Embedded and ambient systems
2020.10.27.

Interrupts

a Méréstechnika és
Informaciés Rendszerek
Tanszék

Budapest University of Technology and Economics © BME-MIT 2020

Department of Measurement and Information Systems

Interrupts

= Running of the program is interrupted due to an
external event, and the code that belongs to the
interrupting event starts running

= The code of the interrupting event is “inserted” into the
main program

= Returning of the main program from the interrupted
state the main program should not “notice” that it had
been interrupted. To assure that:

&
(4°)
-
an
@)
bl
o
=
1°)
=

O Work registers have to be restored
O Processor status registers have to be restored
0 Stack has to be restored

0 In short: context change has to be done

"= |n embedded systems: several different architectures
and solutions exist, therefore general considerations has
to be completed in a device-specific manner

b L A - Méréstechnika és .
= 3 © BME-MIT 2020 rl'l.l} Informaciés Rendszerek 2.slide

Tanszék

Hierarchy of interrupts

" Process for execution of interrupts:
O IT event created = IT flag belonging to the event is set to 1
O IfIT is enabled for the event, than global IT flag is also set to 1

o0 If global IT flag is enabled than interrupt can take effect

* |In case of priority-based interrupt service routine IT of higher priority can
interrupt that of lower one (preemptive)

* |In case of non priority-based interrupt service routine IT-s cannot interrupt
each other

Interrupt Flag (IF)

Interrupt Enable (IE)

Interrupt service
Global Interrupt Enable

No higher priority IT

. Méréstechnika és .
© BME-MIT 2020 M Informacios Rendszerek 35||de

Tanszék

Interrupt Service Routine

" |n general IT-s are vector-based

O A table of vectors is found in the memory. Interrupt service can

be operated in different ways, e.g.:

* In case of interrupt the program jumps to the memory address defined
by the IT and the execution of the program is continued from that
memory address

— A rare case to handle the IT rapidly by some asm operation
— Or a jump to the function of interrupt service routine is done
* In case of interrupt the program jumps to the address placed in the IT

vector table (this is faster in case of longer service since the program
jumps where the whole IT routin can be executed)

O It is possible even in case of vactor-based interrupt that more

than one event belong to a single IT

e E.g.: on EFM32 development board two IT belongs to GPIOs: an even and
an odd. It has to be given in the interrupt service routine which GPIO

was the source

. Méréstechnika és .
© BME-MIT 2020 M Informacios Rendszerek 4S||de

Tanszék

Example: IT of EFM32 + Cortex-M3

= Two-level IT:
O Peripheral

* |Interrupt condition
* |FS: Interrupt Flag Set: IT generated in SW
e |FC: Interrupt Flag Clear
e |EN: Interrupt enable
0 Cortex-M3 mag (NVIC: Nested Vector Interrupt Controller)

* |T events from the peripherals are mapped into a given IRQ (Interrupt Request) line
* In case of IT, PEND bit becomes 1, and deleted when stepped into IT routine

Peripheral gh Cortex- M3 NVIC
| IFgn] || IFCIn] || IENIn] ||| L
‘ SETENA[Nn]/ CLRENA[RN] | B
Active interrupt
Interrupt set clear RN IRQs v CFt’U 1
condition IF[n] g / 2 o p interrup
| SETPEND[Nn]/ CLRPENDI[N]
|
Software generated interrupt
| |

. Méréstechnika és .
© BME-MIT 2020 M Informacios Rendszerek 55||de

Tanszék

Example: IT of EFM32 + Cortex-M3

Table 2.1. EFM32 Interrupts

= |T table of processor core

O Negative IRQ# belong to the
processor core

O Positive IRQ# belong to the
peripherals

O A priority belong to the ITs that can
be set

BME-MIT 2020

Reset

Mon-maskable interrupt (NMI)

Hard fault

Memory management fault

Bus fault

Usage fault

SVCall

NN

Pend3V

SysTick

DMA

GPIO_EVEN

TIMERO

USARTO_RX

USARTO_TX

ACMPO/ACMP1

ADCO

DACO

12C0

L= == T e I = B R T

GPFI10_0DD

TIMER1

USART1_RX

USART1_TX

LESENSE

LEUARTO

LETIMERD

PCNTO

RTC

CMU

VCMP

LCD

MSC

AES

Méréstechnika és
Informaciés Rendszerek
Tanszék

6.slide

Example: AVR (ATmegal28)

Table 23. Beset and Interrupt Vectors

= Simple vector-based IT Vector | Program
Mo. Address® | Source Interrupt Definition
= In case of IT the program continues External Pin, Power-on Reset, Brown-out Reset,
runnin base d on the rosram 1 $0ooot! RESET Watchdog Reset, and JTAG AVR Reset
g . p g 2 $0002 INTO External Interrupt Request O
address found in the IT table 3 $0004 | INTH External Interrupt Request 1
- Global |T iS disabled automatically 4 F000& INTZ2 External Interrupt Hequest 2
L 0008 INT3 External Interrupt Request 3
= In ASM code RETI command is used to 6 $000A | INT4 External Interrupt Request 4
return from IT (global IT is 7 $000C | INTS External Interrupt Request 5
automatically enabled)’ and C 8 $O00E INTG External Interrupt Request &

. . a F0010 INTY External Interrupt Request 7
Compller has tO be Informed abOUt he 10 Fo012 TIMERZ COMP Timer/Counter2 Compare Match
return (see later).

= When IT routine is called the
corresponding IT flag is disabled Address Labelscods comments
50002 Jmp EXT_INTO ; IRQO Handler
50004 Jmp EXT_INT1 ; IERgl Handler
50006 Jmp EXT_INTZ ; IERQZ Handler
Interrupt Flag (IF) 50008 jmp EXT_INT? ; IEQ? Handler
Interrupt Enable (lE) 50002 Jjmp EXT_INT4 ; IRQ4d Handler
5000C Jmp EXT_INTS ; IEQS Handler
Global Interrupt Enable £000E Jmp EXT_INT& : IRQ$ Handler
50010 Jmp EXT_INTT7 ; IR7T Handler
50012 Jmp TIMZ_CCOMP ; Timer? Compars Handler

. Méréstechnika és .
© BME-MIT 2020 M Informacios Rendszerek 7S||de

Tanszék

Example: BF537 (DSP)

IT hierarchy of BF537 type DSP
from Analog Devices

SIC: System Interrupt Controller

IT lines of peripherals wired
from the left side

SIC_ISR: storing the primary ITs
(IT flag)

SIC_IWR: enabling to wake up
the processor

SIC_MASK: enabling primary IT
sources

Switch matrix: which line is
mapped into which input IT
vector

ILAT: IT latch register
IMASK: IT mask register
IPEND: IT pending
IVGnn: IT lines

DMA ERROR
{ROBLOCK DONE
1{R1BLOCK DONE
AARD OVERFLOW
NAR1 OVERFLOW

CAMN STATUS
MAC STATUS 3
SPORTO ERROR 4
SPORT1 ERROR 5
PPl ERROR DMAZ (SPORTO RX)
SPI ERROR DMA4 (SPORTO TX) 7
UARTO STATUS DMAS (SPORT1 RX)
UART1 STATUS 8

DMA1 (MAC RX)
PORTH IRQ A

DMAZ (MAC TX)
PORTH IRQ B

25

26

PORTF IRQ A TIMER? 27
PORTG IRQ A

a EF’ORTG IRQ B —=2

30

MDMA1

WATCHDOG 3

PORTF IRQ B

© BME-MIT 2020

=

—= WAKE UP

FFFFFFF

PLL WAKEUP

-

(o

RTC
OMAD (PPI)

l=z}

DMAG (SPORT1 RX)
Wi

DMAT (SP1)

DMAS (UARTD RX)
DMAS (UARTD TX)
DMA1D (WARTT RX)
DMA11 (UART1 TX)
CAN RX

10

12

CANTX
17

13

TIMERD
TIMER1
TIMER2

>
>

22

TIMER2
TIMER4

TIMERS
TIMERE

MDMA) —22

SIC_IMASK

SIC_IWR

SIC_ISR

:

[hil

Méréstechnika és
Informaciés Rendszerek
Tanszék

CORE TIMER —
HARDWARE ERROR —
EXCEPTIONS —

NMI =

SIC_IARD

siC_IAR1

SIC_|AR2

SIC_IAR3

8.slide

Example: BF537 (DSP)

" |n case of IT, the appropriate bit of SIC_ISR (Interrupt Status
Register) set to 1

= SIC_ISR register cannot be cleared in SW, but when the peripheral
IT request has been handled the appropriate bit of SIC_ISR is
disabled automatically (peripheral clears it)

= Even more than one input IT sources can be connected to an
output IT line (IVGnn), the processor has to determine the source

O During development if the number of ITs are only a few (we try to achieve
this in general), then every source can be assigned to a distinct IT vector,
therefore the source will be unambiguous

= RTl instruction is used to return from the function belonging to a
certain IT line and that IT line will be enabled (during handling an IT
is is disabled to avoid the generation further interrupts) and IPEND
register is also cleared

= Some special ITs: NMI (non-maskable), reset, HW error, core timer

e o e - Méréstechnika és .
,ﬂﬁ#ﬁﬂ?ﬁ"’.ﬁ%% © BME-MIT 2020 Inforn'!écic')s Rendszerek 9S||de

IT initialization for a peripheral

= |nitialization of IT in a general case:

O Enabling peripheral (turn perif. on, config., etc.)
O Determination of IT-handling function
O Clear of IT flag belonging to the certain IT

* An IT request may be stuck from a previous state that can cause problem
since after enabling IT a false interrupt can take action. A stuck IF can be
the consequence of a non-initialized peripheral (e.g. IT occurs on a
floating input)

O Enabling the IT of a certain peripheral
O Clearing of global IT flag (if needed)
O Enabling of global IT

. Méréstechnika és .
© BME-MIT 2020 M Informaciés Rendszerek lOS“de

Tanszék

IT handling for a peripheral

= Execution of IT, the proposed way:
O Rapid execution inside a function
O Larger tasks are handled outside the function

O When a peripheral is used more than only once in the program
mutual exclusion has to be assured (e.g. when part of our code
sends data using UART, and data is also sent in an IT routine,
then the two data can be messed up)

* Itis advised to use flags for such kind of tasks, and execute them in the main
program it they are not time-critical

O Tightly connected tasks for IT handling (take care of the order!):

e Peripheral handling (e.g. data of UART must be read or GPIO state must be read,
etc.),

* Clearing the corresponding IT flag (not needed when done automatically, but
better done twice than never),

* Enabling the IT (done automatically in most cases)

. Méréstechnika és .
© BME-MIT 2020 M Informacios Rendszerek llS“de

Tanszék

IT handling example

volatile type is important: program calling of Button _IRQ function is

u Exa m |e not seen by the compiler in the program, therefore unaware of it
that it may change in the background. Therefore it may happen that

;ﬁl?&l&:OSL:]):;'C.on_IT_ﬂag = false; when reading of button IT_flag comes, new data is not read. Every
P ! variable that appears in an IT function MUST be volatile.

// somehow we define that this function will handle interrupt: see later...

void Button_IRQ(void){ // IT handling function)
button_IT_Flag = true; // rapid handling = a flag is set that an IT happened :
clear_button_IF(); // clear button IT flag IT function
}
V.

int main(void){

(initButtons(); //1. init of buttons]

clear_button_IF(); //2.IT flag clear
Button_IT_enable(); //3. IT enable for buttoni Done at the beginning of the main program for initialization purposes

clear_global _IF(); //4.IT flag clear
\globaI_IT_enabIe(); //5. enable global IT J

while(1){
if (button_IT_Flag){

button_IT_Flag = false;
printLCD(”buttonpush: %d”, buttonpushed++); // putting on the screen is slow, done in the main program
// (not in the IT function otherwise uC may be blocked until

// writing on the display is not done)

- Sré hnika é .
- |'|-|_|]- Merestechnita s e 12.slide

Tanszék

Implementation of IT handling

= Basic rule: ,No rule”

O Lots of solution exist
0 Always has to be check how IT handling should be
done depending on the compiler/processor (RTFM)
= |IT handling is not supported by C compiler by
default, therefore as many solution may exist as
many compiler and uC-based system available

= Despite the fact that general rule cannot be given,
there exist some recipes, and best practices

- Méréstechnika és .
© BME-MIT 2020 M Informacios Rendszerek 13.slide
Tanszék

Implementation of IT handling— EFM32

Startup code provided by the uC
manufacturer defines the addresses of IT
vector

A default IT handler is assigned to every
address (an infinite loop)

| our own code a non-parametric function
has to be given owing the same name as the
one in the vector table

In the startup code the functions have weak
attribute. Attribute weak means repeated
implementation of the function in our code
will cause no error

When IT event occurs our own function is

called from the vector table (the linker will
substitute the default function with weak

attribute defined in the startup code with

our own function address)

© BME-MIT 2020

.section .wvectors
.align 2
.globl __Vectors
__Vectors:
.long __StackTop /* Top of Stack */
.long Reset_Handler /* Reset Handler */
.long MMI_Handler /* NMI Handler */
.long HardFault Handler /* Hard Fault Handler
.long MemManage Handler /* MPU Fault Handler */
.align 1
Lthumb_func
[-weak Detault Handler |
-Type Detault HandIer, Zfunction
Default_Handler:
b .
.size Default_Handler, . - Default_Handler

/* Macro to define default handlers.

Default handler

will be weak symbol and just dead loops. They can be
overwritten by other handlers */

.macro def_irq_handler handler_name

[-weak “handler_name

-Set “handIler_name, Detault Handler
. endm

def_irg_handler NMI_Handler
def_irq_handler HardFault Handler
def_irq_handler MemManage Handler

- Méréstechnika és
Informaciés Rendszerek
Tanszék

14.slide

E

Implementation of IT handling— EFM32

= Simple IT handling:

O Cortex — M3 processors save several important registers when IT occurs

(RO...R3, R12, PC, Link Reg.) therefore IT handling can be done by a simple
function

O Interrupt latency (time elapsed between IT occurrence and starting of IT
handling) is short

0 Example (GPIO IRQ handling):

void GPIO_ODD_IRQHandler(void){ ...

Function-implementation...}

Highest, ; SP+1C | SP+4 | SP+Q SP+{4 |
e ’ ;(F-cijj{ W 0 E}c(r1 jﬂ(r2 Ej}(r3 ‘;{mz;}fm;}(

Traditional i

interrunt Handting TR ISR Pop | Push ISR 2 Pop |
B -+ Ex L S
E V 16 Cycles 26 Cycles 16 Cycles
Cortex-M3 i
Interrupt Handling ;P ISR 1 I I ISR2 I anl
i - —
5 1¢ Cycles b Cycles 14 Cycles

Tail-Chalning

..... 'y - Méréstechnika és .
= 3 © BME-MIT 2020 rI'III} Informaciés Rendszerek 15.slide

Tanszék

Implementation of IT handling— EFM32

= Safe solution: let the compiler be informed somehow that this is a
special IT handling function, since this way it is sure that all register
state will be saved that have been modified

O Mainly important to do so if the program is planned to be run on other type
of processors as well

= How to inform the compiler about an IT handling function?

O Using __ attribute__ special option different features of functions and
variables can be set that are processed by the compiler

O Definition of IT routine (e.g. GPIO IRQ handler):
void GPIO_ODD_IRQHandler(void) __ attribute__ ((interrupt ("IRQ")));
void GPIO_ODD_IRQHandler(void){ ...
Function-implemetation...}

. Méréstechnika és .
© BME-MIT 2020 M Informaciés Rendszerek 16S||de

Tanszék

Implementation of IT handling— EFM32

= What code is compiled in case of a normal function and that of a function with IRQ attribute?

(0]

(0]

Several registers are saved (see push instruction), some of them in a redundant way since processor saves

them by default

If the user does not know the processor well it is a more safe solution (it may happen that C
code will use such a register which had not been saved...)

__attribute__ ((interrupt ("IRQ")))

GPIO_IntClear(l<<PUSH1_PIN); // if commented, IF

13 vold GPIO_0DD_IRQHandler(woid){
GPIO_0DD_IRQHandler:

Geeae4ds: Mo ré,sp

BEREEAda bic rl,r@,#8x7

paeaadde Mo sp,rl

|ece004e0: push {re,r3,r7,1r} |

PpREBALe2 ; add r7,sp,#8x0

14 GPIO _IF wvalue = GPIO->IF;

geeeadled; ldr r3,[pc,#ex2a8] ; ex584

BEEEe4es: ldr.w r3,[r3,#8x114]

peeaedea: ldr r2,[pc,#ex2a] ; @x503

pEpaedec: str r3,[r2]

15

BEEBEdee MO . W ré, #Hex2668

BREEAAT2 bl axaaapaz2e

16 GPIO PinOutToggle(LED1_PORT, LED1 _PIN);

PREBELTE movs ré, et

PREBaLTE mowvs ril,#ex2

ceeeedta: bl @xaaapadid

17 1

pepaedfe: Mo sp,r?

BERRE5SEE pop.w {ré@,r3,r7,1r}

pEEEaasedL . mow sp,r@

BEBRE5RE ; bx 1r

BeeeBasas str ré,[re]

PRABESEE ; ands re,ré

BERER5eC ; 1s1s rd,rd,#2

BEEEE58e @ mowvs ré, #8x8

© BME-MIT 2020

normal function

13

a8a084d3
aeaeadda

14

aeeeadde ;
aeaeadde ;
peaaade .,
Baaaaded
‘15

88866846
Baaaadea:

16

aaa68dce
Be868418 ;
Be86a4T2 ;

17

aeae84f6:
28888413
aeaeadta:
aeaeadfc:
apRaeRdTe

void GPIO_O0DD_IRQHandler(wvoid)q{
GPIO_ODD _IRQHandler:

push
add

ldr
1dr.
ldr
str

MoV .
bl

movs
movs

bl

pop
str
ands
1s1=s
movs

ir7,1lr}

r7,sp,#8x8
GPI0 _IF wvalue = GPIO->IF;

r3,[pc,i#ex1s] ; exaf4
w o r3,[r3,#ex114]

r2,[pc,#@xl8] ; ex4f3

r3,[r2]

GPIO IntClear(l<<PUSH1_PIN}; // if commented, IF i:

W ré, #8x288
Bxaeaaa32e
GPIO PinOutToggle(LED1 PORT, LED1 PIN);
ré, #8xd
rl,#8x2
Bx00608444

{r7,pc}
ré, [re]
ré,ré
rd,rd ,$#2
ra, Hexe

- Méréstechnika és
Informaciés Rendszerek
Tanszék

17.slide

Implementation of IT handling— AVR

= Example: ATmegal28 (8-bit uC)
= |T name and program code must be given:
ISR(vector_name)

Example:

ISR(USART1_RX_vect) {
UART1 read_data();
... // other things to do is possible
crear_IF();

}
= QOther options may exist, e.g. ,,ISR_NOBLOCK”: in IT routine the
compiler enables the interrupts.
0 Example: ISR(USART1_RX_vect, ISR_NOBLOCK){...}

b L A - Méréstechnika és .
'i:r:"'a. ; A © BME-MIT 2020 m Informacios Rendszerek 18.Sl|de
T : Tanszék

Implementation of IT handling— AVR

= How it works?

define ISR(vector, ...) \
void vector (void) __ attribute__ ((signal,_ INTR_ATTRS)) _ VA_ARGS__;\

void vector (void)

So using ,, ISR(USART1_RX_vect){...}Y command the following is compiled
after extracting the macro:

void __ vector 30 __ attribute__ ((signal)); //function declaration with attribute
void __ vector_30{ //function implementation

code

}

Explanation (somewhere else the following definitions can be found):
#define USART1_RX vect _VECTOR(30)

#define VECTOR(N) _ vector_ ##N

Address __ vector 30 is found in crtm128.0 startup file, which are re-defined

. Méréstechnika és .
© BME-MIT 2020 M Informaciés Rendszerek 195||de

Tanszék

Implementation of IT handling — BF537

= The development environment provided by the manufacturer
offers functions that can be used to register IT handling functions:
register_handler_ex(interrupt_kind kind, ex_handler_fn fn, int enable);

Example:
register_handler_ex(ik_timer, timer_handler, EX_INT_ENABLE);
Funtion has to given in the following way, e.g.:

EX _INTERRUPT_HANDLER(timer_handler){
Timer_IT_Number ++;

}
As an IT handler of the timer function named timer_handler is given

and IT is enabled.

= How it works?

b L A - Méréstechnika és .
= 3 © BME-MIT 2020 rl'l.l} Informaciés Rendszerek 20.slide

Tanszék

Implementation of IT handling — BF537

= How the function is inserted into the vector table? (crt\reghdIr.h
and sys\exception.h)
O A function pointer is set to the start address of the vector table

O Function pointer defines an array whose interrupt_kind element has to be
replaced by the address of the given function. From now it will be called by
the processor

register_handler_ex(interrupt_kind kind, ex_handler_fn fn, int enable);

typedef void (*ex_handler_fn)(); // definitionof type of function pointer

#define EX_EVENT_VECTOR_TABLE 0 02000 // start address of IT vector table
// function array is set to the start address of the vector table

ex_handler_fn *evt = (volgtite ex_handler_fn *)EX_EVENT_VECTOR_TABLE;

// the specific element of the vector table (depending of the type of the IT) is replaced by
the function pointer of our own function

evt[kind] = fn;

- Sré hnika é .
- |'|-|_|]- Merestechnita s e 21.slide

Tanszék

Implementation of IT handling — BF537

= How IT handling function declaration works? Now it is “known” by the processor
which function has to be called (the address of that one has been stored in the
vector table) but how the compiler will know that that function should be
compiled in a different way? Lets see the following macros (\sys\exception.h)

#define EX_INTERRUPT_HANDLER(NAME) EX HANDLER(interrupt,NAME)

#define EX_HANDLER(KIND,NAME) \

_Pragma(#KIND) \

void NAME ()

Therefore

EX_INTERRUPT_HANDLER(timer_handler){
Timer_IT_Number ++;

}

Expanding of function definitions are the following after substitution of the macros
_Pragma(interrupt) // now the compiler knows that it is an IT handling function

void timer_handler(){ // here the function is given by the normal mode
Timer_IT_Number ++;

b L A - Méréstechnika és .
= 3 © BME-MIT 2020 rl'l.l} Informaciés Rendszerek 22.slide

Tanszék

Implementation of IT handling — BF537

= |nterruptable function can also be given by the following macro:
EX_REENTRANT_HANDLER(NAME)

= After expanding the macro:

#tdefine EX_REENTRANT_HANDLER(NAME) \
_Pragma("interrupt_reentrant") \

EX_HANDLER(interrupt, NAME)

= So,
_Pragma("interrupt_reentrant")
compiling directive is used to let the compiler be informed that this
function is such an IT handling function that can be interrupted

b L A - Méréstechnika és .
'i:r:"'a. ; A © BME-MIT 2020 m Informacios Rendszerek 23.Sl|de
T : Tanszék

Implementation of IT handling — BF537

= Summary:

O There exists such a library function that replace (rewrite) the start address of
the IT routine found in the IT vector table with the function defined by us

O Using a macro provided by the manufacturer such function can be defined

that is known by the compiler to be an IT handler function (Pragma should
be used for that)

- Sré hnika é .
B 000 |'|-|_|j- Merestechnika s ek 24.slide

Tanszék

Implementation of IT handling—ADSP21364

= Example: ADSP21364: 32-bit, floating-point DSP
= (Callback function: functions called based on certain events (see e.g. Java)

= Manufacturer provides an IT dispatcher function. The function runs at every IT
event, saves the status of the processor and calls the function assigned (by us) to
the IT (similar to callback)

= |T handler is a normal function, context change is done by the dispatcher

= Several options exist. The following functions can be used to register the IT
handling functions:

O

interruptcb(): during IT every special DSP HW status is saved (e.g. circular buffer, loop
counter, secondary registers), it takes approximately 200 CLK cycles

interrupt(): during IT most special DSP HW status is saved it takes approximately 150
CLK cycles

interruptf(): very fast handing only some special DSP HW status is saved

Etc...: consequency is that the actual status of the processor can be saved at different
depth. The more processor registers are saved the more context change happens
(=slower) but the more reliable the. In case of rapid context change extra care is
needed what can be done by the function.

- Méré hnika é .
© BME-MIT 2020 M Ini?orer?'lt:cciés Raereészerek 255||de

Tanszék

Implementation of IT handling—ADSP21364

= Example: UART IT handling

O It has to found in the documentation of the compiler
that in case of a certain processor how the peripheral
belonging to UART is named. In our case it is SIG_SP4
(SP: serial port)

O Our function has to be registered, e.g. UARTrec
O Our function has to be implemented

interrupt (SI1G_SP4 , UARTrec); // SIG _SP4 type and handling function

// handling function is given by:
void UARTrec(void){
// handling of IT comes here

- aré nika é .
© BME-MIT 2020 M Ini?orer?'\t:cciés Raereészerek 26S||de
T !

Implementation of IT handling - summary

= General tasks: configuring peripheral, clear of IT flags, enabling of IT (that of peripheral, and global),
hanfling of peripheral in IT routine (in many cases manual clear of IT flag is needed)

= EFM32-Cortex M3: find the name of IT handler in startup file and using this name an own function has
to be defined (interrupt attribute may used). E.g.:

void GPI0_ODD_IRQHandler(void){
Function-implementation..}

= AVR 8-bit uC: find the name belonging to a specific IT from documentation and using ISR() macro the
function can be defined. E.g.:

ISR(USART1 _RX vect) {
Function-implementation..}

= ADSP BF357 (DSP): The IT function has to be registered in the IT vector table and it has to be
implemented using macro EX_INTERRUPT_HANDLER:

register_handler_ex(ik_timer, timer_handler, EX INT _ENABLE);
EX_INTERRUPT_HANDLER(timer_handler){
Function-implementation..}
= ADSP 21364 (DSP): The IT function has to be registered at the dispatcher:
interruptcb(SIG_IRQ1, IRQ1 handler); // IRQ1l type and handling function
void IRQ1L handler(int x){
Function-implementation..}

....... . - Méré hnika é .
! © BME-MIT 2020 rh.l.l. Informacios Renaszerek 27.slide

Tanszék

Implementation of IT handling - summary

= |t is necessary to always read the documentation of the processor and compiler:

O Is it necessary to indicate the special IT function? (pl. #pragma, __ attribute)

O Does the processor clear IT flag automatically? If not it must be done, but in general
it is a good idea to do so all the time

O Does the processor disable IT when an IT handling started?

O Multilevel IT exist?

O Is it necessary to enable IT when return from IT handling?
= |s aspecial peripheral, variable used? If yes, than mutual exclusion is assured?
= |T routine should not be too long

= |T handling functions generally have no parameters. If a parameter is needed is
has to be solved by ourselves.

= The type of variables used in IT routines always has to be volatile

O Volatile variables are considered by the compiler such variables whose value can change any
time, therefore their value are always read even if they are not seem to have changed

- Méré hnika é .
© BME-MIT 2020 M Ini?orer?'\t:cciés Raereészerek 28S||de

Tanszék

- Méré nika é .
BME-MIT 2020 M Ini?o‘rer?'\t:ccigs IIglaeremjszerek 295||de

Tanszék

	Embedded and ambient systems�2020.10.27.
	Interrupts
	Hierarchy of interrupts
	Interrupt Service Routine
	Example: IT of EFM32 + Cortex-M3
	Example: IT of EFM32 + Cortex-M3
	Example: AVR (ATmega128)
	Example: BF537 (DSP)
	Example: BF537 (DSP)
	IT initialization for a peripheral
	IT handling for a peripheral
	IT handling example
	Implementation of IT handling
	Implementation of IT handling– EFM32
	Implementation of IT handling– EFM32
	Implementation of IT handling– EFM32
	Implementation of IT handling– EFM32
	Implementation of IT handling– AVR
	Implementation of IT handling– AVR
	Implementation of IT handling – BF537
	Implementation of IT handling – BF537
	Implementation of IT handling – BF537
	Implementation of IT handling – BF537
	Implementation of IT handling – BF537
	Implementation of IT handling–ADSP21364
	Implementation of IT handling–ADSP21364
	Implementation of IT handling - summary
	Implementation of IT handling - summary
	Slide Number 29

