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C2 (of 10) Corrigenda

Exercises corrected vs. the book: 3.11, 5.5, 8.7, 15.6, 15.7, 15.9, 15.11.
Corrected parts are marked with black bars.

Exercise 3.11, page 55

3.11 Assume that x has discrete distribution, P(x = −q/4) = 0.5, and
P(x = q/4) = 0.5 . Assume furthermore that y has uniform distribution in
(−q/4, q/4).

(a) Illustrate graphically in the amplitude domain that x + y has uniform dis-
tribution in the interval (−q/2, q/2).

(b) Calculate the CFs of x and y, and show by using them that

�x+y(u) = sin (qu/2)
qu/2 .

Exercise 5.5, page 109

5.5 The variance of the noise on a quantized sine wave is being determined from
N = 1000 samples. The noise is assumed to be white, the sine is determined
from LS fit (thus having small error). Apply PQN (For these calculations let us
momentarily assume that the random component is uniform in (−q/2, q/2)).
How large is the 95% confidence interval of the measured variance? How large
is the difference when normally distributed noise is assumed with the same
variance?
Hint: the variance in the measurement of the variance of the variable x is equal
to

var
{

x2
0 − E{x2

0}}
N

= E{x4
0} − (E{x2

0})2

N
, (E5.5.1-corr)

with x0 = x − E{x}.

Exercise 8.7, page 194

8.7 Derive the general expression of Sheppard’s two-dimensional corrections (re-
late
E{xr1

1 xr2
2 } with the moments E{(x ′

1)
r1(x ′

2)
r2}), using the Bernoulli numbers (see

Eq. (4.25.FN1) on page 91).

Hint: prove that

E{xr1
1 xr2

2 } =
r1∑

m1=0

r2∑
m2=0

(
r1

m1

)(
r2

m2

) (
1 − 21−m1

) (
1 − 21−m2

)

× Bm1 Bm2qm1
1 qm2

2 E{(x ′
1)

r1−m1(x ′
2)

r2−m2} , (E5.5.2)
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with Bmi being the Bernoulli numbers.

Last sentence above Subsection 15.7.2, page 389:

This will be true for all frequency indices m, for which 0 < m < N/2.
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page 359:
Let the crossover point be designated by xc. It can be determined by combining

Eq. (14.16) with Eq. (14.14).

xc = ±� · q

qh

. (14.17)

Another equivalent expression for the crossover point can be derived. Using (12.1),
we see that

� = qh · 2p . (14.18)

Dividing both sides of Eq. (14.17) by q, and substituting Eq. (12.1) for �, we obtain

xc

q
= ±2p , or xc = ±q · 2p . (14.19)

Thus, when the input to the fixed-point quantizer has the value given by Eq. (14.19)
as x = xc, the point of transition between fixed-point behavior and floating-point
behavior is reached.17

Section 15.7.3, pages 392-393:

15.7.3 DIT FFT with Fixed-Point Number Representation

Quantization noise having power 2q2/12 for both real and imaginary parts is gener-
ated by the PQN models (Fig. 15.9). This is due to the fractional parts appearing in
the additions, during complex multiplications and in the additions after multiplica-
tions by the W k

N terms, e.g. for N = 16, k = 1, 2, 3, 5, 6, 7.
From the flow graphs of Figs. 15.13 and 15.12, one can see that not all of the

FFT outputs have the same amount of quantization noise. For example, for N = 16,
at zero frequency (X (0)), and at half of the sampling frequency (X (8)), there is
no quantization noise produced by the last butterfly. At the highest frequency (or, in
other words, the smallest absolute-value negative frequency), X (15) has quantization
noises caused by three PQN’s along the way. The output X (14) goes through one
layer of quantization.

The output X (N − 1) will go through three layers of quantization for N = 32,
and so forth. The number of such layers is (log2 N ) − 2. All of these layers con-
tribute 2q2/12 each in quantization noise power, assuming that after each multipli-
cation, quantization happens. After injection, each noise variance is multiplied by 2

17Note that the above definition gives the crossover point as the point from where one can consider
the floating-point quantizer as if it acted alone. There is an interval in which both quantizers are valid:
xc ≤ x < 2xc − q/2. Therefore, for input signals below 2xc − q/2, the uniform quantizer can be
considered as if it acted alone.
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at each stage except the immediately following one (because two erroneous samples
are added in each butterfly).

In general, the power of the quantization noise present in both the real and
imaginary parts of the highest frequency output will be⎛

⎝ quantization noise power
in real and in imaginary

parts of output X (N − 1)

⎞
⎠ = 2q2

12

(
2log2 N−3 + 2log2 N−4 + ...1

)

≈ q2

12
· N

2
. (15.25-corr)

For other values of m, the quantization noise will be somewhat less than for (N −1),
depending on the actual value of m. For any value of N , the quantization noise power
in the FFT outputs at all frequencies can be computed. It can be uniformly bounded
as

0 ≤
⎛
⎝ quantization noise power

in real and in imaginary
parts of all FFT outputs

⎞
⎠ ≤ q2

12
· N

2
. (15.26)

This is a loose upper bound for the average error variance: from Fig. 15.13 it is
clear that in the first rounded stage (stage 3) only the lower half of the samples need
rounding, in the second one one fourth of them, etc. This means that one can decrease
the average variance by 1/4 part of the total sum, and by 1/16 part, and so on:

⎛
⎝ average quant. noise power

in real and in imaginary
parts of the output

⎞
⎠ ≈ q2

12
· N

2
· (1 − 1/4 − 1/16) ≈ q2

12
· N

3
. (15.26b)

One may recall that when the DFT is computed directly in fixed-point, with neg-
ligible error at multiplications, the quantization noise power in the real and in the
imaginary parts of the DFT outputs at all frequencies with 0 < m < N/2 is⎛

⎝ quantization noise power
in real and in imaginary
parts of all DFT outputs

⎞
⎠ ≈ N

q2

12
. (15.27)

A great advantage of the FFT algorithm over direct computation is that the FFT al-
gorithm requires much less computation when N is large. Another advantage is that
the computed results have less quantization noise with the FFT algorithm. For exam-
ple, with N = 1024, direct DFT computation has real and imaginary outputs having
quantization noise power of 1024q2/12, in accord with Eq. (15.27). Comparing this
with the average quantization noise power for the DIT FFT, which is about 341q2/12
in accord with (15.26b) above, the advantage of the FFT algorithm is noticable, al-
though not very much.

However, this is not a typical case. For a significantly downscaled input signal,
the (15.26b) term may cause unacceptably small SNR at the output. Therefore, in
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practice either block floating-point FFT (see Subsection 15.8.1, page 394) is imple-
mented on the fixed-point arithmetic (sometimes this is also called fixed-point FFT),
or, if the control of block floating-point is not allowable in the implementation, the
FFT is modified by regular downscalings (e.g. by prescaling the maximal sample of
the signal before each stage to avoid overflow, or by simply downscaling by a factor
of 2 in each stage). This latter is only by a factor of 2 more than necessary for a
dominating sine wave in the input signal (the output peak is theoretically AN/2), but
way too much for noise with large N values (see Subsection 15.6.3, page 387).

For the “downscaled” FFT’s the analysis developed above for fixed-point is not
valid. The SNR of the prescaled FFT is similar to block-float (see Subsection 15.8.1,
page 394), although worse than it by something like 6 dB, depending on the imple-
mentation. The regularly downscaled FFT is good for dominantly harmonic signals.
An analysis is preformed when solving the new Exercises 15.17 and 15.18.

In this section, we have not considered the errors caused by finite bit length rep-
resentation of the coefficients WN . These cause bias rather than PQN noise. Such er-
rors are discussed in Chapter 21, and in some exercises (15.16, 15.19, 15.20, 15.21).

We have not discussed signal quantization at the input of the FFT, either. This
may depend on many factors, like the nature of the stage preceding the FFT in the
signal processing flowgraph. If the input is already in digital form, usually no ex-
tra quantization is necessary. If the input is of continuous amplitude, the quantiza-
tion error of the complex outputs is about var{X (k)} ≈ N · q2/12, comparable to
Eq. (15.27).

In general, the roundoff error depends on many circumstances: the type and
properties of the signal, the number representation, the structure and length of the
FFT, the scaling strategy, the rounding algorithm, the rounding of fractions of 0.5 LSB,
overflow handling (modular or saturating), bit length of the multiplier, and existence
of an accumulator with bit length larger than that of the memory. Without knowing
all these, one cannot make general statements about the output quantization noise.
Therefore, in the literature, formulas for specific signals and specific cases are given.
We briefly deal with the two most important number representations in the next sec-
tion.

Section 15.8.1, page 394:

15.8.1 FFT with Block Floating-Point Number Representation

Last but one paragraph:
In order to have an overall impression of the resulting noise, consider that for number
representation with B = 16 bits (15 bits + sign), for N = 512, the dynamic range
(the ratio of the sine waves that can be analyzed jointly) is limited to approximately
75 dB, see Exercise 15.5.
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Exercise 15.6, page 399

15.6 Verify the theoretical results (15.25-corr), and (15.26b), see Corrigenda, page
C5, for the fixed-point DIT FFT (with no block-floating scaling here), by
Matlab-based computer simulation, using the tools available from the web page
of this book.18 Let N = 256, the number representation have B = 32 bits to
represent numbers in (−1, 1), and the input be a zero-mean white sequence
uniformly distributed in (−1/32, 1/32). In order to have a reference transform
result, assume that the error of Matlab’s fft command may be neglected.
When determining the roundoff error,

(a) do not include either the effect of input quantization, or that of quantiza-
tion of the trigonometric coefficients,

(b) include also the effect of input quantization, and of quantization of the
trigonometric coefficients. Is the roundoff error much larger than without
these roundoffs?

18http://www.mit.bme.hu/books/quantization/, e.g. roundfft.m
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Exercise 15.7, page 399

15.7 Verify the theoretical result (15.27) for fixed-point DFT with no block-floating
scaling, by Matlab-based computer simulation, using the tools available from
the web page of this book. Let N = 256, the number representation use B = 32
bits to represent numbers in (−1, 1) and the input be a zero-mean white se-
quence uniformly distributed in (−1/32, 1/32). In order to have a reference
transform result, assume that the error of Matlab’s fft command may be ne-
glected. What is the difference when the accumulator has a larger wordlength
(e.g. by 8 bits) than the memory? When determining the roundoff error,

(a) do not include either the effect of input quantization, or that of quantiza-
tion of the trigonometric coefficients,

(b) include also the effect of input quantization, and of quantization of the
trigonometric coefficients. Is the roundoff error much larger than without
these roundoffs?

Exercise 15.9, page 400

15.9 Verify the limit (15.28) given for block-float FFT, by Matlab-based computer
simulation, using the tools available from the web page of this book. Let
N = 16, 32, · · · , 2048, let the number representation use B = 18 bits (this
corresponds to Welch’s 17 bits) to represent numbers in (−1, 1), and the input
be a zero-mean white sequence uniformly distributed in (−1, 1), or in (0, 1), re-
spectively. Divide both sides by RMS{X}, to reproduce Figs. 4 and 2 of Welch.

In order to have a reference transform result, assume that the error of Matlab’s
fft command may be neglected. When determining the roundoff error,

(a) do not include either the effect of input quantization, or that of quantiza-
tion of the trigonometric coefficients,

(b) include also the effect of input quantization, and of quantization of the
trigonometric coefficients. Is the roundoff error much larger than without
these roundoffs?

(c) Compare the result of (a) with the error caused by the roundoff of the
trigonometric coefficients only.
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Figure 15.1 Welch’s plots: roundoff errors and theoretical limits of the block-float FFT
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Exercise 15.11, page 400

15.11 Check the error of Matlab’s built-in fft command, by Matlab-based computer
simulation, using the tools available from the web page of this book. Check
the result against (15.11). Let N = 256, and the input be a zero-mean white
sequence uniformly distributed in (−1, 1). As reference, use p > 56. When
determining the roundoff error,

(a) do not include the effect of input quantization,
(b) include also the effect of input quantization. Is the roundoff error much

larger with input roundoff than without it?
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