
© BME-MIT 2020Budapest University of Technology and Economics
Department of Measurement and Information Systems

Embedded and Ambient Systems
2020.11.10.

Shared variables, memory management,
robust programming

© BME-MIT 2020Budapest University of Technology and Economics
Department of Measurement and Information Systems

Shared variables

© BME-MIT 2020 3.slide

Shared variables
 Problem: a process has access to a certain variable or any data in a

time-overlapped manner. Typical examples:
o Between IT and IT
o Between IT ans main program (certain task)
o In case of preemptive systems

 Problem can arise if data or any structure containing coherent data
can be read/written in non-atomic manner
o Atomic operation: other process cannot interrupt running of the program

during executing a certain operation
o In high-level languages instructions seem to be uniform can be non-atomic.

E.g. increment of a 32-bit number can be atomic on a 32-bit architecture,
but surely cannot be atomic on an 8-bit architecture, since an 8-bit
processor needs more ASM instruction for sure.

© BME-MIT 2020 4.slide

Shared variable: example
 Variable dataarray is used by both the main program and the timer IT routine

// declaration data structure
struct Type{

uint32_t data1;
uint32_t data2;

} dataarray;
// timer IT handing
void LETIMER0_IRQHandler(void){

// writing dataarray
dataarray.data1 = 0xFF;
dataarray.data2 = 0xFF;
LETIMER0->IFC = 0xFF; // IT flag clear

}
void main(void){
// infinite loop

while (1) {
// writing dataarray
dataarray.data1 = 0x00;
dataarray.data2 = 0x00;

// in theory progam cannot step here since either 0x00 or 0xFF is the variable value
// condition: if not true that data1 and data2 value are both 0xFF or 0x00

if (!((dataarray.data1==0xFF && dataarray.data2==0xFF) ||
(dataarray.data1==0x00 && dataarray.data2==0x00))){

error = true;
BSP_LedToggle(1);

} } }

© BME-MIT 2020 5.slide

Shared variable: example
 Problem: data1 and data2 fields of dataarray structure is

written in a non-atomic manner:
o IT routine may even run in the time instant when instruction

dataarray.data1 = 0x00; has already run in the main program,
but, data assignment of data2 has not run yet. In this case the
following happens:

• dataarray.data1 = 0x00; // main program
• IT routine begins
• dataarray.data1 = 0xFF; // IT
• dataarray.data2 = 0xFF; // IT
• IT routine ends
• dataarray.data2 = 0x00; // main program

o Final result: data1=0xFF and data2=0x00, so data becomes
incosistent

© BME-MIT 2020 6.slide

Shared variable: example
 Solution: data1 and data2 fields of dataarray structure

has to be written in an atomic manner
o In IT routine it is done automatically, since no other IT routine

exists. If an IT routine of higher priority existed then writing in
an atomic manner should be assured

o Writing in an atomic manner has to be assured in the main
program. But how?

• Simple solution: IT should be disabled at the beginning of writing and
enabled at the end of writing

• Function libraries of compilers/processors offer to insert atomic code
parts. Its operation is also based on the disabling/enabling of IT but
examines also whether an IT had already been enabled at the beginning
of the critical section of the code or not

© BME-MIT 2020 7.slide

Shared variable: example
 Let’s complement the main program by writing the variable in an

atomic manner. In the development environment used (Simplicity
Studio – Cortex-M3) the CORE_CRITICAL_SECTION(…) macro
defines an atomic operation

while (1) {
// critical section: let the writing be an atomic operation
CORE_CRITICAL_SECTION(

// writing dataarray
dataarray.data1 = 0x00;
dataarray.data2 = 0x00;

)
// in theory progam cannot step here since either 0x00 or 0xFF is the variable value
// condition: if not true that data1 and data2 value are both 0xFF or 0x00

if (!((dataarray.data1==0xFF && dataarray.data2==0xFF) ||
(dataarray.data1==0x00 && dataarray.data2==0x00))){

error = true;
BSP_LedToggle(1);

} } }

© BME-MIT 2020 8.slide

Shared variable: example
 Let’s complement the main program by writing the variable in an

atomic manner. In the development environment used (Simplicity
Studio – Cortex-M3) the CORE_CRITICAL_SECTION(…) macro
defines an atomic operation

while (1) {
// critical section: let the writing be an atomic operation
CORE_CRITICAL_SECTION(

// writing dataarray
dataarray.data1 = 0x00;
dataarray.data2 = 0x00;

)
// in theory progam cannot step here since either 0x00 or 0xFF is the variable value
// condition: if not true that data1 and data2 value are both 0xFF or 0x00

if (!((dataarray.data1==0xFF && dataarray.data2==0xFF) ||
(dataarray.data1==0x00 && dataarray.data2==0x00))){

error = true;
BSP_LedToggle(1);

} } }

© BME-MIT 2020 9.slide

Shared variable: example
 One problem still exists: there is a “hidden” reading in

the code:
o During the evaluation of if (…) condition the variable value has

to be read. The following can happen:
• We start the evaluation of condition
(dataarray.data1==0x00 && dataarray.data2==0x00)
• During the evaluation of (dataarray.data1==0x00) partial condition the

value of variables data1 and data2 are both 0x00, therefore this partial
condition is true

• Then an IT event occurs and as a consequence both values of the
variables become 0xFF. Unfortunately partial condition
(dataarray.data2==0x00) becomes false due to the IT

• So since the partial condition becomes false (and due to the inversion (!)
sign at the beginning of condition) if condition becomes true

o Evaluation of the condition has to be atomic (critical section)

© BME-MIT 2020 10.slide

Shared variable: example
 Correct solution: critical section should be applied

to the if condition
while (1) {

// critical section: let the writing be an atomic operation
CORE_CRITICAL_SECTION(

// writing dataarray
dataarray.data1 = 0x00;
dataarray.data2 = 0x00;

)
// in theory progam cannot step here since either 0x00 or 0xFF is the variable value
// condition: if not true that data1 and data2 value are both 0xFF or 0x00
CORE_CRITICAL_SECTION(

if (!((dataarray.data1==0xFF && dataarray.data2==0xFF) ||
(dataarray.data1==0x00 && dataarray.data2==0x00))){

error = true;
BSP_LedToggle(1);

}
)

} }

© BME-MIT 2020 11.slide

Shared variable: example
 In our discussed example IT routine cannot be interrupted (no other process

exists) therefore it can be considered atomic, therefore application of critical
section is not necessary here

 The code works properly but can be still polished
Problem:

o Critical section contains not only the evaluation of condition in terms of atomic
execution but also some conditionally executable instructions that make the duration
the critical section long-lasting

o As a result IT may be disabled for a long time
o Application of critical section on condition if is not advised since IT remains disabled

if the code part after the condition cannot run:
CORE_CRITICAL_SECTION(

if (…)
) { … code …}

 Solution:
o Making a local copy of variables inside a critical section to continue work with
o Code parts that should be evaluated in an atomic manner should be separated and

only them to be executed inside the critical section (evaluation of the condition here)

© BME-MIT 2020 12.slide

Shared variable: example
 First solution: making a local copy of variables inside a critical section to

continue work with

// critical section: making a local copy
CORE_CRITICAL_SECTION(

dataarray_loc.data1 = dataarray.data1;
dataarray_loc.data2 = dataarray.data2;

)
// continue work with local variables
if (!((dataarray_loc.data1==0xFF && dataarray_loc.data2==0xFF) ||

(dataarray_loc.data1==0x00 && dataarray_loc.data2==0x00))){
error = true;
BSP_LedToggle(1);

}

© BME-MIT 2020 13.slide

Shared variable: example
 Second solution: evaluation of the condition in an atomic manner

// critical section: evaluation of condition
CORE_CRITICAL_SECTION(

condition = ! ((dataarray.data1==0xFF && dataarray.data2==0xFF) ||
(dataarray.data1==0x00 && dataarray.data2==0x00));

)
if (condition){

error = true;
BSP_LedToggle(1);

}

© BME-MIT 2020 14.slide

Shared variables: summary
 If data or array of data is accessed (read and/or written) by more than only one

entity (IT, condition, etc…) than inconsistent data may appear, if reading and/or
writing is not atomic in terms of the entire data/sequence of data
o It can be even processor-dependent in terms of what data can be handled in an

atomic manner (e.g. 8-bit or 32-bit uC)
 At every code parts where critical data can be accessed has to be done in a n

atomic manner in a critical section. Typical critical (atomic) sections are:
o IT enable/disable
o When use the functions that come with the uP and apply them to critical code parts
o In embedded operation systems there are synchronization primitives available (e.g.

semaphores, messages, etc.)
 In order not to block the running of the program when shared variables are used

the followings have to be done:
o Only those code parts should be inserted into a critical section that contain concrete

data
o A local copy of the variables have to be created in a critical section and continue

work with these local variable copies

© BME-MIT 2020 15.slide

Double buffering
 Typical problem: processing a data sequence while new data keeps arriving

(producer/consumer problem)
o If only one array was applied to store data, overwriting the data would potentially

happen during processing
 Double buffering:

o When an array has been finished to be filled with data, data collection is continued in
an other array and at the same time data processing is performed on the filled array.
After data processing has finished the role of the two arrays are interchanged.

 Example:
o Formatted measurement data has to be continuously sent
o Two arrays are available: message_A and message_B.
o Pseudo-code: (at one time one array is being filled and the other array’s content is

being sent, then the reverse operation takes action)
If (A_is_active)

Send(message_B) // sending message is started in the background
Create(message_A) // composing the new message

Else
Send(message_A) // sending message is started in the background
Create(message_B) // composing the new message

end

A B

A B

© BME-MIT 2020Budapest University of Technology and Economics
Department of Measurement and Information Systems

Memory management

© BME-MIT 2020 17.slide

Memory management
 Specialties of embedded systems

o Limited memory
o Long-term running without restart

• Fragmentation of memory is not allowed since that may lead to error, memory
cannot be released due to the lack of restart

o Memory protection: due to limited resource, memory protection is not
always available or very limited, however there exist uCs with advanced
memory protection features

 Dynamical memory usage is prohibited or be very limited
o Dynamical memory usage: leads to fragmented memory
o Static memory usage should be used (declaration of a variable as a constant

size array)
o Dynamical memory usage may be allowed at program initialization only but

never during runtime
• Array size is considered dynamic since its size not known during compilation but

static in terms of its size is not changed after initialization

© BME-MIT 2020 18.slide

Fragmentation
 Fragmentation: allocation of memory (malloc) and later freeing them enclosures may

occur, when block sizes are different the possibility of enclosures are higher
 Example:

uint32_t *p1 = (uint32_t *) malloc(4);
*p1 = 0x10000011;
w = *p1;
//...............
uint32_t *p2 = (uint32_t *) malloc(4);
*p2 = 0x10000012;
w = *p2;
//...............
free(p1);
//...............
uint32_t *p3 = (uint32_t *) malloc(4);
*p3 = 0x10000013;
w = *p3;
//...............
free(p3);
//...............
uint64_t *p4 = (uint64_t *) malloc(8);
*p4 = 0x2000002410000014;
w = *p4;
//...............
uint8_t *p5 = (uint8_t *) malloc(1);
*p5 = 0x15;
w = *p5;
//...............
uint32_t *p6 = (uint32_t *) malloc(4);
*p6 = 0x10000016;
w = *p6;

© BME-MIT 2020 19.slide

Fragmentation
 Starting memory status

o Only pointer
o MEM: „memory garbage”

 Allocation p1
o p1 points to addr. 0x200001a8
o Value of memory cell is set to

0x10000011

 Allocation p2
o p1 points to addr. 0x200001b0
o Value of memory cell is set to

0x10000012

© BME-MIT 2020 20.slide

Fragmentation
 Freeing p1 and allocating p3

o In the place of pointer p1 which
has been free, the content of
pointer p3 exactly fits into

o To the place where p1 points to
0x10000013 stored by p3 is
inserted

 Freeing p3 and allocating p4
o In the place of pointer p3 which

has been free, the content of p3
pointer does not fit into (p3: 32
bit, p4: 64 bit)

o To the place where p4 points to
0x1000001420000024 is inserted

o The original value of p3 remains
there but this is memory garbage
since this memory part can be re-
allocated later
o Freeing a memory part not

the same as deleting its
content, the old value
remains there

© BME-MIT 2020 21.slide

Memory management
 Memory Protection Unit

o Processor has different operation modes: Privileged /
Unprivileged

o Privileged operation mode: no limitation
o Unprivileged operation mode: limited
o It can be set that in unprivileged operation mode certain

memory parts or peripherals should not be accessed
o If the SW tries to access to a forbidden memory part an

exception (which is an IT) is generated
o Using this method running of even an operation system can be

efficiently supported in HW

© BME-MIT 2020 22.slide

Stack overflow
 Memory is limited
 The size of the stack is changed dynamically since during function calls/It’s the

processor status and local variables are stored here
 If the size of stack becomes too large (e.g. local variables require large memory,

recursive function calls) an overlapping of heap and stack may happen they
overwrite each other

 The problem may arise in the reverse direction: data may overwrite stack content
in case of dynamical memory allocation

 By default no protection
mechanism. Certain compilers may have
built-in protection, e.g.:
-fstack-protector option: stack
neighbourhood is filled up by given
data pattern and after return it is checked
whether pattern has been changed or not

data-
memory

Stack top

Memory Memory

error

stack

© BME-MIT 2020 23.slide

Stack overflow
 Example code: recursive function call, at every call the function allocates an array of 20

elements (80 bytes)
 In heap an array of 60 elements is allocated (240byte)
 The top of the stack is set intentionally smaller as if data memory would be 1 kB (typical

data memory size of a very simple uC)
o Project Properties: C/C++ Build  Settings Memory Layout

#define N_dataarray 60
uint32_t dataarray[N_dataarray]; // in data memory
#define N_STACK 20
void big_stack(uint32_t depth)
{

uint32_t stack_array[N_STACK];
uint32_t iii;
for(iii=0; iii<N_STACK; iii++){

stack_array[iii] = 1;
}
if (depth<6){

big_stack(++depth);
}

}

void main(void)
{

big_stack(0);
} Stack top

Memory

error

Data-
memory

Memory

stack

© BME-MIT 2020 24.slide

Stack overflow
 Starting After 5th level

© BME-MIT 2020Budapest University of Technology and Economics
Department of Measurement and Information Systems

Robust programming

© BME-MIT 2020 26.slide

Checking of indexing
 By default no index checking in C
 Take care of array indexing
 Take care of pointer handling (do not use “tricks”

with pointers)

© BME-MIT 2020 27.slide

Timeout mechanism
 Errors made by programmer person may happen

o Malfunction has to be counted for (e.g. processor freeze)
o Errors have to be recognized and handled

 Timeout mechanism: after certain time interval the
processor has to provide some signal of operation:
o Watchdog timer: usually it is a built-in service
o Program components, dedicated units to send keep-alive

messages
o There exist HW components that need to be polled by the

processor periodically

© BME-MIT 2020 28.slide

Safe coding, coding conventions
 Application of safe coding and coding conventions

o Depending on the industrial field but even from company to company different
presciptions may exist how to write the code in a standardised way (MISRA).

o Examples:
• Use informative names for variables
• Variable name should follow the type, e.g.: fLength (float), iCount (integer): Hungarian

notation
• Use brackets after „if”

if (a>b)
a = a – b ;
b = a + 10; // it does not belong to „if” although it seems

• In conditional structure when a comparison with a constant is applied the constant should
come first:

– Apply this way: if (5==i) and not if (i==5)
– Explanation: if a mistake is made if (5=i) results in a compilation error, while if (i=5) causes no error but the operation is

not as expected

o Language restrictions may be applied: certain language elements are blocked to
be used since its operation is not safe (e.g. avoid the use of functions with
variable number of elements in the argument, make clean code)

© BME-MIT 2020 29.slide

Stuctured programming
 Stuctured programming

o Make a clean code do not use overcomplicated solutions
o Use variables with as low visibility as possible (do not use global

variables if not needed)
o Take care of special variables (e.g. mutual exclusion), these

should be distinctive in their names
o Hierarchical structure should be applied:

• Application level
• Functions belonging to the device (e.g. development board, entire module)
• Functions belonging to the processor
• Functions belonging to the peripherals

o Hierarchical structure helps code portability

© BME-MIT 2020 30.slide

Stuctured programming
 Stuctured programming

o Modularity: groups of functions should be in separated files

• .h files: contain the function and variable declaration but not the
implementation

• .c files: contain the function implementation
• Use informative file names

o Consistent names should be applied
o Function names should be informative and consequent, pl.: ADC_Init(…),

Timer_Init(…), UART_Init(…).
o Use as few low level HW access as possible and use the dedicate
o Comment everything!!!
o Warnings should be conidered!!!

© BME-MIT 2020 31.slide

Explicit type usage
 Type conversion done in an explicit way

o Example: number_16bit = number1_8bit * number2_8bit;
• 16-bit result of multiplication is expected. In this case the compiler may

transform the result of multiplication into an 8-bit number and after that
casting to 16-bit does not help.

o Instead: number_16bit = (int16_t) number 1_8bit * (int16_t) number 2_8bit;
• It will be clear for the compiler that a 16-bit multiplication with 16-bit

result is expected

© BME-MIT 2020 32.slide

Redundancy
 Redundancy, double or triple checking

o Check whether a certain intervention had the expected result or not
• For instance, if the level of a certain pint is set it should be checked either polling it

internally or externally

o Certain task should be performed in different ways and compare the results
• May happen that different programmer group work on different variants of the

code
• There exist such processor that has two separated cores running the same code

(lockstep). In case of some implementations the cores are physically turned
relative to each other or delayed (delayed lockstep) in operation to experience
external disturbances in different ways

© BME-MIT 2020 33.slide

	Embedded and Ambient Systems�2020.11.10.
	Slide Number 2
	Shared variables
	Shared variable: example
	Shared variable: example
	Shared variable: example
	Shared variable: example
	Shared variable: example
	Shared variable: example
	Shared variable: example
	Shared variable: example
	Shared variable: example
	Shared variable: example
	Shared variables: summary
	Double buffering
	Slide Number 16
	Memory management
	Fragmentation
	Fragmentation
	Fragmentation
	Memory management
	Stack overflow
	Stack overflow
	Stack overflow
	Slide Number 25
	Checking of indexing
	Timeout mechanism
	Safe coding, coding conventions
	Stuctured programming
	Stuctured programming
	Explicit type usage
	Redundancy
	Slide Number 33

