Embedded and Ambient Systems
2020.11.10.

Shared variables, memory management,
robust programming

a Méréstechnika és
Informaciés Rendszerek
Tanszék

Budapest University of Technology and Economics © BME-MIT 2020

Department of Measurement and Information Systems

Shared variables

a Méréstechnika és
Informaciés Rendszerek
Tanszék

Budapest University of Technology and Economics © BME-MIT 2020

Department of Measurement and Information Systems

Shared variables

= Problem: a process has access to a certain variable or any data in a
time-overlapped manner. Typical examples:
O Between ITand IT

O Between IT ans main program (certain task)
O In case of preemptive systems

= Problem can arise if data or any structure containing coherent data
can be read/written in non-atomic manner

O Atomic operation: other process cannot interrupt running of the program
during executing a certain operation

O In high-level languages instructions seem to be uniform can be non-atomic.
E.g. increment of a 32-bit number can be atomic on a 32-bit architecture,
but surely cannot be atomic on an 8-bit architecture, since an 8-bit
processor needs more ASM instruction for sure.

. Méréstechnika és .
© BME-MIT 2020 M Informacios Rendszerek 35||de

Tanszék

Shared variable: example

= Variable dataarray is used by both the main program and the timer IT routine

// declaration data structure

struct Type{
uint32_t datal;
uint32_t dataz2;

} dataarray;

// timer IT handing

void LETIMERO IRQHandler(void){
// writing dataarray
dataarray.datal = OxFF;
dataarray.data2 = OxFF;
LETIMERO->IFC = OxFF; // IT flag clear

+
void main(void){
// infinite loop
while (1) {
// writing dataarray
dataarray.datal = 0x00;
dataarray.data2 = 0x00;
// i1n theory progam cannot step here since either 0x00 or OxFF i1s the variable value
// condition: i1f not true that datal and data2 value are both OxFF or 0x00
iIT (!((dataarray.datal==0xFF && dataarray.data2==0xFF) ||
(dataarray.datal==0x00 && dataarray.data2==0x00))){

error = true;
BSP_LedToggle(1);

I

. Méréstechnika és .
BME-MIT 2020 M Informacios Rendszerek 4S||de

Tanszék

Shared variable: example

"= Problem: datal and data?2 fields of dataarray structure is
written in @ non-atomic manner:

O IT routine may even run in the time instant when instruction

dataarray.datal = 0x00; has already run in the main program,

but, data assignment of data2 has not run yet. In this case the
following happens:
 dataarray.datal = 0x00; // main program
IT routine begins
dataarray.datal = OxFF; // IT
dataarray.data2 = OxFF; // IT
IT routine ends
 dataarray.data2 = 0x00; // main program

O Final result: datal=0xFF and data2=0x00, so data becomes
incosistent

. Méréstechnika és .
© BME-MIT 2020 M Informacios Rendszerek 55||de

Tanszék

Shared variable: example

= Solution: datal and data?2 fields of dataarray structure
has to be written in an atomic manner

O In IT routine it is done automatically, since no other IT routine
exists. If an IT routine of higher priority existed then writing in
an atomic manner should be assured

0 Writing in an atomic manner has to be assured in the main
program. But how?

e Simple solution: IT should be disabled at the beginning of writing and
enabled at the end of writing

e Function libraries of compilers/processors offer to insert atomic code
parts. Its operation is also based on the disabling/enabling of IT but
examines also whether an IT had already been enabled at the beginning
of the critical section of the code or not

. Méréstechnika és .
© BME-MIT 2020 M Informacios Rendszerek 6S||de

Tanszék

Shared variable: example

= Let’s complement the main program by writing the variable in an
atomic manner. In the development environment used (Simplicity
Studio — Cortex-M3) the CORE_CRITICAL_SECTION(...) macro

defines an atomic operation

while (1) {
// critical section: let the writing be an atomic operation
CORE_CRITICAL_SECTION(
// writing dataarray
dataarray.datal = 0x00;
dataarray.data2 0x00;

)

// in theory progam cannot step here since either 0x00 or OxFF is the variable value
// condition: 1T not true that datal and data2 value are both OxFF or 0x00
iIT (1((dataarray.datal==0xFF && dataarray.data2==0xFF) ||
(dataarray.datal==0x00 && dataarray.data2==0x00))){

error = true;
BSP_LedToggle(1l);
+r 3

b L A - Méréstechnika és .
= 3 © BME-MIT 2020 I.I'u} Informaciés Rendszerek 7.slide

Tanszék

Shared variable: example

= Let’s complement the main program by writing the variable in an
atomic manner. In the development environment used (Simplicity
Studio — Cortex-M3) the CORE_CRITICAL_SECTION(...) macro
defines an atomic operation

while (1) {
// critical section: let the writing be an atomic operation
CORE_CRITICAL_SECTION(
// writing dataarray
dataarray.datal = 0x00;
dataarray.data2 = 0x00;
)
// in theory progam cannot s--m_here since elther Ox00 or OxFF i1s the variable value
// condltlon eyt
(dataarray. datal--OxFF £&$quﬂarray data2--0xFF) ||
(dataarray .da 4 5 0 && dataarray.data2--0x00))

CII[

error ——troe—

BSP_LedToggle(1);
+ 13}

. Méréstechnika és .
© BME-MIT 2020 M Informacios Rendszerek 8S||de

Tanszék

Shared variable: example

" One problem still exists: there is a “hidden” reading in
the code:

O During the evaluation of if (...) condition the variable value has
to be read. The following can happen:

e We start the evaluation of condition
(dataarray.datal==0x00 && dataarray.data2==0x00)

e During the evaluation of (dataarray.datal==0x00) partial condition the
value of variables datal and data2 are both 0x00, therefore this partial
condition is true

e Then an IT event occurs and as a consequence both values of the
variables become OxFF. Unfortunately partial condition
(dataarray.data2==0x00) becomes false due to the IT

e So since the partial condition becomes false (and due to the inversion (!)
sign at the beginning of condition) if condition becomes true

O Evaluation of the condition has to be atomic (critical section)

. Méréstechnika és .
© BME-MIT 2020 M Informacios Rendszerek 9S||de

Tanszék

Shared variable: example

= Correct solution: critical section should be applied
to the if condition

while (1) {
// critical section: let the writing be an atomic operation
CORE_CRITICAL_SECTION(
// writing dataarray
dataarray.datal = 0x00;
dataarray.data2 0x00;

)

// 1n theory progam cannot step here since either 0x00 or OxFF i1s the variable value
// condition: 1f not true that datal and data2 value are both OxFF or 0x00
CORE_CRITICAL_SECTION(
iIT (!((dataarray.datal==0xFF && dataarray.data2==0xFF) ||
(dataarray.datal==0x00 && dataarray.data2==0x00))){

error = true;
BSP_LedToggle(1);

N

- aré hnika é .
- |'|-|_|]- Merestechnita s e 10.slide

Tanszék

Shared variable: example

= |n our discussed example IT routine cannot be interrupted (no other process
exists) therefore it can be considered atomic, therefore application of critical

section is not necessary here
= The code works properly but can be still polished

Problem:

O Critical section contains not only the evaluation of condition in terms of atomic
execution but also some conditionally executable instructions that make the duration

the critical section long-lasting

O As aresult IT may be disabled for a long time

0 Application of critical section on condition if is not advised since IT remains disabled
if the code part after the condition cannot run:

RE_CRITICAL ION(

= Solution:
0 Making a local copy of variables inside a critical section to continue work with

0 Code parts that should be evaluated in an atomic manner should be separated and
only them to be executed inside the critical section (evaluation of the condition here)

. Méréstechnika és .
© BME-MIT 2020 M Informacios Rendszerek llS“de

Tanszék

Shared variable: example

= First solution: making a local copy of variables inside a critical section to

continue work with

// critical section: making a local copy
CORE_CRITICAL_SECTION(
dataarray loc.datal = dataarray.datal;
dataarray loc.data2 = dataarray.data?2;

// continue work with local variables
if (I((dataarray loc.datal==0xFF && dataarray loc.data2==0xFF) ||
(dataarray_loc.data1==0x00 && dataarray loc.data2==0x00))){

error = true;
BSP LedToggle(1):

- Méréstechnika és
BME-MIT 2020 Informacios Rendszerek

Tanszék

12.slide

Shared variable: example

= Second solution: evaluation of the condition in an atomic manner

// critical section: evaluation of condition
CORE_CRITICAL_SECTION(
condition = ! ((dataarray.datal==0xFF && dataarray.data2==0xFF) | |
(dataarray.datal==0x00 && dataarray.data2==0x00));

)

if (condition){
error = true;
BSP_LedToggle(1);

- aré hnika é .
- |'|-|_|]- Merestechnita s ek 13.5lide

Tanszék

Shared variables: summary

= |f data or array of data is accessed (read and/or written) by more than only one
entity (IT, condition, etc...) than inconsistent data may appear, if reading and/or
writing is not atomic in terms of the entire data/sequence of data

O It can be even processor-dependent in terms of what data can be handled in an
atomic manner (e.g. 8-bit or 32-bit uC)
= At every code parts where critical data can be accessed has to be done inan
atomic manner in a critical section. Typical critical (atomic) sections are:
O IT enable/disable
O When use the functions that come with the uP and apply them to critical code parts
0 In embedded operation systems there are synchronization primitives available (e.g.
semaphores, messages, etc.)
= |n order not to block the running of the program when shared variables are used
the followings have to be done:

O Only those code parts should be inserted into a critical section that contain concrete
data

O A local copy of the variables have to be created in a critical section and continue
work with these local variable copies

- Méré hnika é .
© BME-MIT 2020 M Ini?orer?'lt:cciés Raereészerek 14S||de

Tanszék

Double buffering

= Typical problem: processing a data sequence while new data keeps arriving
(producer/consumer problem)

O If only one array was applied to store data, overwriting the data would potentially
happen during processing

= Double buffering:

O When an array has been finished to be filled with data, data collection is continued in
an other array and at the same time data processing is performed on the filled array.
After data processing has finished the role of the two arrays are interchanged.

= Example:
O Formatted measurement data has to be continuously sent
O Two arrays are available: message A and message_B.

O Pseudo-code: (at one time one array is being filled and the other array’s content is
being sent, then the reverse operation takes action)

If (A_is_active)
Send(message_B) // sending message is started in the background
Create{message A) // composing the new message

Else
Send(message_A) // sending message is started in the background ? E
Méréstechnika és

Create(message_B) // composing the new message

© BME-MIT 2020 . Informaciés Rendszerek 15 S“de

Tanszék

Memory management

a Méréstechnika és
Informaciés Rendszerek
Tanszék

Budapest University of Technology and Economics © BME-MIT 2020

Department of Measurement and Information Systems

Memory management

= Specialties of embedded systems
O Limited memory

O Long-term running without restart

* Fragmentation of memory is not allowed since that may lead to error, memory
cannot be released due to the lack of restart

O Memory protection: due to limited resource, memory protection is not
always available or very limited, however there exist uCs with advanced
memory protection features

= Dynamical memory usage is prohibited or be very limited

O Dynamical memory usage: leads to fragmented memory

O Static memory usage should be used (declaration of a variable as a constant
Size array)

O Dynamical memory usage may be allowed at program initialization only but
never during runtime

* Array size is considered dynamic since its size not known during compilation but
static in terms of its size is not changed after initialization

. Méréstechnika és .
© BME-MIT 2020 M Informacios Rendszerek 17S||de

Tanszék

Fragmentation

Fragmentation: allocation of memory (malloc) and later freeing them enclosures may
occur, when block sizes are different the possibility of enclosures are higher

Example:

uint32_t *pl = (uint32_t *) malloc(4);
*pl = 0x10000011;
w = *pl;

uint32_t *p2 = (uint32_t *) malloc(4);
*p2 = 0x10000012;
w = *p2;

uint32_t *p3 = (uint32_t *) malloc(4);
*p3 = 0x10000013;
w = *p3;

uinté4_t *p4 = (uint64_t *) malloc(8);
*p4 = 0x2000002410000014;
W = *p4;

uint8 t *p5 = (uint8_t *) malloc(l);
*p5 = 0x15;

uint32_t *p6 = (uint32_t *) malloc(4);
*p6 = 0x10000016;
W = *p6;

- aré hnika é .
- |'|-|_|]- Merestechnika = ek 18.slide

Tanszék

Fragmentation

= Starting memory status » pl uint2t* 00 052000034
» pl uint32_t* O 0200003 cc

O Only pointer ® p3 uint32t* O 0x200003d0

» pd uintid_t* Ohd 0200003 d4

O MEM: ,memory garbage” » p5 uinBt® 00 0:200003d8

B pb uint32_t* 0:c200003dc

Bx206881A8 20016828 5256060 BBLFEAR 09256025 EAL14637 GERLFES]1 B1121F12 GFE1F11R
Bx2088681C8 Fl1eDers Deaseral 288168AF 28826065 FECEFEEE 19C7E9A0 44386968 BEFIE42587
= Allocation pl 4% pl uinB2t* 0:200001a8 (0x200003c4
=)= *pl lengun.. 010000011 020000128
O pl points to addr. 0x200001a8 » p2 uinB2tT 00 0x200003cc
B p3 uint3Z2_t* hd (200005 d0
O Value of memory cell is set to # pd uintsht* 0x0 (52000034

0x10000011

ax200001A8(|10000011 52565060 GOB1FE40 69266025 E@114637 ABA4FSS1 B1121F12 AFO1F11E
Bx268881C8 Fl18DerFs Deaserel 20016BAF 20620665 FECEF@BE 19070040 44386968 BFSE4287
) ® pl uint32.t* 0:20000138 0x200003c4
= Allocation p2 4 % pl uint32t* 0x200001b0 0x200003cc
i 69= *p2 long un.. (10000012 0x200001b0
O pl points to addr. 0x200001b0 ® p3 uinB2t* 00 (5200003d0
» pi uint6dt® 0x0 0x200003d4

O Value of memory cell is set to
0x10000012

Gx2eaealAsd |laadaall EEEEEEBE”lEE@EElEH"EC.. 28 E@114637 2EBA4FE51 B1121F12 @F@1F1la
exzeasalCd FlleDers Deeserel 208168AF 26020865 FEBCEF@EE 190705940 44386968 BF3E4287

..... s - Méréstechnika és .
© BME-MIT 2020 M Informaciés Rendszerek 195||de

Tanszék

Fragmentation

= Freeing pl and allocating p3

. . a B pl uint32_t* 0x200001a8
O Inthe place of pointer p1 which (9= *pl long un... 0x10000013

has been free, the content of 4 % p2 uint32t* 0:200001b0

. .. =)= *p2 lengun.. 010000012
pointer p3 exactly fits into s 3 uinfte 0:200001a8

O To the place where p1 point (9= "p3 long un... ' 0:10000013
0x10000013 stored by p3 is Bx2BBPB1AS 1:3:3:3:3:31:“:3:3:35551: 16600012 69266

a7
“
".H'.\
L)

inserted @x200801C8 F116DOFS DEASAFEL 208160AF

= Freeing p3 and allocating p4

0 Inthe place of pointer p3 which
has been free, the content of p3
pointer does not fit into (p3: 32
bit, p4: 64 bit)

a % pl uint32_t* 020000128
=)= *pl longun.. 010000013
4 » pl uint32_t * 0200001 k0

0 To the place where p4 points to 69 *p2 long un... (00000012
0x1000001420000024 is inserted 4 ® p3 uini32t* (20000128

. . . = *p3 long un.. 010000013

O The original value of p3 remains 4w pd uinddtt 0x200001c0
there but this is memory garbage ~_ 09 "p4 longlon... 0:20000024...
Bx208001A3 mw:aaaaeac 18000612 |69266

since this memory part can be re-
allocated later

ex2eaeelCs FlleDers Deaseral 288168AF 268620

O Freeing a memory part not
the same as deleting its
content, the old value
remains there

02000034
0200001 a8
0200003 cc
020000160
(020000340
0200001 a8

8114637 6Be4F851 B1121F12 aFalrlle
SCBFaed 19C70946 44386908 EFSE4287

B28 E
6Bea F

-
Fa
B

02200003 c4
(02200001 a8
02200003 cc
020000160
(0220000340
(02200001 a8
02200003 d4
02000010

028|0@000010|FFFFFFFC10000014 20000024
@65 FECBF@BO 19C769A0 44306968 BF3E4257

..... - Méréstechnika és .
© BME-MIT 2020 M Informacios Rendszerek ZOS“de

Tanszék

Memory management

= Memory Protection Unit

O Processor has different operation modes: Privileged /
Unprivileged

O Privileged operation mode: no limitation
O Unprivileged operation mode: limited

O It can be set that in unprivileged operation mode certain
memory parts or peripherals should not be accessed

O If the SW tries to access to a forbidden memory part an
exception (which is an IT) is generated

O Using this method running of even an operation system can be
efficiently supported in HW

. Méréstechnika és .
© BME-MIT 2020 M Informaciés Rendszerek 215||de

Stack overflow

= Memory is limited

= The size of the stack is changed dynamically since during function calls/It’s the
processor status and local variables are stored here

= |f the size of stack becomes too large (e.g. local variables require large memory,
recursive function calls) an overlapping of heap and stack may happen = they
overwrite each other

= The problem may arise in the reverse direction: data may overwrite stack content
in case of dynamical memory allocation memory Memory

= By default no protection

data-

mechanism. Certain compilers may have
memory

built-in protection, e.g.:

-fstack-protector option: stack

neighbourhood is filled up by given

data pattern and after return it is checked
whether pattern has been changed or not

StaCk Stack top

- Méré hnika é .
© BME-MIT 2020 M Ini?orer?'\t:cciés Raereészerek 225||de

Tanszék

Stack overflow

= Example code: recursive function call, at every call the function allocates an array of 20
elements (80 bytes)

= |n heap an array of 60 elements is allocated (240byte)

= The top of the stack is set intentionally smaller as if data memory would be 1 kB (typical
data memory size of a very simple uC) 7] Ovedide default RAM options
O Project Properties: C/C++ Build = Settings 2 Memory Layout ORIGIN 020000000

LEMNGTH

#define N_dataarray 60
uint32_t dataarray|[N_dataarray]; // in data memory

#define N_STACK 20 Memory Memory
void big_stack(uint32_t depth)
{
uint32_t stack_array[N_STACK]; Data-
uint32_t 1ii;
for(iii=0; iii<N_STACK; iii++){ memory
stack _array|[iii] = 1;
by
ifT (depth<6){
big_stack(++depth);
bs
¥

void main(void)

{

big_stack(0); StaCk Stack top

. Méréstechnika és .
© BME-MIT 2020 M Informacios Rendszerek 235||de

Tanszék

Stack overflow

= Starting After 51 level

MName Type Value Location Mame Type WValue Location
()= adattornb[32] long un.. OuxffEEFFf (pc20000128 ()= adattormnb[32] long un.. OuxfFEEFFE (pc20000128
()= adattornb[33] long un.. OxfFEEFAE 02000012 ¢ ()= adattornb[33] long un.. OuxffEEFAf 0uc2000012c
()= adattomb[34] long un.. OxFAFEEFf (20000130 ()= adattomnb[34] long un.. OxFFFEFf (20000130
(=)= adattormnb[35] long un.. OuxfFEEFFE 020000134)= adattomb[35] long un.. 0x5 020000134
()= adattornb[36] long un.. OuxffEEFFE (pc20000138 ()= adattormnb[36] long un.. OuxfFEEFFE (520000138
()= adattormnb[37] long un.. OxfFEEFAE 02000013 ¢ ()= adattornb[37] long un.. Oxl4 02000013 ¢
()= adattomb[38] long un.. OxFFFEFf (20000140)= adattomb[38] longun.. Od (20000140
(=)= adattormnb[39] long un.. OuxfFEEFFE (020000144)= adattomb[39] long un.. O 020000144
()= adattornb[40] long un.. OuxffEEFFE (pc20000148)= adattornb[40] long un.. Ol (20000148
()= adattormnb[41] long un.. OxfFEEFAE 02000014 ¢ ()= adattornb[41] long un.. Ol 02000014 ¢
()= adattomb[42] long un.. OxFAFEEFf (20000150)= adattomb[42] longun.. Od (20000150
()= adattomb[43] long un.. OuxfFEEFFE 020000154 ()= adattomb[43] long un.. O 020000154
()= adattornb[44] long un.. OuxffEEFFf (pc20000158)= adattornb[44] long un.. Ol (pc20000158
()= adattormnb[45] long un.. OxfFEEFAE 02000015¢ ()= adattornb[45] long un.. Ol 0uc2000015¢
()= adattomb[46] long un.. OxFAFEEFf (20000160 ()= adattomb[46] long un.. O (20000160
(=)= adattomb[47] long un.. OuxfFEEFFE 020000164)= adattomb[47] long un.. O 020000164
()= adattornb[48] long un.. OuxffEEFFf (pc20000168)= adattornb[48] long un.. Ol (pc20000168
()= adattormnb[49] long un.. OxfFEEFAE 02000016¢ ()= adattornb[49] long un.. Ol 0c2000016¢
()= adattomb[50] long un.. OxFAFEEFf 020000170)= adattomb[50] long un.. O (20000170
()= adattomb[51] long un.. OuxfFEEFFE 020000174)= adattomb[51] leng un.. O 020000174
()= adattornb([52] long un.. OuxffEEFf (pc20000178)= adattornb[52] long un.. Ol (pc20000178
()= adattormnb[53] long un.. OxfFEEFAE 02000017 ¢ ()= adattornb[53] long un.. Ol 02000017 ¢
()= adattomb[54] long un.. OxFAFEEFf (20000180)= adattomb[54] long un.. O (20000180
(=)= adattomb[55] long un.. OuxfFEEFFE (020000184)= adattomb[55] leng un.. O 020000184
(=)= adattormnb[56] long un.. OuxffEEFf (pc20000188)= adattornb[56] long un.. Ol (pc20000188
()= adattormnb[57] long un.. OxfFEEFAE 020000158 ¢ ()= adattornb[57] long un.. Ol 02000015 ¢
()= adattomb[58] long un.. OxFAFEEFf (20000190)= adattomb[58] long un.. 020000198 020000190
(=)= adattormnb[59] long un.. OuxfFEEFFE (20000194)= adattomb[59] long un.. 0x25d 020000194

- Méré hnika é .
© BME-MIT 2020 M Ini?orer?'\t:cciés Raereészerek 24S||de

Tanszék

Robust programming

a Méréstechnika és
Informaciés Rendszerek
Tanszék

Budapest University of Technology and Economics © BME-MIT 2020

Department of Measurement and Information Systems

Checking of indexing

= By default no index checking in C
= Take care of array indexing

= Take care of pointer handling (do not use “tricks”
with pointers)

- Méréstechnika és .
© BME-MIT 2020 I.I'I.I} Informacios Rendszerek 26.slide
Tanszék

Timeout mechanism

" Errors made by programmer person may happen
O Malfunction has to be counted for (e.g. processor freeze)
O Errors have to be recognized and handled

= Timeout mechanism: after certain time interval the
processor has to provide some signal of operation:
0 Watchdog timer: usually it is a built-in service

O Program components, dedicated units to send keep-alive
messages

0 There exist HW components that need to be polled by the
processor periodically

- Méré hnika é .
© BME-MIT 2020 M Ini?orer?'!t:cciés Raereészerek 27S||de

Safe coding, coding conventions

= Application of safe coding and coding conventions

O Depending on the industrial field but even from company to company different
presciptions may exist how to write the code in a standardised way (MISRA).

0 Examples:
e Use informative names for variables

e Variable name should follow the type, e.g.: fLength (float), iCount (integer): Hungarian
notation

e Use brackets after ,,if”
if (a>b)
a=a-b;
b=a+10; //itdoes not belong to , if” although it seems

* In conditional structure when a comparison with a constant is applied the constant should
come first:
— Apply this way: if (5==i) and not if (i==5)

— Explanation: if a mistake is made if (5=i) results in a compilation error, while if (i=5) causes no error but the operation is
not as expected

O Language restrictions may be applied: certain language elements are blocked to
be used since its operation is not safe (e.g. avoid the use of functions with
variable number of elements in the argument, make clean code)

- aré hnika é .
B 000 |'|-|_|_|- Merestechnita = ek 28.slide

Tanszék

Stuctured programming

= Stuctured programming

O Make a clean code do not use overcomplicated solutions

O Use variables with as low visibility as possible (do not use global
variables if not needed)

O Take care of special variables (e.g. mutual exclusion), these
should be distinctive in their names

O Hierarchical structure should be applied:
e Application level

* Functions belonging to the device (e.g. development board, entire module)
* Functions belonging to the processor
* Functions belonging to the peripherals

O Hierarchical structure helps code portability

- aré hnika é .
B 000 |'|-|_|_|- Merestechnita s ek 29.slide

Tanszék

Stuctured programming

= Stuctured programming
O Modularity: groups of functions should be in separated files

e _h files: contain the function and variable declaration but not the
implementation

e .cfiles: contain the function implementation
e Use informative file names

O Consistent names should be applied

O Function names should be informative and consequent, pl.: ADC_Init(...),
Timer_Init(...), UART _Init(...).

O Use as few low level HW access as possible and use the dedicate
0 Comment everything!!!
O Warnings should be conidered!!!

. Méréstechnika és .
© BME-MIT 2020 M Informacios Rendszerek 305||de

Tanszék

Explicit type usage

= Type conversion done in an explicit way
0 Example: number_16bit = numberl_8bit * number2_8bit;

e 16-bit result of multiplication is expected. In this case the compiler may
transform the result of multiplication into an 8-bit number and after that
casting to 16-bit does not help.

O Instead: number_16bit = (int16_t) number 1_8bit * (int16_t) number 2_8bit;

* It will be clear for the compiler that a 16-bit multiplication with 16-bit
result is expected

. Méréstechnika és .
© BME-MIT 2020 M Informaciés Rendszerek 315||de

Tanszék

Redundancy

= Redundancy, double or triple checking
O Check whether a certain intervention had the expected result or not

* Forinstance, if the level of a certain pint is set it should be checked either polling it
internally or externally

O Certain task should be performed in different ways and compare the results

* May happen that different programmer group work on different variants of the
code

* There exist such processor that has two separated cores running the same code
(lockstep). In case of some implementations the cores are physically turned
relative to each other or delayed (delayed lockstep) in operation to experience
external disturbances in different ways

Qutput + Control
r

ARM®
Cortex™-R4F

—-—

Input + Control

b L A - Méréstechnika és .
= 3 © BME-MIT 2020 rl'l.l} Informaciés Rendszerek 32.slide

Tanszék

- Méré nika é .
BME-MIT 2020 M Ini?o‘rer?'\t:ccigs IIglaeremjszerek 335||de

Tanszék

	Embedded and Ambient Systems�2020.11.10.
	Slide Number 2
	Shared variables
	Shared variable: example
	Shared variable: example
	Shared variable: example
	Shared variable: example
	Shared variable: example
	Shared variable: example
	Shared variable: example
	Shared variable: example
	Shared variable: example
	Shared variable: example
	Shared variables: summary
	Double buffering
	Slide Number 16
	Memory management
	Fragmentation
	Fragmentation
	Fragmentation
	Memory management
	Stack overflow
	Stack overflow
	Stack overflow
	Slide Number 25
	Checking of indexing
	Timeout mechanism
	Safe coding, coding conventions
	Stuctured programming
	Stuctured programming
	Explicit type usage
	Redundancy
	Slide Number 33

