Glossary of Symbols

Throughout this book, a few formulas are repeated for easier reference during reading. In such cases, the repeated earlier equation number is typeset in italics, like in (4.11).

```
Fourier coefficients
a_k, b_k
                      signal amplitude
                      signal peak-to-peak amplitude
                      transpose of A
\mathbf{A}^*
                      complex conjugate transpose of A
\overline{\mathbf{A}}
                      complex conjugate of A
В
                      bandwidth, or the number of bits in a fixed-point number
                      (including the sign bit)
cov\{x, y\}
                      covariance, page 42
C(\tau)
                      covariance function
d
                      dither, page 485
\frac{\mathrm{d}x}{\mathrm{d}t}
                      derivative
                      exponential function, also e^{(\cdot)}
\exp(\cdot)
E(f)
                      energy density spectrum
E\{x\}
                      expected value (mean value)
                      frequency
f
f_{\mathbf{S}}
                      sampling frequency, sampling rate
                      center frequency of a bandpass filter
f_0
f_1
                      fundamental frequency, or first harmonic
f_x(x)
                      probability density function (PDF), page 31
                      probability distribution function, F_x(x_0) = P(x < x_0) characteristic function (CF): \Phi_x(u) = \int_{-\infty}^{\infty} f_x(x)e^{jux} dx = E\{e^{jux}\}
F_{x}(x)
\Phi_{X}(u)
                      Eq. (2.17), page 27
                      Fourier transform: \mathcal{F}\{x(t)\} = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft} dt for the PDF-CF pair, the Fourier transform is defined as \int_{-\infty}^{\infty} f(x)e^{jux} dx
\mathcal{F}\{\cdot\}
```

```
inverse Fourier transform: \mathcal{F}^{-1}\{X(f)\}=\int_{-\infty}^{\infty}X(f)e^{j2\pi ft}\,\mathrm{d}f
\mathcal{F}^{-1}\{\cdot\}
                     for the PDF–CF pair, the inverse Fourier transform is \frac{1}{2\pi} \int_{-\infty}^{\infty} \Phi(u)e^{-jux} du
                  impulse response
h(t)
H(f)
                  transfer function
Im\{\cdot\}
                  imaginary part
                  \sqrt{-1}
j
k
                  running index in time domain series
lg(\cdot)
                  base-10 logarithm
ln(\cdot)
                  natural logarithm (base e)
                  rth moment difference with PQN: E\{(x')^r\} - E\{x^r\}
M_r
                  Eq. (4.27), page 81
\widetilde{M}_r
                  rth centralized moment difference with PQN: E\{(\tilde{x}')^r\} - E\{\tilde{x}^r\}
                  pseudo quantization noise (PQN), page 69
n
                  frequency index (or: summation index in certain sums)
n
N
                  number of samples
                  small (usually negligible) terms in the rth moment:
N_r
                  E\{(x')^r\} = E\{x^r\} + M_r + N_r, Eq. (B.1) of Appendix B, page 597
\widetilde{N}_r
                  small (usually negligible) terms in the rth centralized moment:
                  E\{(\tilde{x}')^r\} = E\{\tilde{x}^r\} + M_r + N_r
N(\mu, \sigma)
                  normal distribution, page 49
                  decrease as quickly as x for x \to 0
\mathcal{O}(x)
                  precision in floating-point
p
                  probability
p_i
                  probability of an event
P\{\cdot\}
                  quantum size in quantization, page 25
q
                  quantum size of a digital dither, page 686
q_d
                  step size of the hidden quantizer, page 357
q_{
m h}
0
                  quality factor or weighting coefficient
                  correlation function, Eq. (3.40), page 42
R(\tau)
R_{xy}(\tau)
                  crosscorrelation function, R_{xy}(\tau) = \mathbb{E}\{x(t)y(t+\tau)\}\
                  Eq. (3.41), page 42
R_r
                  residual error of Sheppard's rth correction
                  Eq. (B.7) of Appendix B, page 602
\widetilde{R}_r
                  residual error of the rth Kind correction
Re\{\cdot\}
                  real part
                  rectangular pulse function, 1 if |z| \le 0.5, zero elsewhere
rect(z)
rectw(z)
                  rectangular wave, 1 if -0.25 \le z < 0.25; -1 if 0.25 \le z < 0.75;
                  repeated with period 1
                  Laplace variable, or empirical standard deviation
s^*
                  corrected empirical standard deviation
S_r
                  Sheppard's rth correction, Eq. (4.29), page 82
```

```
\widetilde{S}_r
                  rth Kind correction
S(f)
                  power spectral density
                  covariance power spectral density
S_c(f)
sign(x)
                  sign function
sinc(x)
                  \sin(x)/x
                  sampling interval
T
T_{\rm m}
                  measurement time
T_{\rm p}
                  period length
                  record length
T_{\rm r}
tr(z)
                  triangular pulse function, 1 - |z| if |z| \le 1, zero elsewhere
                  triangular wave, 1 - 4|z| if |z| \le 0.5, repeated with period 1
trw(z)
                  standard normal random variable
u
u(t)
                  time function of voltage
U
                  effective value of voltage
U_{\mathsf{p}}
                  peak value
U_{pp}
                  peak-to-peak value
                  variance, same as square of standard deviation: var\{x\} = \sigma_x^2
var\{x\}
                  window function in the time domain
w(t)
W(f)
                  window function in the frequency domain
\boldsymbol{x}
                  random variable
x'
                  quantized variable
x'-x
                  quantization noise, \nu
\tilde{x}
                  centralized random variable, x - \mu_x, Eq. (3.13), page 34
x(t)
                  input time function
                  Fourier transform of x(t)
X(f)
X(f,T)
                  finite Fourier transform of x(t)
                  delay operator, e^{-j2\pi fT}
\delta
                  angle error
\Delta f
                  frequency increment, f_s/N in DFT or FFT
\epsilon
                  width of confidence interval
\epsilon_{\mathrm{c}}
                  relative error
\epsilon_{\mathrm{r}}
                  phase angle
φ
                  coherence function: \gamma(f) = \frac{S_{xy}(f)}{\sqrt{S_{xx}(f)S_{yy}(f)}}
\gamma(f)
                  mean value (expected value)
μ
                  quantization error, v = x' - x
υ
Ψ
                  quantization fineness, \Psi = 2\pi/q
                  radian frequency, 2\pi f
ω
Ω
                  sampling radian frequency, page 17
                  correlation coefficient (normalized covariance, \frac{\cos(x,y)}{\sigma_x\sigma_y})
\rho
                  Eq. (3.39), page 42
```

$\rho(t)$	normalized covariance function
σ	standard deviation
Σ	covariance matrix
- τ	lag variable (in correlation functions)
ξ	$\xi = d + \nu$, total quantization error (in nonsubtractive dithering) Eq. (19.16), page 491
€	element of set, value within given interval
*	convolution: $\int_{-\infty}^{\infty} f(z)g(x-z) dz = \int_{-\infty}^{\infty} f(x-z)g(z) dz$
$\stackrel{\triangle}{=}$ $\dot{\Phi}$	definition
$\dot{\Phi}$	first derivative, e. g. $\dot{\Phi}_x(l\Psi) = \frac{d\Phi(u)}{d(u)}\Big _{u=l\Psi}$
$\ddot{\Phi}$	second derivative, e. g. $\ddot{\Phi}_x(l\Psi) = \frac{d^2 \Phi(u)}{d(u)^2}\Big _{u=l\Psi}$
x'	quantized version of variable x
$ ilde{x}$	centralized version of variable x: $\tilde{x} = x - \mu_x$, Eq. (3.13), page 34
\hat{x}	estimated value of random variable x
$\lfloor x \rfloor$	nearest integer smaller than or equal to x (floor(x))
$\ddot{\tilde{x}}$	deviation from a given value or variable

Glossary of Symbols

XXVI