.

cfv is the vector of the values of the cost function in each cycle (the initial cycle 
included). In the case of the Levenberg-Marquardt method cfv has a second 
column: the values of lambda are also given.

elis is a rather complex function, and the results often need careful 
documentation and studying. Therefore, a so-called report file can be requested 
with extensive textual information on the run (see rpfs above).

elisqa can be run separately, in order to set run parameters in a file for elis. 
The default run parameters are taken from the file defaults, or if this is not 
given, from the file rpf, or if neither of them is given, from an internal table 
(see below). If rpf is not given, the name of the file to be generated will be 
elisrpar.ebn.

The run parameter files are MATLAB binary files, with the extension '.ebn'. 
filenames given without extension will be extended in elisqa by '.ebn'. In 
principle, these run parameter files might be modified directly (e. g., by the 
routine savevar), but this is not recommended, since it is easy to make a 
mistake when doing this. elisqa offers a safe and easy way for such 
modifications. 

The user of the routines usually need not bother about the internal names and 
values of the run parameters. However, the internal run parameters are listed 
below with their default values.

Sometimes it may be useful to use the same parameters in vector form, as given 
in a run parameter file, or vice versa. elrpf2v and elrpv2f serve this purpose. 
The meanings of the input and output arguments are explained above.

When elrpf2v has no output argument, or rpfile is empty when invoking 
elrpv2f, the values of the run parameters will be displayed on the screen.

The following paragraphs give a short description of the possibilities and 
solutions of elis, providing more detailed information than was possible in the 
description of the run parameter vectors.

The measurement data are supposed to be given by Fdat, or maybe in a Fourier 
file. For the internal calculations the frequency vector is scaled by the sampling 
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frequency in the z-domain, or by a scaling frequency in the s-domain. The 
default setting for the scaling frequency is (ωmin + ωmax)/2.

When defining the model to be fitted, the domain must be specified (s or z), the 
orders of the numerator and the denominator must to be given, and the fixed 
parameters have to be defined (in the transfer function something must be 
fixed, since multiplication of each coefficient by the same constant gives the 
same transfer function). If no fixed nonzero parameters are given, elis will set 
the norm (the square root of the sum of squares) of the scaled coefficients (but 
not the delay) to 1. Another possibility is to set at least one coefficient of either 
the numerator or the denominator to a fixed value.

The allpass filter is treated as a special case of parameter fixing (the 
parameters of the denominator are the same as those of the numerator, but in 
reverse order), however, in this case at least one parameter of the numerator 
has to be fixed.

You can also specify whether the roots of the numerator and the denominator 
are to be calculated. When dealing with high order systems (>30), the iteration 
speed can be increased by sacrificing the pole/zero plot. However, the most 
significant acceleration can be achieved by completely suppressing plots 
(plotdens set to inf), but this has the risk of missing something that could be 
seen from the plot. A possible compromise is to set plotdens to a high value; in 
this case the starting values and the result of the last cycle will be plotted 
(independently of the actual serial number of the last cycle).

In the transfer function an extra delay term can be present. The value of this 
delay can be either fixed or estimated in the iteration procedure. However, a 
guess of the delay has to be given even if it is to be estimated, since the initial 
value may seriously influence the convergence properties.

The numerical methods solving the nonlinear LS problem (see “Basic 
Concepts” on page 2-2) are standard methods in numerical analysis, including 
Newton-Gauss, Newton-Raphson, singular value decomposition (for the 
Newton-Gauss formulation), Levenberg-Marquardt and Levenberg-Marquardt 
with singular value decomposition. In the Levenberg-Marquardt algorithm an 
identity matrix, multiplied by lambda and by the Frobenius norm of JTJ, is 
added to JTJ before inversion; if a better fit is found, lambda is divided by 2, 
otherwise it is multiplied by 10 and the previous parameter values are 
restored. After lambdadecr successive divisions, an attempt is made with 
lambda = 0. (This corresponds to a Newton-Gauss step).
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The singular value decomposition is always applied to J, even if it is combined 
with Levenberg-Marquardt, in order to make full use of the power of the 
singular value decomposition algorithm. 

There are a few different possibilities to set the initial values for iteration. The 
first one is the standard initial setting procedure of ELiS: the linear least 
squares fitting. This can be modified to a weighted LS problem (weighting by 
the variances of the complex output amplitudes), and can also be solved by 
singular value decomposition. There are two more possibilities: the initial 
values can be taken from a parameter vector or file (e. g., the result of an earlier 
fit or of another method can be used), and also the equation error method of the 
Signal Processing Toolbox can be applied for initial value determination for 
elis (see invfreqz or invfreqs). In this latter case the input noise is 
transformed to the output as if a compound output noise was present.

For the control of the iterations, the maximum number of iteration cycles, the 
minimum relative variations of the cost function and of the estimated 
parameters can be set. The iteration will be terminated when the maximum 
number of iteration cycles is reached, or when any of the absolute values of the 
above variations is less than the corresponding minimum value. In the case of 
the Levenberg-Marquardt method the value of lambda is also considered: the 
iteration is terminated because of small variations only if the value of lambda 
is also smaller than lambdalim. The default value (1e-10) corresponds to 30 
halvings of the default starting value 0.1. 
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A typical plot of the function elis is shown in the figure. 

The left-hand side illustrates the fitting of the transfer function. The diagram 
consists of two parts. The upper part shows the absolute values of the ratios of 
the complex output and input amplitudes (+ marks), along with the magnitude 
of the estimated transfer function. The lower part shows the phase errors 
between the ratios of the measured complex amplitudes and the estimated 
transfer function. The plot is scaled vertically to (–180°,180°).

As a default, the pole/zero plot is also displayed at the right-hand side. The 
numbers of poles and zeros, the numbers of non-minimal phase zeros and 
unstable poles are also given, along with the number of zeros/poles occasionally 
not shown in the plot.
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When elis is terminated, the current axes is the pole/zero plot. This can be 
manually rescaled if desired, but the text about unstable poles etc., has to be 
deleted first:

h = get(gca,'ch'); delete(h(1))

A somewhat simpler solution is to reapply plotelpz with a given axis vector:

plotelpz(pvect,axv,'','','nomsg')

If desired, even the uncertainty ellipses can be added:

plotelpz(pvect,axv,Cp,2,'nomsg')

The screen contains some further information concerning the run: the value of 
the cost function, the last change of the cost function, the theoretical expected 
value of the cost function (number of frequencies minus half of the number of 
free parameters), cycle number, iteration algorithm and way of setting the 
initial conditions, and the value of the delay.
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A report file, that can be requested when running elis, will contain something 
like this: 

FREQUENCY DOMAIN SYSTEM IDENTIFICATION TOOLBOX FOR MATLAB
ELiS RUN PROTOCOL, date and time: 1-Nov-93, 18:55:1
Report file: elisrpar.rep
Default run parameters, modified in command line

Fourier data given in command line
Experiment: 1, number of frequencies: 30
Input and output variances:
   5e-07   1.4754e-07
Input-output covariances are not given
Fit in s-domain, frequencies normalized internally
   by omegasc = 2.0452 rad*Hz
   suggestion: omegasc = 1.4408 rad*Hz
Orders: 1/3
No fixed nonzero parameters (norm=1 solution)
Fixed value of the delay:  0 s
Algorithm: Singular value decomposition
Initial value setting: WLS, by singular value decomposition

Allowed maximum number of iterations: 50,
   iterations performed: 4
Total run time: 0.56 min, time used for plots: 0.51 min
   time used for pole/zero calculations: 0.00 min
Stop if relative change of cost function is smaller than
   1.00e-06,  last relative variation: -1.59e-14
Stop if maximum relative change of parameters is smaller
   than 0.00e+00,  last max. rel. variation: +2.33e-11
Condition number of the decomposed or inverted matrix:
                       54.176, reciprocal: 0.018459
Condition number of J: 54.176, reciprocal: 0.018459
Condition number of Q=d^2C/dp^2:
                       2932.8, reciprocal: 0.00034097
                                       eps = 2.220e-16
Value of the cost function: 30.785, its double: 61.57
Theoretical value of the cost function: 27.0
Degrees of freedom of the chi-square value (2*cfth): 54
5%-95% points of the theoretical distribution of the cf:
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   17.789, 38.098
Approximate mean model error: 0.00027292
Mean absolute value of the transfer function: 0.40298
Approximate relative mean model error: 0.00067726
Akaike criterion: 73.57
Number of free parameters: 6

Values of the parameters (with standard deviations, 
   calculated from the approximate covariance matrix):
Numerator:
s^0   -7.035487766480046e-02    std: 1.7580e-04  (0.24987%)
s^1   -7.038203864830019e-02    std: 5.6617e-05  (0.080443%)
Denominator:
s^0   -2.813969892740070e-01    std: 5.4478e-04  (0.1936%)
s^1   -2.110973116935604e-01    std: 1.6580e-04  (0.07854%)
s^2   -1.407034079272249e-01    std: 1.8950e-04  (0.13468%)
s^3   -7.037131510238287e-02    std: 9.1545e-05  (0.13009%)
Delay:
0 s    fixed

Zeros (rad*Hz):
-9.9961e-01

Poles (rad*Hz):
-1.6501e+00
-1.7467e-01 -1.5469e+00*j
-1.7467e-01 +1.5469e+00*j

First nonzero numerator coefficient is b(1)=-7.0382e-02
First nonzero denominator coefficient is a(3)=-7.0371e-02
b(1)/a(3)=1.0002e+00
Static gain: 2.5002e-01, -12 dB

Parameter file to save data: -
Covariance file to save data: -

%%%%% End of report file elisrpar.rep %%%%%
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Default 
Argument 
Values

Here is the list of the run parameters and their default values (the possible 
answers are given between parentheses):

Ffile = ''; %name of Fourier file
vfile = ''; %name of variance file
pfile = ''; %parameter filename (maybe empty)
cfile = ''; %name of the covariance file to be generated
rfile = ''; %name of the report file to be generated
initpfile = ''; %name of param file, with initial values
algtype = 'NG'; %iteration algorithm (NG,LM,LMsvd,NR,svd)
amin = NaN; %axisvect(3) for magnitude plot
amax = NaN; %axisvect(4) for magnitude plot
calcrnum = 'c'; %calculate roots of numerator (c,n)
calcrdenom = 'c'; %calculate roots of denominator (c,n)
covxy = []; %input-output covariance
delay = 0; %(initial) value of the delay
delaytreat = 'f'; %delay fix (f) or variable (v)
denomord = 2; %order of the denominator
denomfix = []; %fixed denominator coefficients
denomfixind = []; %fixed denominator coefficient indices
domain = 's'; %domain of the model (s,z)
expi = 1; %serial number of the experiment to be used
fmin = 0; %lower bound of displayed frequencies
fmax = NaN; %max. displayed frequency in the s-domain
fs = NaN; %sampling (normalizing) frequency
initset = 'l'; %initial value setting (l,w,s,f,e)
itmax = 50; %maximum number of iteration cycles
lambda0 = .1; %starting lambda value for Levenberg-Marquardt
lambdadecr = 10; %after 10 consecutive decreases, 0 is tried
lambdalim = 1e-10; %iteration may stop below this value
numord = 1; %order of the numerator
numfix = []; %fixed numerator coefficients
numfixind = []; %fixed numerator coefficient indices
paramtreat = 'n'; %No fixed params (n), some are fixed:
   %(0, d, r) or allpass filter is designed (a)
plotdens = 1; %cycles of iteration to plot (1,2...inf)
pzfollown = 1; %pole/zero sets to be plotted on same plot
pzlimit = 'y'; %limit poles/zeros on plot to
   %pzlimitv∗2∗π∗fmax (s) or 2 (z)
pzlimitv = 10; %limit poles/zeros on plot (see pzlimit)
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rcostvar = 1e-6; %minimum relative variation of the cf
rparvar = 0; %minimum relative variation of parameters
vardef = 'u'; %variances: numbers or take from file (u,f)
varx = 1; %uniform variance value of input coefficients
vary = 1; %uniform variance value of output coefficients

Default values of the run parameter vectors:

rppar = [NaN,NaN,NaN,NaN];
rpalg = ['g','w',50,1e-6,0,10,0.1,1e-10];
rppl = [1,0,NaN,NaN,NaN,'i','c','c','a    ',1];
rpfs = '';

The NaN values mean that the actual values will be controlled by the Fourier 
data.

Examples [freqv,x,y] = impfou('bandpass.fbn',1);
elis([freqv,x,y],3.4e-4∗[1,1],['s',4,6]);
elis('inpchans.ebn');
elis('inpchanz.ebn',[],['z',16,16],[35,0]); %fixing the delay

elisqa('elisqtst.ebn','inpchans.ebn');

[rppar,fixp,rpalg,rppl,initp,prfs] = elrpf2v('inpchans.ebn');
elrpf2v('inpchans.ebn')

elrpv2f('newfile.ebn',['z',12,12],[0],'r');
elrpv2f('',['z',12,12],'0','r');

Diagnostics The error and warning messages are self-explanatory. For the messages about 
condition numbers, see “Numerical Stability and Speed of the Procedures” on 
page 2-15.

Algorithm The algorithm and the main expressions are briefly described in Chapter 2, or 
in detail in [1].

References [1] J. Schoukens and R. Pintelon, Identification of Linear Systems: a Practical 
Guideline for Accurate Modeling, London, Pergamon Press, 1991.
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elisfcnvPurpose Convert elis data files between different formats (binary, ASCII, flat ASCII).

Syntax elisfcnv
elisfcnv(fromfile,tofile)

Description Using the data file read/write routines (impfou etc.), elisfcnv reads the 
contents of the file fromfile, and writes it to the file tofile.

Default 
Argument 
Values

There is no predefined default value; the routine prompts for the filenames if 
they are not given.

Examples elisfcnv('inpchans.pbn','inpchans.par')

See Also expcov, expfou, exppar, expvar, exptim, impcov, impfou, imppar, impvar, 
imptim. 
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elis2tha, tha2elisPurpose Model conversion from/to the theta-format of the System Identification Toolbox 

Syntax theta = elis2tha(pdat,cdat,varet)
theta = elis2tha(pdat,cdat,varet,numn,denomn)
[num,denom,delay,fs] = tha2elis(theta)
[num,denom,delay,fs,vary,ccovar] = tha2elis(theta,N,freqv)

Description These are the two routines which convert models of the Frequency Domain 
System Identification Toolbox from/to the System Identification Toolbox. pdat 
is the parameter vector in ELiS (see exppar), or the name of a parameter file. 
cdat is the covariance matrix of the parameters if it is an array (the rows and 
columns of the fixed parameters should contain zeros), or the covariance vector 
(see expcov), or the name of the covariance file. cdat may be empty, if the 
covariances are not available.

varet is the variance of the time domain noise, reduced to the output of the 
system, without noise shaping.

If the input noise is zero, and the variances of the real and of the imaginary 
parts of the complex amplitudes are uniformly equal to vary in the N-point 
spectrum, varet should be calculated as: varet = 2/N∗vary, and numn and 
denomn need not be given.

numn and denomn are the numerator and the denominator of the observation 
noise shaping filter (see “Model Conversions from/to the System Identification 
Toolbox” on page 2-41). If the frequency domain noise shape is fitted by the 
noise shaping filter:

and C corresponds to numn, D to denomn, the value of varet should be 2/N. The 
sampling frequency for the noise shaping filters is the same as that of the 
parameter vector.

When transforming models from the theta-format of the System Identification 
Toolbox, theta is the array of the theta-format to be converted, and N is the 
number of FFT points (for the calculation of vary only). vary is a scalar if 
C(z)≡D(z)≡1, and a vector if the noise is not white. freqv is the vector of 

C zk( )
C zk( )
-------------

2
vary fk( )≈ zk, e

j2πfk fs⁄
=
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frequencies where the variances are to be calculated. If vary is not required, N 
and freqv are not necessary.

The output arguments of tha2elis are as follows: num is the numerator, denom 
is the denominator of the transfer function, delay is the additional delay in the 
model, fs is the sampling frequency, vary is the vector of frequency domain 
variances of the output complex amplitudes at the frequencies in freqv (or just 
the frequency domain variance if this is constant), and ccovar is the covariance 
matrix of the vector [num,denom,delay].

Default 
Argument 
Values

numn = 1, denomn = 1

Examples theta = elis2tha('inpchanz.pbn','inpchanz.cbn',2/256∗1e-9);
[num,denom,delay,fs] = tha2elis(theta);

Diagnostics As it is discussed in “Model Conversions from/to the System Identification 
Toolbox” on page 2-41, the covariances can usually be converted only by using 
linear approximation of a ratio. This is done automatically by the conversion 
routines, but if approximation was applied, a warning message is sent:

WARNING: variance of denom(1) is not zero in elis2tha
or

WARNING: ccovar will be approximated in tha2elis

If in elis2tha the variance of denom(1) is too large, that is, larger than 
0.2∗denom(1)^2, the calculated variances are useless. In this case an error 
message is sent:

var(denom(1)) is too large

It is checked in tha2elis whether the approximated covariances are plausible. 
If not, the warning message is:

WARNING: In tha2elis the approximated covariances are too large

elis2tha calls poly2th or mktheta, and tha2EliS calls th2poly or polyform, 
thus the System Identification Toolbox must be installed. 

See Also System Identification Toolbox
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expcov, impcovPurpose Read/write ELiS covariance vectors and/or ELiS covariance files; furthermore, 
extend covariance matrix of free parameters by zero rows/columns of fixed 
parameters, or delete zero rows and columns, belonging to fixed parameters.

Syntax cvect = expcov(coeffcovar,fixpind)
[cvect,Cp] = expcov(coeffcovar,fixpind,... filename,comments,fdate)
coeffcovar = impcov(cdat)
[coeffcovar,fixpind,comments,fdate] = impcov(cdat,nofixp)

Description expcov and impcov perform conversions of different representations of the 
covariance matrix of parameters. The structure of the ELiS covariance vector 
and the file format are described in Appendix A1.

cvect is the vector of covariances, Cp is the covariance matrix of all the 
parameters (both estimated and fixed ones). 

coeffcovar is an n-by-n array, the covariance matrix of the coefficients. If 
fixpind is not given, n is equal to the number of the numerator coefficients plus 
the number of the denominator coefficients plus one (for the delay). If fixpind 
is given, coeffcovar should either not contain the rows and columns belonging 
to fixed coefficients, or these rows and columns should consist of zeros. fixpind 
contains the indices of fixed parameters in the total parameter vector, defined 
as [num,denom,delay]', where the coefficients are in descending order of 
powers of s in the s-domain, and in ascending order of the powers of z-1 in the 
z-domain.

If fixpind is given, and in coeffcovar there are zero rows and columns, the 
two notations must correspond to each other. 

filename is the name of the  covariance file. If filename is missing or empty, 
no file will be generated. 

If the generation of a file is requested, the file will be created in the active 
subdirectory or folder. If the name has no extension, expcov extends it by 
'.cbn'. If the extension is .cbn, the result will be a binary file, otherwise an 
ASCII file. If the extension is '.cnt', no text is sent to the ASCII file, only data.

If a file is written or read, the most important values will be displayed on the 
screen, unless a global variable expimpmessages with value 'no' is defined.
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Covariance values will be written to ASCII files by expcov in floating-point 
form, using 8 digits in the mantissas.

comments is a string with comments (optional), and fdate is the date (and time) 
string (also optional). If fdate is missing or empty, a date string will be 
generated.

impcov is the inverse of expcov. The data vector or the name of the file is cdat; 
the data vector contains the data in the same order as a ∗.cnt file. If nofixp is 
given with the value 'nofixp', the zero rows and columns in coeffcovar will 
be deleted. The default extension is .cbn.

Default 
Argument 
Values

nofixp = ''

Examples coeffcovar = eye(5); expcov(coeffcovar,[],'data.cbn');
[coeffcov,fixpind] = impcov('inpchans.cbn','nofixp');

Diagnostics expcov checks whether coeffcovar is quadratic, real, finite and symmetric. 
Also the validity of fixpind is checked.

If a file already exists with the same name, expcov tries to delete it. This will 
be unsuccessful if the file is not in the active subdirectory/folder. In this case 
the error message is:

Cannot delete existing file ...
impcov checks the length of the covariance vector form: if it is not valid, the 
error message is sent:

Number of data is not n∗(n+1)/2

See Also “Description of the Data Vector and File Formats” on page A-2
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expfou, impfouPurpose Read/write ELiS Fourier vectors and/or ELiS Fourier files.

Syntax Fvect = expfou(freqvect,x,y)
Fvect = expfou(freqvect,x,y,i,expno,... 

filename,comments,fdate,digitnum)
[freqvect,x,y] = impfou(Fdat)
[freqvect,x,y,expno,comments,fdate] = impfou(Fdat,expi)

Description expfou exports data of one experiment (or several experiments) to a vector in 
the workspace, and/or to a (perhaps already existing) Fourier file.

The output argument Fvect is the vector containing the same data as would be 
sent to a ∗.fnt file.

freqvect is the vector of frequency points, x is the complex input amplitude 
vector (or array for multiple inputs), and y is the complex output amplitude 
vector (or array for multiple outputs). Each amplitude vector must be a column 
vector. The amplitudes belonging to different experiments have to be put under 
each other. x or y may be empty, but both of them have to be given.

expno is the total number of experiments. i contains the number(s) of the 
actual experiment(s). If several experiments are given, they must be denoted 
by successive numbers. If i is empty, the default is i = [1:length(x(:,1))/
length(freqvect)].

The string filename contains the name of the output file. If this name has no 
extension, expfou extends it by '.fbn'. If the extension is .fbn, the result will 
be a binary file, else an ASCII file. If the extension is .fnt, no text is sent to the 
ASCII file, only data. 

The file will be created in the active subdirectory or folder. If filename is 
empty, no file will be generated.

If a file is read or written, the most important values will be displayed on the 
screen, unless a global variable expimpmessages with value 'no' is defined.

When exporting the data of the first experiment, any file with the same name 
will be deleted.

comments is a string with comments (optional), and fdate is the date (and time) 
string (also optional). If fdate is missing or empty, a date string will be 
generated.
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Amplitude values will be written to ASCII files by expfou in floating-point 
form. digitnum is the number of digits of mantissas, sent to ASCII files, with 
the limits 1 ð digitnum ð 16, and default value 7.

impfou reads complex amplitudes from Fourier vectors or files. The file may be 
an ASCII file with comments (usual extension: .fou), a so-called flat ASCII file 
without comments (.fnt), or a binary file (.fbn). The file has to be somewhere 
within the path of MATLAB, or the path is to be explicitly given. The default 
extension is .fbn.

The input argument Fdat of impfou is the data vector, or the name of a file, or 
may be an array of size F-by-3 in order to be able to process directly any output 
format of other M-files. The data vector contains the data in the same order as 
a ∗.fnt file, and the array is [freqv,x,y]. 

expi contains the number(s) of the experiment(s) to be read (integer vector). 
expi is optional; if it is omitted or empty, all the experiments will be read. 

Default 
Argument 
Values

digitnum = 7,  i = [1:length(x(:,1))/length(freqvect)],
expno = max(i)

Examples expfou([1:20],ones(100,1),0.1∗ones(100,1),...
          [1:5],5,'data.fbn');
[freqvect,x,y,expno] = impfou('data.fbn');

Send results of experiments in two steps:

Fvect = expfou([1:20],ones(60,1),0.1∗ones(60,1),[1:3],5);
Fvect = [Fvect;expfou([1:20],...
     ones(40,1),0.1∗ones(40,1),[4,5],5)];
[freqvect,x,y,expno] = impfou(Fvect);

Diagnostics If not experiment No. 1 is being exported to a file, expfou looks for an already 
existing file. If this is not found, the error message is

File has to exist already when exporting ... experiment
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If a file already exists with the same name, and the first experiment is being 
exported, expfou tries to delete it. This will be unsuccessful if the file is not in 
the active subdirectory/folder. In this case the error message is:

Cannot delete existing file ...

impfou checks the validity of the contents of the vector (file). If it is not 
consistent, an error message is sent:

Not enough data in file ...

or if the vector is too long, a warning message is displayed:

Number of data is incorrect in file ...

See Also “Description of the Data Vector and File Formats” on page A-2
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exppar, impparPurpose Read/write ELiS parameter vectors and/or ELiS parameter files.

Syntax pvect = exppar(domain,num,denom)
pvect = exppar(domain,num,denom,delay,fs,...
      filename,comments,fdate)
[domain,num,denom,delay,fs] = imppar(pdat)
[domain,num,denom,delay,fs,comments,fdate] = imppar(pdat,fsc)

Description exppar writes parameters of the transfer function to a vector in the workspace, 
and/or to parameter files (used by elis).

pvect is the vector containing the same data as the ∗.pnt file.

domain may be 's' or 'z', depending on the domain; num is the numerator 
vector, z-domain coefficients in ascending order of powers of z-1, or s-domain 
coefficients in descending order of powers of s. denom is the denominator vector, 
similarly to num. delay is the additional delay, fs is the sampling frequency in 
the z-domain, or the scaling frequency between the internal representation and 
the s-domain parameter vector or file, which is written in standard SI units.

The string variable filename is the name of the file. If the name has no 
extension, this function extends it by '.pnt'. If the extension is .pbn, the result 
will be a binary file, else an ASCII text file. If the extension is .pnt, no 
comment is sent to the ASCII file, only data.

The file will be created in the active subdirectory or folder. If a file is written or 
read, the most important values will be displayed on the screen, unless a global 
variable expimpmessages with value 'no' is defined. If filename is empty, no 
file will be written.

The parameters will be written to ASCII files in floating-point form by exppar, 
with 16-digit accuracy of the mantissas.

comments is a string with eventual comments (optional), and fdate is a date 
(and time) string (also optional). If fdate is missing or empty, an actual date 
string will be generated.

In an s-domain parameter vector or file, the saved fs value is the so-called 
suggested scaling frequency, usable in a later import. The algorithm uses a 
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simple ad hoc formula to find a scaling frequency, which brings the roots of the 
numerator and denominator polynomials possibly close to 1:

When the numerator or the denominator is degenerate, the corresponding term 
is set to 1; if the formula would still give an unusable result, like inf or NaN, fs 
is set to 1.

imppar reads parameters from parameter vectors or files (used by elis). The 
file may be an ASCII file with comments (usual extension: .par), a flat ASCII 
file without comments (.pnt) or a binary file (.pbn). The file has to be 
somewhere within the path of MATLAB, or the path is to be explicitly given. The 
default extension is .pnt.

As an output argument of imppar, fs is the sampling frequency in the 
z-domain, while in the s-domain it is the scaling frequency between the internal 
representation and the parameter vector or file which is written in standard SI 
units. pdat is the data vector or the name of the file; the data vector contains 
the data in the same order as a .pnt file.

The scaling frequency between the s-domain internal representation and the 
parameter file can be set by fsc. If fsc is not given, no scaling will be performed 
(fsc = 1), if it is empty (fsc = []), the previously saved value in the parameter 
vector or file is used. In the case of z-domain files, fsc is ignored.

Default 
Argument 
Values

delay = 0, fs = 1, fsc = 1

Examples pvect = exppar('s',[1,1],[1,2,3,4]);
exppar('z',[1,1],[4,3,2,1],0,1,'filter.pnt',...
          'First trial',date);
[domain,num,denom,delay,fs] = imppar('filter.pnt');
[domain,num,denom,delay,fsc] = imppar('inpchans.pbn',[]);
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Diagnostics If a file already exists with the same name, exppar tries to delete it. This will 
be unsuccessful if the file is not in the active subdirectory/folder. In this case 
the error message is:

Cannot delete existing file ...

imppar checks the contents of the vector (file); if this is inconsistent, an error 
message is sent:

Not enough data in file ...

See Also “Description of the Data Vector and File Formats” on page A-2
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exptim, imptimPurpose Read/write ELiS time domain data vectors and/or ELiS time domain files.

Syntax tvect = exptim(timevect,xt,yt)
tvect  exptim(timevect,xt,yt,i,expno,...
        filename,comments,fdate,digitnum)
[timevect,xt,yt] = imptim(tdat)
[timevect,xt,yt,expno,comments,fdate] = imptim(tdat,expi)

Description exptim exports data of one experiment (or several experiments) to a vector in 
the workspace, and/or to a (perhaps already existing) time domain data file. 
The output argument tvect is the vector containing the same data as would be 
sent to a ∗.tnt file.

timevect is the vector of sampling time instants, xt is the input vector (or array 
for multiple inputs), and yt is the output vector (or array for multiple outputs). 
Each vector must be a column vector. The data belonging to different 
experiments have to be put under each other. xt or yt may be empty, but both 
of them have to be given.

expno is the total number of experiments, i contains the number(s) of the 
actual experiment(s). If several experiments are given, they must be denoted 
by successive numbers. If i is empty, the default is i = [1:length(xt(:,1))/
length(timevect)].

The string filename contains the name of the output file. If this name has no 
extension, exptim extends it by '.tbn'. If the extension is .tbn, the result will 
be a binary file, else an ASCII file. If the extension is '.tnt', no text is sent to 
the ASCII file, only data. 

The file will be created in the active subdirectory or folder. If filename is 
empty, no file will be written.

If a file is read or written, the most important values will be displayed on the 
screen, unless a global variable expimpmessages with value 'no' is defined.

When exporting the data of experiment No. 1, any file with the same name will 
be deleted.

comments is a string with eventual comments (optional), and fdate is the date 
(and time) string (also optional). If fdate is missing or empty, an actual date 
string will be generated. 
3-37



exptim, imptim
Amplitude values will be written to ASCII files by exptim in floating-point 
form. digitnum is the number of digits of the mantissas, sent to ASCII files, 
with the limits 1 ð digitnum ð 16, and default value 7.

imptim reads time records from time domain data vectors or files (used by 
elis). The file may be an ASCII file with comments (usual extension: .tim), a 
so-called flat ASCII file without comments (.tnt), or a binary file (.tbn). The 
file has to be somewhere within the path of MATLAB, or the path is to be 
explicitly given. The default extension is .tbn.

The input argument tdat of imptim is the data vector or the name of the file, 
or maybe an array of size tl×3, [timevl,xt,yt]; the data vector contains the 
data in the same order as a ∗.tnt file.

expi contains the number(s) of the experiment(s) to be read (integer vector). 
expi is optional; if it is omitted or empty, all the experiments will be read.

Default 
Argument 
Values

digitnum = 6,  i = [1:length(xt(:,1))/length(timevect)],
expno = max(i)

Examples tvect = exptim([1:10],ones(50,1),0.1∗ones(50,1),...
     [1:5],5,'data.tbn');
[timevect,xt,yt,expno] = imptim('data.tbn');

Diagnostics If not experiment No. 1 is being exported to a file, exptim looks for an already 
existing file. If this is not found, the error message is

File has to exist already when exporting ... . experiment

If a file already exists with the same name, and the first experiment is being 
exported, exptim tries to delete it. This will be unsuccessful if the file is not in 
the active subdirectory/folder. In this case the error message is:

Cannot delete existing file ...

imptim checks the validity of the contents of the vector (file). If it is not 
consistent, an error message is sent:

Not enough data in file ...
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or if the read vector is too long, a warning message is displayed:

Number of data is incorrect in file ...

See Also “Description of the Data Vector and File Formats” on page A-2
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expvar, impvarPurpose Read/write ELiS variance vectors and/or ELiS variance files.

Syntax vvect = expvar(varx,vary)
vvect = expvar(varx,vary,covxy,filename,comments,fdate,Ffile)
[varx,vary] = impvar(vdat)
[varx,vary,covxy,comments,fdate] = impvar(vdat)

Description expvar writes variance data to variance vectors or files.

The output argument vvect is the vector containing the same data as the .pnt 
file.

varx is a column vector containing the variances of the real part (that is, also 
of the imaginary part) of the input Fourier coefficients; varx is an array for 
multiple inputs. vary is the column vector containing the variances of the real 
part (that is, also of the imaginary part) of the output Fourier coefficients; vary 
is an array for multiple outputs.

covxy is the column vector of input-output covariances, covxy = 
E{conj(Nx)∗Ny}. For multiple inputs or outputs, covxy contains just the 
covariances between input(1) and output(1), or all the covariances beside each 
other, as [ci1o1,ci1o2,...ci2o1...]. covxy may be empty.

filename is the name of the output file. If the name has no extension, expvar 
extends it by '.vbn'. If the extension is '.vbn', the result will be a binary file, 
else an ASCII file. If the extension is '.vnt', no text is sent to the ASCII file, 
but data. 

The file will be created in the active subdirectory or folder. If a file is written or 
read, the most important values will be displayed on the screen, unless a global 
variable expimpmessages with value 'no' is defined. If filename is empty, no 
file will be written.

Variance values will be written to ASCII files by expvar in floating-point form, 
using 4 digits in the mantissas.

comments is a string with eventual comments (optional), fdate is the date (and 
time) string (also optional). If fdate is missing or empty, an actual date string 
will be generated.

Ffile is the associated Fourier vector or file (optional, for cross-checking).
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impvar reads variances from variance vectors or files.

vdat is a vector, or the name of the file, or an array of size F-by-2 or F-by-3, 
[varx,vary] or [varx,vary,covxy]; the vector contains the data in the same 
order as a ∗.vnt file.

The file may be an ASCII file with comments (usual extension: .var), an ASCII 
file without comments (.vnt), or a binary file (.vbn). The file has to be 
somewhere within the path of MATLAB, or the path is to be explicitly given. The 
default extension is .vbn.

Examples expvar(ones(10,1),0.1∗ones(10,1),zeros(10,1),'data.vbn');
[varx,vary] = impvar('data.vbn');

Diagnostics If a file already exists with the same name, expvar tries to delete it. This will 
be unsuccessful if the file is not in the active subdirectory/folder. In this case 
the error message is:

Cannot delete existing file ...

If Ffile is given, impvar compares the lengths of the frequency vector and the 
input and output variance vectors. If they are inconsistent, the error message 
is:

Data incompatible with Fourier file

expvar and impvar also check the variance vectors for negative, complex, 
infinite elements.

See Also “Description of the Data Vector and File Formats” on page A-2
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expvectPurpose Export MATLAB vectors to ASCII files for plotting.

Syntax expvect(file,v1)
expvect(file,v1,digitnum)
expvect(file,v1,v2,v3,v4,v5,v6,v7,v8,v9,v10,v11,v12,digitnum)

Description The contents of the real vectors v1, v2, ... will be exported into a flat ASCII file 
(file), for further processing by plotting/graphing programs, or for transfer to 
other computers, or for sending by electronic mail, etc. The vectors will be 
written into an array, where the first line will contain the first elements of all 
the vectors and so on. The delimiter between the numbers in a row is tab. The 
last character in each line is a CR/LF or a CR.

digitnum defines the number of digits of the mantissa.

Default 
Argument 
Values

digitnum = 7

Examples t = [1:100]; x = 100∗ones(100,2)+rand(100,2)+j∗rand(100,2);
expvect('data.txt',t,real(x(:,2)),imag(x(:,2)),8)

Diagnostics expvect checks the vectors for complex, infinite or NaN elements, and sends an 
error message if any element of this kind is found.

The length of the vectors must be the same, otherwise an error message is 
generated.

If a file with the same name exists, the routine attempts to delete it. This can 
only be done if this file is in the active subdirectory/folder. If this is not the case, 
an error message is sent:

Cannot delete existing file ...

See Also save
3-42



fdcovpzp
fdcovpzpPurpose Calculate transfer function model and its covariance matrix from pole-zero 
model, including the standard deviations and covariances of poles and zeros 
and gain values.

Syntax [pvect,Cp] = fdcovpzp(zv,stdz,pv,stdp)
[pvect,Cp] = fdcovpzp(zv,stdz,pv,stdp,rzp,g,stdg)
[pvect,Cp] = fdcovpzp(zv,stdz,pv,stdp,rzp,g,stdg,...
                   domain,fs,da,dzp)

Description It may be desirable to simulate or examine systems of which a pole-zero model 
is available. fdcovpzp converts such a model into the transfer function model 
required by this toolbox. It is the “inverse” of stdpz.

The output argument pvect is the parameter vector of the system (see exppar) 
and Cp is the corresponding covariance matrix.

zv and pv are the column vectors of the zeros and poles, respectively.

stdz and stdp contain the corresponding uncertainties. In each row there are 
three elements: the standard deviation of the real part, the standard deviation 
of the imaginary part, and the correlation coefficient between the real part and 
the imaginary part of the corresponding zero or pole.

For a full description of the interrelations of different poles and zeros, a full 
correlation coefficient matrix of the real and imaginary parts of all zeros and 
poles and two gain factors can be given in rzp. The order of the random 
variables in the corresponding random vector is: real part of the first zero, 
imaginary part of the first zero, real part of the second zero, etc., then the real 
part of the first pole, etc. The last two variables are the leading coefficients of 
the numerator and the denominator, respectively.

g contains two gain factors: the leading coefficients of the numerator and the 
denominator, respectively. If g is given as a scalar, g(2) is set to 1. The 
standard deviations of the gain values and their correlation coefficient are to be 
given in stdg.

By default, an s-domain model is assumed. For z-domain models, the domain 
(domain = 'z') and the sampling frequency (fs) can be given.

fdcovpzp allows the use of analytical  or numerical differentiation in the 
calculation of the sensitivity matrix. By numerical differentiation it can be 
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checked whether variations of the poles and zeros, made in the order of 
magnitude of the standard deviations (in the directions of the eigenvalues of 
the appropriate covariance matrix), cause the same changes in the transfer 
function parameters, as calculated from the analytical sensitivity calculations. 
Numerical differentiation can be requested by setting da to the value 'num'. 
The amount of perturbations can be influenced by the variable dzp. By default, 
its value is 1, which means perturbations equal the eigenvalues of the 
covariance matrix of the zeros or poles, in the directions of the eigenvectors. 
These step lengths are multiplied by the value of dzp.

Default 
Argument 
Values

g = [1;1]; stdg = [0;0;0]; domain = 's'; fs = 1; da = 'num'; 
dzp = 1.

Examples [zv,stdz,pv,stdp,rzp,g,stdg] = ...
        stdpz('inpchans.pbn','inpchans.cbn');
[pvectn,Cpn] = fdcovpzp(zv,stdz,pv,stdp,rzp,g,stdg);
subplot(121)
plotelpz('inpchans.pbn',[-6,2,-4,4]*1e5,'inpchans.cbn',...
        10,'nomsg')
subplot(122)
plotelpz(pvectn,[-6,2,-4,4]*1e5,Cpn,10,'nomsg')

Diagnostics The validity of the given correlation coefficients are checked, and an error 
message is sent if they are not consistent.

Algorithm In analytical calculations first the sensitivity matrix of zeros and poles on the 
coefficients of the corresponding polynomials is calculated using 

where r(i) is the ith root of the polynomial f(r(i)). The sensitivity of zeros and 
poles is then calculated as the pseudo inverse of this matrix. The covariance 
matrix of the parameters  is calculated multiplying the covariance matrix of 
the real and imaginary parts of the poles/zeros and the gains by the sensitivity 
matrix from both sides.

S i j( , )
r i( ) j

df r i( )( )
dr i( )

-------------------
-------------------,=
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For numerical derivation, perturbations of the zeros and poles are introduced 
in the direction of each eigenvector of the corresponding covariance matrix, 
with step sizes equal to the corresponding eigenvalue, multiplied by dzp. The 
so determined sensitivities are then used in the covariance calculations.

See Also stdpz

References [1] P. Guillaume, J. Schoukens and R. Pintelon, “Sensitivity of roots to errors 
in the coefficients of polynomials obtained by frequency-domain estimation 
methods,” IEEE Trans. on Instrumentation and Measurement, Vol. 38, No. 6, 
pp. 1050-1056, Dec. 1989.
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fdiddemoPurpose Demonstrate the Frequency Domain System Identification Toolbox.

Syntax fdiddemo

Description Invoking fdiddemo starts a question and answer procedure, offering the choice 
among different demonstrations.

Many of the demonstrations work on measured data. These data are mostly 
results of measurements done by Department ELEC, Vrije Universiteit 
Brussel, Belgium (see Appendix A2). The data are public domain; they may be 
freely used by anybody.

Diagnostics Some of the demonstrations work on the data files used in the book of 
Schoukens and Pintelon. For these demonstrations the appropriate data files 
(aluplate.fbn, bandpass.fbn, etc.), must be available in the search path of 
MATLAB. (See “Description of the Available Measurement Data Files” on page 
A-15 for more information.) 

Many of the demonstrations, using measured data, need more memory than 
available on small machines. These demonstrations will run on larger 
computers (with a minimum memory of 4 MBytes) only.

References [1]  J. Schoukens and R. Pintelon, Identification of Linear Systems: A Practical 
Guideline for Accurate Modeling, London, Pergamon Press, 1991. 
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fnamanalPurpose Syntactic analysis of filenames, splitting filenames to names and extensions, 
assigning default extension to filenames. This routine is used internally by 
other functions of the toolbox. 

Syntax nfilename = fnamanal(filename)
[nfilename,fnamsh,ext] = fnamanal(filename,stext)

Description fnamanal analyzes the filename given in filename, puts the filename without 
extension into fnamsh, and the extension to ext. If stext is given (standard 
extension), and the filename has no extension, the standard one will be 
appended (preceded by a period) to the filename. The complete filename is 
given in nfilename. 

Examples fnam = 'inpchan'; [fnam,fnshort,ext] = fnamanal(fnam,'fbn')
fnam =
   inpchan.fbn
fnshort =
   inpchan
ext =
   fbn
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gmeanPurpose Geometric mean of complex numbers. 

Syntax gm = gmean(X)

Description gmean makes an attempt to eliminate the effect of phase wrapping when 
calculating the geometric mean of complex numbers. For matrices, gmean(X) is 
a row vector containing the complex geometric mean value of each column.

The complex geometric mean has important applications in the averaging of 
nonparametric estimates of complex transfer function values (see [1], [2], and 
“Solutions for Some Special Cases” on page 2-14).

Example x = -ones(100,2) + 0.1∗randn(100,2) + j∗0.01∗randn(100,2);
mfalse1 = prod(x).^(1/100), mfalse2 = prod(x.^(1/100)),
mx = gmean(x)

Algorithm The absolute value of the geometric mean is calculated from the arithmetic 
mean of the logarithms of the absolute values; the phase is the phase of the 
arithmetic mean value of the complex numbers. 

References [1] .J. Schoukens and R. Pintelon, “Measurement of Frequency Response 
Functions in Noisy Environments,” IEEE Trans. on Instrumentation and 
Measurement, Vol. 39, No. 6, pp. 905-909, Dec. 1990.

[2] R. Pintelon, J. Schoukens and J. Renneboog, “The Geometric Mean of Power 
(Amplitude) Spectra Has a Much Smaller Bias than the Classical Arithmetic 
Averaging,” IEEE Trans. on Instrumentation and Measurement, Vol. 37, No. 2, 
pp. 213-218, June 1988.
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lin2qlog, log2qlogPurpose Generate quasi-logarithmic frequency set for use with FFT and for the 
generation of periodic excitation signals.

Syntax fqlog = lin2qlog(freqv,rf)
[fqlog,df,cdmax,freqind] = lin2qlog(freqv,rf)
fqlog = log2qlog(freqv,mhno)
[fqlog,df,cdmax,freqind] = log2qlog(freqv,mhno)

Description Both routines calculate a subset of the linear frequency grid, where the 
members of this subset are more or less logarithmically distributed. 

lin2qlog starts from a linear frequency grid, given in freqv, and selects a 
quasi-logarithmic set, providing that the ratio of successive frequencies is 
about rf (or larger, if the frequency vector is not dense enough).

log2qlog starts from the given logarithmic frequency set freqv, and rounds 
these frequencies to values of the linear (DFT) frequency grid. The harmonic 
number mhno will be associated to the highest frequency. Multiple frequency 
points are eliminated. log2qlog also works with a non-logarithmic input 
vector, and produces a close equivalent on the DFT grid.

fqlog is the quasi-logarithmic frequency vector, and df is the size of the 
frequency step in the corresponding full linear grid. The period length of the 
corresponding multisine is usually 1/df, but if the harmonic numbers have a 
common divider, it may be smaller. The largest common divider is given by 
cdmax, thus the period length is in general 1/(cdmax∗df). 

The harmonic numbers in fqlog can be calculated as

harmno = round(fqlog/df);

freqind is a column vector, containing indices of the selected frequency points 
of freqv.

Examples fqlog = lin2qlog([1:128],sqrt(2));
[fqlog,df] = ...
     log2qlog(logspace(log10(1),log10(256),17),256);

Diagnostics freqv must be real, non-negative and strictly increasing; mhno must be a 
positive integer.
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Algorithm lin2qlog: starting from the first non-zero frequency point fqlog(1), the next 
point fqlog(2) will be the one in freqv, closest to fqlog(1)∗rf, and larger 
than fqlog(1). The points of freqv between fqlog(1) and fqlog(2) are 
deleted. This is repeated until the end of the file: the last point will be taken 
only if the last frequency is larger than or equal to fqlog(n-1)∗rf.

log2qlog: the points of fqlog will be chosen from the points of the grid 
max(freqv)∗[1:mhno]/mhno. A point will be selected if it is closer to a point in 
freqv than any other point of the linear grid.

See Also logspace
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loadascPurpose Load data from ASCII files into a variable.

Syntax data = loadasc(filename)
data = loadasc(filename,ASCIItype)

Description loadasc loads the contents of the ASCII file filename into data. In some sense, 
this is an “intelligent” version of load, where 

• •the generated variable need not have the same name as the file,

• •the ASCII file may contain comments, not only numbers,

• •the lines in the ASCII file need not contain the same number of numbers.

ASCIItype may have the value 'flat', in this case the load command is 
directly used, or 'text', which means that the file contains some textual 
information which has to be deleted during the loading, or the number of 
numbers in a line may vary from line to line. The filtering of the file is done 
using the command sscanf, available in MATLAB Version 4.0 or higher. 
Everything after a % character in a line is ignored, and the rest is searched for 
numbers. loadasc will read the file properly into a vector even if it is not 
provided the same number of elements in each line if used with the option 
'text'.

The resulting variable data is a column vector, unless ASCIItype is set to 
'flat' and each line of the flat ASCII file contains more than one number (but 
the number of elements in each row must be the same in a flat ASCII file).

Default 
Argument 
Values

ASCIItype = 'text'

Examples fprintf('lasctest.txt',...
     '%.0f %%N\n%.4e,  %.4e %%amp1\n',1,5,6)
type lasctest.txt, v3 = loadasc('lasctest.txt')

See Also load
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loadvar, savevarPurpose Load single variable from MAT-file, and save variable to existing MAT-file.

Syntax variable = loadvar(matfile,varname)
savevar(matfile,varname)
savevar(matfile,varname,varvalue)

Description loadvar loads a single variable from a MAT-file and assigns its value to a 
variable. The name of the file is given in the string matfile, the name of the 
variable in the string varname.

savevar saves a single variable to an already existing MAT-file. The value of 
the variable is given in varvalue. varvalue may be any valid expression in 
MATLAB. If varvalue is not given, the variable will be deleted from the 
MAT-file.

If no extension is given, the default extension (.mat) is appended to the 
filename.

The MAT-file should be in the active subdirectory/folder if savevar is used, or 
the path has to be explicitly given.

Note: using savevar, the variable donotusethisnamemf will also appear in the 
MAT-file, with the name of the file as string value.

Examples The value of a variable can be checked easily without destroying the complete 
workspace by loading the complete binary file

itlimit = loadvar('inpchans.ebn','itmax')
The value of a variable in a previously saved workspace can be changed, 
and/or a new variable can be added to the saved workspace:

x = 1; save savevtst.mat x
savevar('savevtst.mat','x',10)
savevar('savevtst.mat','y',20)

Algorithm Both loadvar and savevar are function M-files, which assign the input 
arguments to hopefully not used long variable names (donotusethisnamev, 
donotusethisnamevv), load the MATLAB binary file, and create the desired 
variable. savevar also saves the MAT-file again. loadvar and savevar will 
behave in an unpredictable way when either of these two long variable names 
are used in the MAT-file.
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mlbsPurpose Generate maximum length binary sequence (pseudo-random binary sequence).

Syntax bitseries  = mlbs(log2N)
[bitseries,nextstnum] = mlbs(log2N,bitno,startnum)

Description mlbs generates a maximum length binary sequence (column vector bitseries), 
using a shift register of length log2N. The minimum value of the argument 
log2N is 2, the maximum value is 30. The length of the generated sequence is 
given by bitno, that is, a partial sequence can also be generated. The default 
value of bitno is 2^log2N-1, that is, the full length of the PRBS with the given 
register length.

The generation is based on a binary shift register with modulo 2 feedback. The 
starting value of the register is startnum. The register contents can be obtained 
via nextstnum, which can be used for the continuation of the sequence 
generation. 

Default 
Argument 
Values

bitno = 2^log2N-1, startnum = 2^log2N-1

Examples bitseries = mlbs(10); %Length: N = 1023 = 2^10-1

Diagnostics The register length must be an integer number between the allowed minimum 
and maximum, otherwise an error message is sent:

log2N is not integer
or

log2N = ... is not allowed

startnum must be between 1 and 2log2N-1, otherwise the error message is

startnum out of range

Algorithm The feedback shift register is implemented in a MATLAB vector, according to 
the definition (see [1]).

See Also dibs

References [1] K. R. Godfrey, ed.: Perturbation Signals for System Identification. 
Englewood Cliffs, Prentice-Hall, 1993.
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modifyfvPurpose modifyfv prefilters measured data by the inverse of a known part of the 
transfer function.

Syntax Fdatm = modifyfv(pdat,Fdat)
[Fdatm,vdatm] = modifyfv(pdat,Fdat,vdat,plotmode)

Description If a multiplicative term of the transfer function is known, it is disadvantageous 
to estimate this part from the measured data, since this increases the variance 
of the other term, too. A possible solution is to prefilter the input data by the 
inverse of this term.

The parameter vector is given in pdat (a string if the filename is given).

Fdat contains the Fourier data: it is an array: [freqv,x,y], or a Fourier vector 
(see expfou), or the name of the Fourier file.

The filtered Fourier data are given in Fdatm, as an array if Fdat is an array, or 
as a Fourier vector if Fdat is a vector or a filename.

If the known partial transfer function has significant dynamics in the band of 
interest, the variance data also have to be changed, since the modification 
preserves the relative variance of the Fourier amplitudes, and in ELiS the 
absolute variances are given. 

vdat is a variance array, [varx,vary] or [varx,vary,covxy]; or a variance 
vector (see expvar); or the name of the variance file. The filtered variance data 
are given in vdatm, as an array if vdat is an array, or as a variance vector if 
vdat is a vector or a filename.

plotmode defines the form of the plots of the results:

'lin', 'linpb' stands for linear frequency scale,

'log', 'logpb' stands for logarithmic frequency scale,

where pb requests plot in the passband only (the points where the transfer 
function is zero will be excluded from the plot).

If plotmode has any other value, no plot will be shown.
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Default 
Argument 
Values

plotmode = 'linpb'

Examples Fdatm = modifyfv('inpchanz.pbn','inpchan.fbn');

Algorithm The output Fourier amplitudes are divided by the transfer function values of 
the known term, and output variances by their absolute square values; the 
covariances are divided again by the transfer function values.
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msinclipPurpose Minimize crest factor of multisine using the clipping algorithm.

Syntax cx = msinclip(freqv,ampv)
[cx,crx,crxmax,cry,crymax] = ...
   msinclip(freqv,ampv,tf,gmod,itno,ovs,N,cl0)

Description msinclip iterates towards an optimum set of phases for which the crest factor 
of the multisine with the given amplitudes (or the larger of the crest factors of 
the two multisines at the input and the output of a linear system) is minimum.

freqv is the vector of frequencies where the nonzero amplitudes are given. The 
elements must be integer multiples of a df value, and the minimum number of 
sines is 2. freqv must be monotonously increasing.

ampv contains the absolute values of the desired nonzero complex amplitudes 
at the corresponding frequencies (halves of the real amplitudes). If any element 
of ampv is complex, the phases of ampv will be used as starting values, otherwise 
the Schroeder multisine is used.

tf contains the complex transfer function values at the given frequencies. If tf 
is given, input-output optimization will be performed.

If gmod is given with the value 'nograph', iteration results will not be plotted, 
if with the value 'lastgraph', the result of the last iteration only, if with the 
value 'graph10' or 'graph100', the result of every 10th or 100th iteration, if 
with 'graph', the result of every iteration will be plotted.

When gmod contains the string 'ZOH' (e. g., its value is 'graphZOH', or just 
'ZOH'), a zero-order hold multisine will be designed, instead of the 
band-limited one. This means that a stepwise function will be designed 
(prepared for a D/A converter), the number of samples will not be rounded up 
to the next power of two, and the maximum overshoots between samples will 
not be calculated.

itno contains the maximum number of iteration cycles. If itno = 0, the 
starting values will be returned (the Schroeder multisine or the one externally 
given).
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ovs determines the minimum resolution of the peak factor calculation; the 
sampling frequency will chosen according to fs Š ovs∗2∗fmax. If the resolution 
is small, and a band-limited design is requested (that is, not a zero-order hold 
design), the grid is often not dense enough to “catch” the maximum values with 
certainty. The default value of ovs = 16 usually provides errors less than 1%.

N offers a direct control of the length of the time series used for crest factor 
calculation, often necessary in ZOH design. The point number in the time series 
will be chosen equal to N in the ZOH design if the above condition for fs can be 
fulfilled when generating just one period, otherwise the condition will 
determine the point number. In the BL design the point number will be 
rounded up to the next power of 2 to use a base-2 FFT, and the condition has to 
be fulfilled again.

N must be an even number for msinclip.

If N is not given, it will be chosen to provide that each frequency be an integer 
multiple of fs/N.

The last input argument, cl0, lets the user set the initial clipping level of the 
algorithm between (0,1).

The output arguments are as follows.

The vector cx contains the complex amplitudes of the multisine (their absolute 
values are equal to the halves of the real amplitudes).

crx is the crest factor of the generated multisine, calculated with the given 
oversampling factor. However, the true value of the crest factor may be 
somewhat larger because the true peak value is usually slightly larger than the 
peak value on the grid. 
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crxmax is the upper limit of the crest factor of the multisine, calculated for the 
maximum possible peak value. This calculation is based on the determination 
of the maximum curvature of the time function:

cry is the crest factor of the multisine, calculated with the given oversampling 
factor, at the output of the linear system. crymax contains the worst-case crest 
factor of the output multisine.
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Typical plots of the results of msinclip are shown in the figures. The first one 
illustrates a usual multisine design, the second one a zero-order hold one.
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crf denotes the calculated crest factor of the multisine, followed by the worst 
case value. The actual clipping level is given next, and is shown by two dotted 
lines on the plot. In cycle 0 or if the iteration has converged, the clipping level 
is set equal to 1. The next number gives the number of performed iterations, 
and “opt. cyc.” denotes the cycle in which the smallest crest factor was found 
(the last plot of a run shows this multisine).
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Default 
Argument 
Values

ampv = ones(length(freqv),1), tf = [],
gmod = 'graph10' %plot every 10th result

The number of iterations: itno = 250.

ovs = 16 for band-limited design, ovs = 1 for zero-order hold design. In the 
case of band-limited design, the sampling frequency will be

2∗ovs∗2∗fmax > fs Š ovs∗2∗fmax

or higher, when the given value of N prescribes it.

The clipping level will be chosen depending on the crest factor: for small crest 
factors (around 1.5) as 0.9, and smaller if the crest factor is larger.

Examples Multisine design:

[cx,crestx] = msinclip([1:15]',ones(15,1));

Multisine design, iteration started from random phases:

cx = msinclip(4:15,ones(1,12).∗exp(j∗2∗pi∗rand(1,12)));

Calculation of a Schroeder multisine:

[cx,crx] = msinclip([1:15]',[],[],'',0);

Calculation of a zero-order hold multisine:

[cx,crx] = msinclip([0.2:0.01:0.4]',ones(21,1)/sqrt(42),...
   [],'ZOH',250,1,100);

Diagnostics ovs must be at least 1, and the frequency vector must increase strictly 
monotonously. If a dc value is also given (freqv(1) = 0), the corresponding 
amplitude must not be zero.

The frequency resolution (df) is also calculated from freqv (the smallest 
common divider). If the maximum harmonic number is found to be larger than 
1023 (which may well mean that the frequency vector was given erroneously), 
a warning message is sent:

WARNING: maximum harmonic index found in 'msinclip' is ...
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Algorithm The algorithm is based on swapping between time domain and frequency 
domain: the time domain waveform is clipped, then transformed to the 
frequency domain, and the amplitudes are restored to the desired values. The 
clipping level is slowly adjusted according to the evolution of the crest factor: 
when the result is improved, the clipping level is decreased, otherwise it is 
increased.

If input-output minimization is performed, the worse crest factor is minimized.

See Also msinprep, dibs

References [1] E. van der Ouderaa, J. Schoukens and J. Renneboog, “Peak Factor 
Minimization, Using Time—Frequency Domain Swapping Algorithm,” IEEE 
Trans. on Instrumentation and Measurement, 1988, Vol. 37, No. 1, pp. 144-147.

[2] K. R. Godfrey, ed.: Perturbation Signals for System Identification. 
Englewood Cliffs, Prentice-Hall, 1993.
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msinprepPurpose Generation of time domain multisine from complex amplitudes, and 
preparation for downloading into an arbitrary waveform generator.

Syntax xtim = msinprep(freqv,cx)
[xtim,df] = msinprep(freqv,cx,N,fs,dev)

Description msinprep generates time series from a set of complex amplitudes (multisine). 
The complex amplitudes are usually produced by msinclip. It is assumed that 
the frequencies are harmoniously related and an integer number of periods is 
to be generated. The algorithm can introduce a predistortion for a zero-order 
hold.

xtim is the generated time series, df is the calculated common divider of the 
given frequencies. freqv is the frequency vector, where the complex amplitudes 
are given, cx is the vector of complex amplitudes, and N is the length of the time 
series. If N is not given or is empty, it will be defined as N = fs/df, where df is 
the maximal common divider of the frequencies in freqv. 

fs is the sampling frequency. If it is not given, it will be chosen as fs = N∗df. 
If N is not given, either, fs will be chosen as fs = df∗2∗(max(freqv)/df+1).

dev defines the device for which the series is prepared. Use dev = 'screen' for 
plotting, etc., with no modification of the Fourier series, or use dev = 'DAC' for 
D/A converter. In the latter case, the amplitudes will be multiplied by the 
inverse transfer function of the zero-order hold.

Default 
Argument 
Values

dev = 'DAC'; fs and N as defined above.

Examples Generate a multisine and prepare it for downloading:

[cx,crx,crxmax] = msinclip([1:15]'/256,ones(15,1));
arbitgen = msinprep([1:15]'/256,cx,512,1,'DAC');
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Diagnostics freqv must be monotonously increasing, and must not exceed the half of the 
given or above defined fs. N must also be large enough to have at least one 
period of each sine. If the length of the time series is smaller than the period 
length, the error message will be sent:

N (...) must be at least ... for one period

If the length of the time series is not equal to an integer multiple of the period 
length, a warning message will be sent:

WARNING: the N (...) samples cover ... periods, this is not an 
integer

Algorithm The amplitudes are divided by the transfer function of the zero-order hold. The 
time function is calculated by inverse FFT.

See Also msinclip, optexcit
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optexcitPurpose Generate the optimum input power spectrum for transfer function 
measurements.

Syntax X = optexcit(pdat,freqv)
[X,CR,fsv,vXwdev,Fiw] = ...
   optexcit(pdat,freqv,vdat,fixpind,X0,Ncyc,Fiw,pd)

Description optexcit iterates towards the optimum power spectrum of the input signal in 
the sense that it minimizes the volume of the uncertainty ellipsoid of the 
estimated parameters of the linear system. The transfer function is given by 
pdat (the vector of all the parameters, see imppar; or a filename), the 
frequencies where the optimum spectrum is looked for are given in the vector 
freqv. The input and output variance vectors are given by vdat. If this is an 
1-by-2 or 1-by-3 vector, its elements are taken as constant input and output 
variances, and may be the input-output covariance. If this is an N-by-2 or 
N-by-3 array, the variance vectors are formed from the first two columns, and 
the covariance vector from the third one; if this is a vector, the variance vectors 
and the covariance vector are obtained using impvar; if it is a string, the 
variance file is looked for.

fixpind defines the fixed parameters in the following way: if the parameters 
(numerator, denominator and the delay) are put together into a vector as: 
[num,denom,delay]', the elements of fixpind are the indices of the fixed 
parameters in this vector. (Here num and denom are row vectors defined in the 
usual way: in descending order of powers of s in the s-domain, or in ascending 
order of powers of z-1 in the z-domain.) When fixpind is given as just fixpind 
= 0, the zero-order coefficient of the denominator and the delay will be fixed. 
fixpind = 'n' means that there are no fixed parameters.

X0 contains the starting values of the amplitudes, and Ncyc gives the number 
of the iteration cycles. If Ncyc = 0, a “partial run” is performed, and the 
returned amplitude vector equals X0, but the Cramér-Rao bound CR is properly 
calculated. Fiw is a large array of partial information matrices, exported in a 
previous run for the same system for acceleration of the subsequent runs.

pd is the density of plots: plotting occurs if rem(cycle,pd) = 0, and in the last 
cycle. pd = inf will totally suppress plotting.
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X is the generated amplitude vector. CR is the Cramér-Rao lower bound of the 
covariance matrix of the estimated parameters. For higher orders this matrix 
is usually very badly scaled in the s-domain, thus for the calculation of the 
determinant, scaling is advisable. fsv is the suggested scaling vector 
(CRscaled = CR.∗(fsv∗fsv')). 

vXwdev is an 1-by-2 vector, containing the minimum and maximum deviations 
of the dispersion function from its limiting value, that is, the number of the free 
parameters. 

Fiw is the above mentioned array. If Fiw is too large to be stored on the 
computer, it will be returned as empty array, and recalculated in every 
iteration cycle.

Important: The delay may also be estimated. Consequently, if it is fixed, it is to 
be given in fixpind.

A typical plot of optexcit is shown in the figure.
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The figure consists of four subplots. The first one shows the absolute value of 
the transfer function (linear scale), the one below it represents the previous 
amplitudes. The previous dispersion function shows the dispersion function 
calculated from the previous amplitudes. The result of the actual calculation 
cycle, the new amplitude set, is shown in the fourth subplot. 

Below the dispersion function the number of free parameters is displayed (also 
represented by the dotted horizontal line in the plot). This is the theoretical 
final value of the dispersion function. The determinant of the covariance 
matrix, and the determinant of its scaled version are also shown.

Default 
Argument 
Values

vdat = [1,1].

Index vector of the fixed parameters: if fixpind is not given, in the  s-domain

fixpind = [nn+nd,nn+nd+1], 

that is, the coefficient of s0 in the denominator and the delay are fixed, while in 
the z-domain

fixpind = [nn+1,nn+nd+1]

the coefficient of z0 in the denominator and the delay are fixed. nn is the number 
of parameters in the numerator, nd is the same in the denominator. Note that 
fixpind = [] means that no fixed parameters are given (even the delay is 
variable); the default value can be given with fixpind = 0.

X0 = ones(F,1)/sqrt(F)

where F is the length of the frequency vector,

Ncyc = 1.

Examples (see optexdem) 

1 Let us reproduce the results given in [1], Subsection 4.3.5, for a bandpass fil-
ter. After each power spectrum optimization step the crest factor is mini-
mized, and the volume of CR is multiplied by an appropriate power of the 
crest factor.
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Some remarks concerning the program: optexcit is performed consecutive-
ly, but some rearrangement of the results was necessary because the routine 
produces the new amplitudes and the previous covariance matrix. Thus, 
crest factor minimization is performed on Xold. Moreover, msinclip is used 
in two steps: experience shows that it is advantageous to optimize first the 
input crest factor, and then use this result for input-output optimization.
num = [3.2010e-17,5.5155e-12,8.973e-10,0,0];
denom = [1.0131e-21,2.5351e-18,3.6031e-14,...
       5.5550e-11,3.5869e-7,2.5017e-4,1];
F = 50; fv = 20∗[1:F]'; pd = exppar('s',num,denom);
fixpar = [4;5;12;13]; np = 9; Fiw =  '';
Xold = ones(F,1)/sqrt(F); Nold = 0;
for N = [1,2,3,4,10,11,100,101]
  [X,CR,fsv,vXwdev,Fiw] = ...
       optexcit(pd,fv,[1,1],fixpar,Xold,N-Nold,Fiw);
  tf = polyval(num,sqrt(-1)∗freqv∗2∗pi)./...
       polyval(denom,sqrt(-1)∗freqv∗2∗pi);
  [cx,crx,crxmax] = msinclip(fv,Xold, [],'lastgraph');
  [cx,crx,crxmax,cry,crymax] = ...
       msinclip(fv,cx,tf,'lastgraph');
  X = Xold; N = Nold;
  cyc = N-1, dCR = det(CR), crx, dCRs = dCR∗crx^(2∗np)
end %for N

2 Let us check the theoretical results of the example given in [1] (Section 4.1, 
Example 2). A first order system is excited at just one frequency. The 
Cramér-Rao lower bound can be calculated in closed form (CRtheor), thus it 
can be compared to the covariance matrix given by the routine optexcit.

b0 = 1; b1 = 1; num = [1]; denom = [b1,b0]; f = 2;
parvect = exppar('s',num,denom);
cf = b0^2+(2∗pi∗f∗b1)^2;
CRtheor = [cf∗(1+cf)/(2∗pi∗f)^{2,0;0,cf∗(1+cf)];
[X,CR] = optexcit(parvect,f,[1,1],[1,4],1,1);
format long e, CR, CRtheor

Diagnostics The sizes of X0 and freqv must be equal, otherwise an error message is sent:

X0 has not the same size as freqv
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If fixpind is given with value 0, a warning message is generated:

The denominator coefficient of s^0 and the delay will be fixed in 
optexcit

or

WARNING: the coefficient of z^0 and the delay will be fixed in 
optexcit

The variance vectors given by vdat must have the same length as fvect, 
otherwise an error message is sent:

The length of varx is ... instead of ...

Fiw is generated only if the computer can store it in full size. If this is not the 
case, Fiw will not be generated (this results in a longer run time. If Fiw is 
requested by defining it as an output argument, a warning message is sent: 

WARNING! Fiw would be too large, it cannot be generated

and the output argument will be returned as an empty variable.

Algorithm The algorithm is the one described in [1], [2] and [3]. First the partial 
information matrices are generated in each cycle for all the frequencies, then 
the dispersion function is determined, and the new power distribution is 
calculated.

See Also msinclip, dibs, msinprep

References [1] J. Schoukens and R. Pintelon, Identification of Linear Systems: a Practical 
Guideline for Accurate Modeling, London, Pergamon Press, 1991. 

[2] F. Delbaen, “Optimizing the Determinant of a Positive Definite Matrix,” 
Bulletin Société Mathématique de Belgique —Tijdschrift Belgisch Wiskundig 
Genootschap, Vol. 42, No. 3, pp. 333-346.

[3] K. R. Godfrey, ed.: Perturbation Signals for System Identification. 
Englewood Cliffs, Prentice-Hall, 1993.
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pairsPurpose Find the closest point pairs in two complex vectors.

Syntax indab = pairs(a,b)
[indab,cycle,digits] = pairs(a,b,p,maxcycle,digitsreq,D)

Description pairs looks for a permutation of the elements of the complex vector b to 
minimize

or if the array D is given,

The appropriate indices of b are returned in indab. The vector a may not be 
longer than b. If each element of a is paired to an element of b, indab will 
contain positive indices only; if not (the algorithm did not converge in the 
allowed number of iterations), indab will contain at least one zero. 

cycle gives the number of iterations of the Hungarian method. If it is returned 
with the value zero, the simple nearest neighbors search gave the optimum. 
The Hungarian method may converge very slowly in some rare cases. 
Therefore, the maximum number of allowed iterations may be given in 
maxcycle. If maxcycle is given with a finite value, the internal cost values of 
the Hungarian method (the complements of the powers of distances, with 
respect to the maximum value) will be rounded to a reasonable number of 
digits (convergence is assured for integer numbers). Such a rounding will be 
indicated by a value of digits, smaller than floor(log10(1/eps)), which is 15 
on most platforms. The number of used digits can also be adjusted at the 
beginning of the iteration (digitsreq).

Default 
Argument 
Values

p = 2, maxcycle = inf, digitsreq = floor(log10(1/eps))

ai bi perm
–

p

i 1=

na

∑

D i i perm,( )
i 1=

na

∑
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Examples indab = pairs(roots([1,2,3,4]),roots([1.01,2,3,4]),2);
pind = pairs([-0.1-1.5∗j,-0.1+1.5∗j],roots([1,2,3,4]));

If cycle == 0, it may be assumed that the new positions of the roots of the 
perturbed polynomial p1 have been found. If cycle>0, and all(indab)>0, the 
optimal indices are found, but there is a chance that the roots are not paired 
properly, since the nearest neighbors cannot all be paired to each other. 

Diagnostics The vectors are checked for infinite or NaN elements. If a or b is empty or is an 
array, an error message will be sent. p is also checked for positivity.

If the closest pairs do not give the best permutation, a warning message is sent:

WARNING: nearest neighbors do not give optimum in PAIRS

The algorithm may converge very slowly. In this case the reciprocals of the 
distances will be rounded, and a warning message will be sent:

Number of digits is set to ... in PAIRS

The algorithm may not converge if the number of allowed iterations is small. If 
this happens, a warning message is sent:

WARNING: PAIRS did not converge

and indab will contain at least one element that is equal to zero.

Algorithm The so-called Hungarian method ([1], [2]) is used: it is based on looking for 
alternating paths in bipartite graphs. The convergence of the method is 
assured for rational distances only; the algorithm implemented here makes an 
attempt to find a solution without rounding; when it fails, the complements of 
the distances to the maximum distance are rounded. By this the smallest 
distances, which are the most interesting, will be distorted the least.

See Also plotelpz

References [1] H. W. Kuhn, “The Hungarian Method for the Assignment Problem,” Naval 
Res. Logist. Quart., Vol. 2, 1955, pp. 83-97. 

[2] B. Andrásfai, Graph Theory: Flows, Matrices, Budapest, Akadémiai Kiadó; 
Bristol, UK, Adam Hilger, 1991.
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plotelpzPurpose Plot pole/zero pattern (maybe with confidence ellipses) of estimated transfer 
function.

Syntax plotelpz(pdat)
[rnum,rdenom] =...
    plotelpz(pdat,axv,cdat,Pc,ntx,parr,zarr,domain,da,dp,plm)

Description plotelpz plots pole/zero pattern of the transfer function defined by the 
parameter vector pdat or by the named file if pdat is a string. 

The scaling may be modified by axv: if this is a four-element vector, it will be 
passed through axis; if this is 'z', the statement axis([-2,2,-2,2]) will be 
executed; and if this is 'p', the plot will show all poles and zeros, and the 
vertical and the horizontal scaling will be the same. If axv is empty or missing, 
the plot will be scaled to show every pole and zero.

cdat is the covariance matrix (array), or the covariance vector (see expcov), or 
the name of the file containing the covariance matrix of the estimated 
parameters. It is used for the plot of the uncertainty ellipses.

The standard deviations of poles and zeros are calculated using stdpz. 

The routine plots the “one-σ” contours as uncertainty ellipses. This can be 
modified by Pc which determine the multiplier of σ for the contours. It is easy 
to see that, supposing two-dimensional nondegenerate normal distribution, the 
confidence limit for the event that the pole (zero) falls inside the contour is 

p 1 e
s– c2 2⁄

–=
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with sc being the multiplier of σ. This expression gives the following values: 

if 0 < Pc < 1, Pc will be interpreted as the confidence level p. If Pc > 1, its 
value will be assigned to sc.

In the degenerate cases (one-dimensional distribution, as for real poles and 
zeros, or for certain constraints) the ellipses reduce to straight lines, and are 
represented by narrow “strips” on the plots. In such cases the probabilities can 
be calculated from the normal distribution (see third column).

The plot of uncertainty ellipses does not provide information about coupling of 
poles and zeros. Such couplings can be explored using the routine stdpz.

For multiple zeros/poles the analytical sensitivity calculations give infinite 
standard deviations: in such cases dotted rectangulars are plotted instead of 
ellipses around the multiple zeros/poles.

By the help of the string argument ntx, the plot style can be modified. If it is 
given with the value 'notext', no text at all will be written onto the plot; if 
with the value 'nomsg', the warning messages will be suppressed only. 

A set of  poles and zeros each can also be given in the arrays parr and zarr, 
accompanied by the domain ('s' or 'z'). These sets can also be plotted in 
addition to or instead of the zeros and poles given in pdat.

plotelpz can pass some arguments to stdpz: da, dp  and plm can influence the 
calculation mode (see stdpz).

sc p degenerate p

1.0 0.39 0.68

1.5 0.68 0.866

2.0 0.86 0.954

2.5 0.96 0.988

3.0 0.989 0.9973

3.5 0.9978 0.99953

4.0 0.99966 0.999937
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The output arguments rnum and rdenom are the row vectors of the poles and 
zeros, calculated from pdat. They are exported from plotelpz to avoid the 
necessity of repeated use of roots, if the order is large.

plotelpz can be used as a building block of complex M-files, especially with the 
'notext' option. It does not even change the state of the graphics window, 
previously set by the subplot or axes statement, if ntxt is given as 'notext' 
or 'nomsg'. 

A typical plot of plotelpz is shown in the figure.

The numbers of poles and zeros, the numbers of non-minimal phase zeros and 
unstable poles are given on the plot, along with the number of zeros/poles not 
shown because of the axis scaling applied. If any of the uncertainty ellipses is 
so large that less than 10 points of the dotted line can be shown on the plot, a 
warning message appears at the lower left corner: 

WARNING: fully or partly not visible ellipse
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Default 
Argument 
Values

axv = [], Pc = 0.39 (sc = 1), ntx = '', da = 'anal', dp = 1, 
plm = ''.

Examples plotelpz('inpchanz.pbn','z');
[rnum,rdenom] = plotelpz('inpchans.pbn',[],'inpchans.cbn');

Algorithm The calculation of the poles/zeros is done by roots. The determination of the 
uncertainty ellipses is rather involved. The covariances of the real and 
imaginary parts of the poles/zeros are calculated by linear transformation from 
the covariance matrix of the parameters, using the sensitivity matrix (see 
stdpz).

See Also stdpz, roots, ploteltf

References [1] P. Guillaume, J. Schoukens and R. Pintelon, “Sensitivity of Roots to Errors 
in the Coefficient of Polynomials Obtained by Frequency-Domain Estimation 
Methods,” IEEE Trans. on Instrumentation and Measurement, Vol. 38, No. 6, 
pp. 1050-1056, Dec. 1989.
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ploteltfPurpose Plot transfer function (may be with confidence bounds), and/or ratio of output 
and input Fourier amplitudes.

Syntax ploteltf(pdat1)
ploteltf(Fdat)
[ha1,ha2,fsc] = ploteltf(pdat1,pdat2,Fdat,fscale,msc,...
                      cdat1,cc,cn,rec,expi,ntx)

Description ploteltf plots transfer functions. pdat1 and pdat2 may be parameter vectors 
(see exppar), or parameter filenames. The first transfer function is plotted by 
mark '–', the second one by '.', at 256 equally distributed frequency points 
(equal distribution is understood here in either linear or logarithmic scaling). 
Also the ratio of output and input Fourier amplitudes can be plotted with mark 
'+': these can be given in the Fourier vector Fdat, or in a file given by this 
string. 

fscale defines the scaling of the frequency axis. Possible values:

'lin': linear, from 0 to either the half of the sampling frequency in any of the 
parameter sets, or the maximal frequency in Fourier frequency vector 
(whichever is larger). If no Fourier data were given, and s-domain parameter 
set(s) are investigated, the maximum frequency will be the double of the 
suggested scaling frequency, calculated by exppar for the given transfer 
function.

'linF': linear, from 0 to maximal frequency in the Fourier data.

'lin',f1,f2]: linear from f1 to f2.

'log': logarithmic, between 1e-3∗fs/2 to fs/2 (fs is the higher sampling 
frequency in the parameter sets, if there is any), or from 1e-3∗maxf to maxf 
(maximal frequency in the Fourier data). For s-domain parameter sets with no 
Fourier file, plot from 1e-2∗fscale to 10∗fscale. 

'logF': logarithmic, from minimal nonzero frequency to maximal frequency in 
the Fourier data.

'log',f1,f2]: logarithmic from f1 to f2.

The scaling of the amplitude plot can be influenced by msc. Its possible values 
are as follows: 'full' to scale to all points, 'passb' to scale to passband only 
(defined by the minimum and maximum of frequencies, for which y is not zero 
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in Fdat). If a '–' is appended to this parameter, only the phase is plotted, if a 
'+', only the amplitude.

For confidence interval plots of pdat1, the covariance matrix of the estimated 
parameters of pdat1 can be given by cdat1 as an array, or as a covariance 
vector (see expcov), or as the name of the covariance file. The ±2σ bounds are 
plotted, usually at 32 points of the estimated magnitude and phase values, or 
at each frequency in Fdat. The number of points can be changed by cn between 
1 and 256. The bounds can be changed by a multiplying factor cc. Its default 
value is 2.

The value of cc and the approximate confidence limit (Pc) are displayed under 
the plot, assuming normal distribution.

It is also possible to add confidence bounds to the nonparametric transfer 
function estimate points, defined by Fdat. For this purpose, the variance data 
have to be given in the place of cdat1, as a variance array [vx,vy] or 
[vx,vy,cxy], or as a variance vector (see expvar), or as a variance filename. 
ploteltf will recognize the type of the covariance/variance data; in an 
ambiguous case (long vector form) a covariance matrix of pdat1 will be assumed 
as given.

One is interested sometimes in the reciprocal of the transfer function, or in the 
reciprocal of the measured transfer function in the Fourier data (equalization). 
You can plot the reciprocal of any of the functions. rec = 'abc', where the 
letters refer to pdat1, pdat2, Fdat, respectively: 's' means straight (no 
reciprocal building is necessary), 'r' means reciprocal before plotting.

expi is the number of the experiment(s) in Fdat to be plotted. If expi is empty, 
all the experiments in Fdat will be plotted.

ploteltf puts some textual information to the plots. If ntx is given with the 
value 'notext', the filenames will not be shown in the plot.

For the purpose of further plots on the screen, the handles of the magnitude 
and phase plots (the axis vectors in MATLAB 3.5) are exported to ha1 and ha2. 
To avoid unwanted exponents below the frequency axis, the frequency vector is 
often scaled internally (to kHz, MHz or mHz). The scaling frequency is exported 
in fsc.

The magnitude plots are scaled in dB. To avoid annoying downscaling, the 
zeros of the transfer function are substituted by -100 dB values.
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A typical plot is shown in the figure.

Default 
Argument 
Values

Fdat = '', fscale = 'lin', msc = 'full', cdat1 = '', cc = 2, 
cn = 32, rec = 'sss', expi = [], ntx = ''. 

If only Fdat is given, this must be a Fourier filename, otherwise the program 
cannot distinguish it from a parameter vector. 

Examples ploteltf('inpchans.pbn','','inpchan.fbn','linF','full+');
num = [1.1,1]; denom = [4,3,2,1];
[ha1,ha2,fsc] = ploteltf(exppar('z',num,denom,0));

Algorithm The confidence bounds are calculated using stdtf or stdtfm.

See Also stdtf, stdtfm
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rdueelisPurpose Calculate residuals of an ELiS fit.

Syntax [rx,ry] = rdueelis(pdat,cdat,Fdat,vdat,expi)
[rx,ry,ryx,vryx,xe,ye] = ...
         rdueelis(pdat,cdat,Fdat,vdat,expi,inp,outp)

Description rdueelis calculates the complex residuals of a fit of elis (see “Study of the 
Residuals” on page 2-36). pdat is the parameter vector of the fit (see exppar), 
or the name of the parameter file. cdat is the covariance array, or the 
covariance vector, or the name of the covariance file of pdat. If cdat is empty, 
the variance of the parametric estimate of the transfer function will not be 
considered.

Fdat is the Fourier vector, or the array [freqvect,x,y], or the name of the 
Fourier file. expi contains the number(s) of the experiment(s) in Fdat, for 
which the residuals are to be calculated. vdat is a 1-by-2 vector if the variances 
are constant (or a 1-by-3 vector if the covariances are also given), or an N-by-2 
array if the variances are given point by point (or an N-by-3 array if the 
covariances are also given), or a long variance vector if the variances are put 
together by expvar, or a string if the variance file is referred to.

inp and outp select the serial numbers of the input and of the output port in 
the Fourier file. 

The residuals are given in rx (complex residuals of the input amplitude vector), 
ry (complex residuals of the output amplitude vector), ryx (complex residuals 
of ym./xm vs. the estimated transfer function).

vryx  contains the variance vector of the real and of the imaginary parts of ryx. 
If the distributions of the complex ryx values are circularly symmetric, this 
equals the halves of the variances of ryx.

vryx is the difference of two quantities (see “Study of the Residuals” on page 
2-36). Theoretically, this is never negative if the proper data are given (the 
same variance vector as used in elis; pdat and cdat that belong to this run of 
elis). However, because of the approximations, small negative values may 
occur: these usually indicate very small variances.

xe and ye are the estimated complex input and output amplitude vectors. These 
estimates are not consistent for one experiment. However, processing of several 
experiments at the same time does decrease their estimation error.
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Default 
Argument 
Values

expi = [], inp = 1, outp = 1.

Examples [rx,ry,ryx,vryx] = rdueelis('inpchans.pbn','inpchans.cbn',...
                        'inpchan.fbn',[9.61e-12,9.61e-10]);

Diagnostics The validity of the variance values and the common length of the variance and 
frequency vectors is checked. If negative variance values are obtained, a 
warning message is sent.

Algorithm The complex input and output amplitudes are estimated via weighted LS 
fitting, having the estimated transfer function parameters fixed. 

References [1] I. Kollár, “On Frequency Domain Identification of Linear Systems,” IEEE 
Trans. on Instrumentation and Measurement, Vol. 42, No. 1, pp. 2−6, Feb. 
1993.
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simfouPurpose Generate simulated Fourier amplitudes from parameters and variances. 

Syntax [x,y] = simfou(pdat,freqv,x0,vdat)
[x,y] = simfou(pdat,freqv,x0,vdat,expno)

Description simfou generates simulated Fourier amplitudes (and perhaps also a Fourier 
file) for elis. The parameters of the transfer function are given in the vector 
pdat (see exppar), or in a file if pdat is a string. The frequencies are given in 
the vector freqv. The input amplitudes are given in the vector x0.

The variances are defined by vdat: if this is an 1-by-2 or 1-by-3 vector, its 
elements are taken as constant input and output variances (and perhaps the 
input-output covariance). If this is an N-by-2 or N-by-3 array, the variance 
vectors (and perhaps the covariance vector) are formed from the two (or three) 
columns. If this is a vector, the variance and covariance vectors are obtained 
using impvar. If it is a string, the variance file is looked for.

expno is the number of experiments to be generated.

Default 
Argument 
Values

expno = 1

Examples The convergence properties of elis can be checked by running it several times 
on data simulated using a known transfer function:

freqv = [100:50:1000]';
num = 1; denom = [1e-6,1e-3,1];
pdat = exppar('s',num,denom);
vdat = [0.01,0.001];
[x,y] = simfou(pdat,freqv,[],vdat);
ploteltf(pdat,'',[freqv,x,y])
for k = 1:5
   [x,y] = simfou(pdat,freqv,[],vdat);
    Fdat = [freqv,x,y];
    [pvect,fit,Cp] = elis(Fdat,vdat,['s',0,2],[],'',100);
    pause
end
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Diagnostics The routine checks the validity of the variance values and their compatibility 
with the frequency vector, and sends an error message when incompatibility is 
found.

When the system is unstable (the real part of a root is ≥0 in the s-domain or the 
absolute value of a root is ≥1 in the z-domain), a warning message is sent:

WARNING! The given system is unstable in simfou

but the simulated values will be calculated in the frequency domain.

Algorithm simfou calculates the input and output amplitude vectors, and adds zero-mean 
complex Gaussian noise with the given variances and properly set covariance 
to them.

See Also simtime
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simtimePurpose Generate simulated input and output time series from a transfer function.

Syntax [xt,yt] = simtime(pdat,u,numi,denomi,numo,denomo)
[xt,yt] = simtime(pdat,u,numi,denomi,numo,denomo,typ)

Description simtime generates simulated input and output time series for elis from a 
transfer function parameter set. The parameters of the transfer function are 
given in the vector pdat (see exppar, imppar), or in a file if pdat is a string. The 
excitation time series is given in u. The additive observation noise is generated 
from white Gaussian noise of variance 1 by the noise shaping filters, defined by 
numi, denomi and numo, denomo.

The input and output noises are independent. For the generation of correlated 
noise, the inverse Fourier transform of the outputs of simfou can be used, after 
having been called with a frequency vector [0:N/2-1]∗df.

The resulting time series are returned in xt and yt.

typ chooses between two basic possibilities. If its value is periodic, u is 
considered as just one period of a periodic excitation, and one period of the 
steady-state system response is calculated, while the value 'transient' makes 
simtime produce the transient response, starting from energyless state.

If pdat defines an s-domain model, only steady-state simulation is allowed. In 
such cases, typ must contain the sampling frequency in Hz.

Default 
Argument 
Values

typ = 'periodic'

Examples f = 400∗[1:49];
u = msinprep(f,msinclip(f,[],[],'',0),256,51200);
[xt,yt] = simtime('inpchanz.pbn',u,3e-5,1,3e-5,1);
[xtr,ytr] = simtime('inpchanz.pbn',u,...
     3e-5,1,3e-5,1,'transient');

Diagnostics The leading coefficient of the denominator should not be close to zero (this 
would approximate a predictor). If a too small leading coefficient is detected (its 
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absolute value is smaller than 10-10 times the largest coefficient), a warning 
message is sent:

WARNING: the leading coefficient of the denominator is very small 
in simtime (maxdenom/denom(1) = ...)

In the transient case, the delay is realized by time shifts. The value must not 
be negative (this would mean a predictor). If the value of the delay is negative, 
an error message is sent:

The delay must not be negative (predictor cannot be simulated)

For the time shifting, the value of the delay is rounded to the nearest integer. 
When the value of the delay is changed, a warning message is sent:

WARNING: the delay has been rounded in simtime

The system defined by pdat must be stable. If this is not true, an error message 
is sent:

System is not stable

The noise shaping filters must be stable. If the absolute value of any of their 
poles is larger than 1-10-10, an error message is sent:

Input noise shaping filter is not sufficiently stable

or

Output noise shaping filter is not sufficiently stable

Algorithm The transient response is calculated via the function filter of MATLAB, the 
steady-state one by inverse Fourier transform of the frequency domain 
response.

See Also simfou
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stdpzPurpose Calculate standard deviations and covariances of poles and zeros of an 
identified transfer function, using the covariance matrix of the parameters.

Syntax [zv,stdz,pv,stdp] = stdpz(pdat,cdat)
[zv,stdz,pv,stdp,rzp] = stdpz(pdat,cdat,zv0,pv0)
[zv,stdz,pv,stdp,rzp,g,stdg,dps] = ...
      stdpz(pdat,cdat,zv0,pv0,da,plm,dp,axv)

Description If the covariance matrix of a set of estimated parameters is given, the 
uncertainties of the zeros and poles can be calculated. pdat is the parameter 
vector, usually generated by elis, or the name of a parameter file (see exppar). 
cdat is the covariance matrix, corresponding to pdat, in the form of an array, 
as generated by elis, or in the form of a vector (see expcov), or the name of a 
covariance file.

zv and pv are the column vectors of the zeros and poles, respectively, and stdz 
and stdp contain the corresponding uncertainties. In each row there are three 
elements: the standard deviation of the real part, the standard deviation of the 
imaginary part, and the correlation coefficient between the real part and the 
imaginary part of the corresponding zero or pole.

For multiple zeros or poles the standard deviations cannot be determined by 
analytical differentiation; in such a case the corresponding standard deviations 
are given as NaN.

For the investigation of the interrelations of different poles and zeros, a 
correlation coefficient matrix of the real and imaginary parts of all zeros and 
poles and the two gain values can also be obtained in rzp. The order of the 
random variables in the corresponding random vector is: real part of the first 
zero, imaginary part of the first zero, real part of the second zero, etc., then the 
real part of the first pole, etc. The last two elements are the leading coefficients 
of the numerator and the denominator. 

g contains the leading coefficients of the numerator and the denominator. The 
standard deviations of the gain values and their correlation coefficient are 
given in stdg.

Sometimes it is desirable to prescribe the order of the poles and zeros in zv and 
pv. This can be done by giving zv0 and pv0. Any of these input arguments may 
be given as an empty variable, if the order need not be prescribed.
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stdpz allows the use of numerical differentiation in the calculation of the zero/
pole sensitivities to variations of parameters. It can check whether variations 
of the parameters, in the order of the standard deviations, cause the same 
changes in the positions of zeros and poles, as calculated from the analytical 
sensitivity calculations. The numerical differentiation can be requested by 
giving da with the value 'num'.

The amount of perturbations can be influenced by dp. By default, its value is 1, 
which means perturbations equal the eigenvalues of the covariance matrix, in 
the directions of the eigenvectors. These steps can be multiplied by a given 
value dp. When the perturbations are too large, the zeros and poles cannot all 
be paired to their nearest neighbors in the perturbed sets, and a suggested 
value of dp, for which all zeros and poles can be paired to their nearest 
neighbors, will be given in dps; otherwise dps will be equal to the actual value 
of dp.

The perturbed sets of zeros and poles can be plotted on the screen. If plm is 
given with value 'mc', the perturbed sets and the pairing will be shown on the 
screen, one after the other. For the value 'mp', a statement pause will be 
executed after each pairing. The axis vector for these plots may be given in axv.

Default 
Argument 
Values

zv0 = [], pv0 = [], da = 'anal', dp = 1, plm = ''.

Examples [pvect,fit,Cp] = elis('inpchans.ebn');
[zv,stdz,pv,stdp,rzp] = stdpz(pvect,Cp);

Diagnostics The standard deviations cannot be calculated by analytical derivation for 
multiple zeros or poles; in such cases the corresponding standard deviations 
will be given as NaN.

Algorithm The sensitivity matrix of zeros and poles on the coefficients of the 
corresponding polynomials is calculated using 

S i j( , )
r i( )j

df r i( )( )
dr i( )

-------------------
-------------------,=
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where r(i) is the ith root of the polynomial f(r(i)). The covariance matrix of the 
real and imaginary parts of the poles/zeros is calculated multiplying the 
covariance matrix of the parameters by the sensitivity matrix from both sides.

For numerical derivation, perturbations of the parameter vector are introduced 
in the direction of each eigenvector of the covariance matrix, with step sizes 
equal to the corresponding eigenvalue, multiplied by dp. The original and 
perturbed sets are paired to each other by using pairs, with p = 1. This means 
that even for the multiple zeros or poles a standard deviation will be calculated, 
which will be in the order of the actual movements caused by the uncertainty 
of the parameters.

See Also plotelpz

References [1] P. Guillaume, J. Schoukens and R. Pintelon, “Sensitivity of roots to errors 
in the coefficients of polynomials obtained by frequency-domain estimation 
methods,” IEEE Trans. on Instrumentation and Measurement, Vol. 38, No. 6, 
pp. 1050-1056, Dec. 1989.
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stdtfPurpose Calculate standard deviations of amplitude and phase values of an identified 
transfer function, using the covariance matrix of the parameters.

Syntax [tf,stda,stdph,stdri,rtf] = stdtf(freqv,pdat,cdat)

Description The approximate standard deviations of the amplitude and phase values of 
estimated transfer functions are calculated from the covariance matrix of the 
estimated parameters. freqv is the vector of frequencies at which the standard 
deviations are to be evaluated. pdat is the parameter vector, usually generated 
by elis, or the name of a parameter file (see exppar). cdat is the covariance 
matrix, corresponding to pdat, in the form of an array, as generated by elis, 
or in the form of a vector (see expcov), or the name of a covariance file.

tf is the column vector of the complex values of the transfer function, 
calculated from pdat at the given frequencies, stda is the column vector of the 
standard deviations of the amplitudes, and stdph is the column vector of the 
standard deviations of the phases, in radians.

If the distribution of the complex error of tf is circularly symmetric, stda also 
equals the standard deviations of the real and imaginary parts, but these can 
also be obtained in stdri, which has three columns: standard deviations of the 
real parts and of the imaginary parts of tf, furthermore the correlation 
coefficients of the real and imaginary parts of the corresponding tf value.

rtf is the correlation coefficient matrix of the vector of  the real and imaginary 
parts of all the points: the real and imaginary parts of the first point are the 
first two elements, those of the second point are the third and the fourth, and 
so on.

The variance of the transfer function can be calculated as

vartf = stda^2 + (abs(tf).*stdph).^2

or

vartf = stdri(:,1).^2 + stdri(:,2).^2

Examples [pvect,fit,Cp] = elis('inpchans.ebn');
[tf,stda,stdph,stdri,rtf] = stdtf([400:400:19600],pvect,Cp);
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Algorithm The sensitivity matrices of the amplitudes and phases on the estimated 
parameters, furthermore of the real and imaginary parts are calculated by 
direct derivation of the corresponding expressions. The appropriate covariance 
matrices of the amplitudes and phases are calculated multiplying the 
covariance matrix of the parameters by the sensitivity matrices from both 
sides.

See Also fdcovpzp, ploteltf
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stdtfmPurpose Calculate empirical standard deviations of nonparametric transfer function 
estimates.

Syntax [tfm,stdAm,stdphm] = stdtfm(Fdat,vdat)

Description For model validation purposes you may wish to calculate the nonparametric 
transfer function estimate tfm = ym./xm, and check the uncertainties of these 
values. 

Fdat contains the Fourier data. It is either an array: [freqv,xm,ym], or a 
Fourier vector (see expfou), or the name of the Fourier file. The variances are 
defined by vdat. If this is an 1-by-2 or 1-by-3 vector, its elements are taken as 
constant input and output variances (and perhaps the input-output 
covariance). If this is an N-by-2 or N-by-3 array, the variance vectors (and 
perhaps the covariance vector) are formed from the two (or three) columns. If 
this is a vector, the variance and covariance vectors are obtained using impvar. 
If it is a string, the variance file is looked for.

tfm is the nonparametric estimate of the transfer function: tfm = ym./xm.

stdAm contains the approximate standard deviations of the absolute values of 
the transfer function. These are approximately equal to the standard 
deviations of the real and of the imaginary parts of tfm, if the distribution of 
the complex noises is circularly symmetric, as it is in the usual case.

stdphm returns the standard deviations of the phases in radians.

Examples [tfm,stdAm,stdphm] = stdtfm('emachine.fbn','emachine.vbn');

Diagnostics The routine checks the validity of the variance values and their compatibility 
with the frequency vector, and sends an error message when incompatibility is 
found.
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Algorithm stdtfm calculates the standard deviations by evaluating the formula 

which gives the standard deviations of the real and of the imaginary parts of 
tfm. The output argument stdphm is obtained as stdAm./abs(tfm).

If the standard deviations of the estimate tfav = my./mx are sought, using the 
results of varanal, these can be obtained by vx/Na, vy/Na, and cxy/Na, 
respectively.

See Also ploteltf
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tim2fouPurpose Convert time domain data to frequency domain data for elis.

Syntax [x,y] = tim2fou(tdat,freqv)
[x,y,fv] = tim2fou(tdat,freqv,expi)

Description The time domain data vector is given in tdat (see exptim); or this is an array 
[tvl,xt,yt], where the column vector tvl contains the time instants, 
repeated with the same values for each experiment; or this is the name of the 
time domain data file, with obligatory extension .tbn, .tim, or .tnt.

tdat can also be the name of an M-file. For example, if tdat = 'gettim',  the 
call [tv,xt,yt] = gettim(i) must return the results of experiment i for the 
values contained in expi.

freqv is the desired frequency vector; possibly each element of freqv should be 
a divider of the sampling frequency, but the algorithm works even if this is not 
true. If freqv is empty or missing, all possible frequencies in the FFT grid will 
be used from 0 to fs/2.

The generated input and output vectors (or arrays for multiple inputs or 
outputs) of complex amplitudes are x and y. Multiple experiments can also be 
processed. The actually used frequency vector is returned in fv.

Default 
Argument 
Values

freqv = [0:N/2-1]'/N∗fs, where N is the length of the time vectors, and fs = 
1/dt is the sampling frequency.

Examples [x,y,fv] = tim2fou([[0:63]',cos([0:63]'/64∗2∗pi∗3)]);

Diagnostics The time vector should consist of equidistant points, otherwise an error 
message is sent: 

Samples are not equidistant

fs = 1/dt should be larger than the maximum of freqv, otherwise an error 
message is generated:

Maximum of freqv is larger than fs/2
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Every element of freqv has to be a divider of the sampling frequency, otherwise 
a warning message is sent:

'WARNING: frequencies are not FFT points, leakage will appear

Algorithm The usual expression of the DFT is evaluated:

If the frequency points in freqv are on the FFT grid, the DFT of the time 
domain vectors is calculated via FFT, and the corresponding complex 
amplitudes are selected. Otherwise the DFT is evaluated for the given 
frequency points.

See Also exptim
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varanalPurpose Averaging and variance analysis of multiple experiments.

Syntax [vx,vy,cxy] = varanal(Fdat,expi)
[vx,vy,cxy,mx,my,Na,Np,cfl,dv,sd] = ...
      varanal(Fdat,expi,synch,T,inp,outp)

Description varanal averages frequency domain amplitudes as results of experiments, and 
calculates the empirical variances and input-output covariances of complex 
amplitudes. The results of the individual experiments are given either in just 
one Fourier vector Fdat (see expfou); or an array [freqvlong,x,y], where 
freqvlong contains the frequency vector, repeated as many times as the 
number of experiments (the first frequency may not be repeatedly present in 
the short frequency vector); or in a file with name given in Fdat. A further 
possibility is when the string Fdat is the name of a user-defined function M-file, 
which can be called using eval. If the serial number of a given experiment is i, 
and Fdat is 'getfou', then [freqv,x,y] = getfou(i) must return the data of 
the ith experiment.

expi is the vector of the serial numbers of the experiments to be processed.

Averaging can be easily performed if the measurements were made in a 
synchronized way. However, when this is not the case, the routine can also be 
asked to try to “synchronize” the input vectors (assuming that they resulted 
from FFTs of the same length), minimizing the weighted phase differences of 
the complex amplitudes in the frequency domain by introducing a delay. Such 
synchronization can be requested by giving the argument synch with the value 
'synch'. For this synchronization attempt, the maximum value of the delay 
(the period length for periodic signals) is advisable to be given in T, although 
varanal makes an attempt to find a reasonable period length if T is not given. 
Since T specifies the range of rough search, a value of T slightly larger than the 
period length is preferred to a smaller one.

For synchronization, the elements of the frequency vector have to be given in 
Fdat with sufficient accuracy. The best solution is to generate them in MATLAB 
from the harmonic numbers. Inaccurate frequency values can be prohibitive for 
appropriate phase fitting.

If there are several input and/or output ports in the measurement, the user 
may choose from among them by defining the scalars (or vectors) inp and outp. 
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If any of them is not given, or it is given as an empty vector, each port present 
in the Fourier data will be used.

The variances are returned in the vectors (arrays) vx and vy, the input/output 
covariances

in cxy. In the case of MIMO data, cxy will be an array, containing the 
covariances beside each other, as [cx1y1,cx1y2,...cx2y1...].

The averaged input and output amplitudes are returned in mx and my.

The variances and covariances of the averaged complex amplitudes mx and my 
can be obtained as vx/Na, vy/Na, cxy/Na, respectively.

If the nonparametric estimate Ym./Xm is calculated, its approximate standard 
deviation can be determined from vx, vy, and cxy, using stdtfm. The standard 
deviations are to be scaled by 1/sqrt(Na) when my/mx is used.

The number of averaged experiments is returned in Na, while the total number 
of processed experiments is Np. The two numbers may differ because when a 
synchronization attempt fails, the given experiment is not averaged to the 
others.

The multiplicative factors to obtain the lower and higher bounds of the 95% 
confidence intervals of the variances in the Gaussian case are returned in the 
1×2 vector cfl. The confidence limits of the real and imaginary parts of the 
covariance values can be obtained by calculating 
(cfl-1)∗sqrt(varx(k)∗vary(k)).

If synchronization is requested, the vector of all the determined delay values is 
returned in dv. For the values of the delay the inequalities -T/2<delay<=T/2 
hold. If the synchronization failed, the corresponding element of dv is NaN. 

The delays obtained by varanal can be used for restoring synchronization: if 
the value dv(i-1) is obtained for the complex amplitude set Xi, 
exp(j∗2∗pi∗freqv∗dv(i-1)).∗Xi will give the amplitudes which correspond in 
phase to the reference set.

0.5E NxNx{ }
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sd is the Cramér-Rao bound of the delay values. It is calculated from vx and mx 
(see [1]):

Using the value of sd, a 95% significance level test is performed in order to 
determine if the estimated delays can all be zero (synchronized experiments). 
If there is no significant deviation from the hypothesis that the experiments 
are synchronized, a warning message is sent:

The estimated delays are small. With this SNR,
the statistical test shows no significant desynchronization.

If the signal-to-noise ratio is small, the synchronization attempt may fail. This 
is detected by observing for the best fit a phase deviation higher than π/2 at 
least at one frequency. When this happens, the experiment will not be averaged 
to the others. 

Default 
Argument 
Values

synch = '', inp = [], outp = []

Examples [vx,vy,cxy,mx,my] = varanal('bandpass.fbn',[1:6],'synch');
[vx,vy,cxy] = varanal('lowpass1.fbn',[1:5],'synch');

Diagnostics Synchronization can only be done if the Fourier amplitudes turn around by 
integer multiples of 2π with a time shift of T. If this condition is not met, a 
warning message is sent:

WARNING! Not all frequency vector elements are integer multiples 
of 1/T
Maximum relative deviation is larger than 1e-6 in varanal.
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varanal makes an attempt to find the period length of the signals from the 
frequency vector, and compares this to the given value T. if there is a deviation, 
one of the following warning messages is sent:

WARNING! T does not cover full period length found by varanal: T 
= ..., Tp = ...
The proper delay may not be found.

or

WARNING! T is larger than period length found by varanal:
T = ..., Tp = ...
Search time may be unnecessarily long.

The synchronization procedure assumes that the signal-to-noise ratio is not 
very small, that is, in synchronized state the phase differences of the complex 
amplitudes in the different experiments, at the frequencies given in freqv, are 
smaller than π/2. Otherwise the experiment is skipped (and the delay value NaN 
appears in dv), and a warning message is sent: 

Synchrnization is not successful for experiment ...

Algorithm Averaging of every quantity is done in a recursive way.

The confidence limit factors are calculated from the approximation of the χ2 
distribution:
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The degrees of freedom equal 2∗(Na-1), because both the real and imaginary 
parts are used in the estimation.

The synchronization attempt starts with a scan through the possible values of 
the delay in steps of Tpmin/6, where Tpmin is the smaller value of T and the 
period length of the largest frequency in the vector freqv. Using the best delay 
value, an additional, appropriately weighted LS fit of the phases is performed 
(see [1]). The resulting delay estimate is a maximum likelihood one, if the 
noises are Gaussian.

See Also tim2fou

References [1]I. Kollár, “Signal Enhancement Using Non-synchronized Measurements,” 
IEEE Trans. on Instrumentation and Measurement, Vol. 41, No. 1, pp. 156-159, 
Feb. 1992.
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yesinputPurpose Intelligent input routine.

Syntax answer = yesinput(question,default)
answer = yesinput(question,default,possib)

Description yesinput is an “intelligent” version of the statement input. It displays a 
message as input usually does (string question), offers a default answer 
(defined by default) which can be accepted by pressing Return or Enter, and 
checks the validity of the answer using the optional argument possib. The type 
of the returned answer (string or number) is determined by the type of default. 
If the type of the desired answer is string, possib may be either a string array, 
where the rows contain the acceptable answers, or a string containing the 
acceptable answers, separated by  ('|') characters. If a number is desired, 
possib may be an 1×2 vector, containing the lower and higher limits for the 
input: 

possib(1) ð answer ð possib(2).
possib(1) may be -inf,  possib(2) may be inf.

If a number is to be typed in, any valid MATLAB expression may be given, e. g., 
2∗pi/128.

If the answer is not acceptable, the user is prompted again for a new answer.

For testing purposes, yesinput can be forced to accept the default answers and 
not to wait for the keyboard, by defining the global variable yesinpacceptdef 
with value 'yes'.

Examples order = yesinput('Order of the filter',10,[0,12]);
color = yesinput('Color of plot','red','red|blue|green');

See Also input
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ywalkPurpose Fit absolute values of frequency response points by a linear z-domain transfer 
function.

Syntax function [B,A] = ywalk(na,ff,aa,npt,lap)

Description ywalk is a slightly modified version of the routine yulewalk of the Signal 
Processing Toolbox; the built-in Hamming window is switched off. For more 
details, see yulewalk.
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