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Shared variables
 Problem: a process has access to a certain variable or any data in a 

time-overlapped manner. Typical examples:
o Between IT and IT
o Between IT ans main program (certain task)
o In case of preemptive systems

 Problem can arise if data or any structure containing coherent data 
can be read/written in non-atomic manner
o Atomic operation: other process cannot interrupt running of the program 

during executing a certain operation
o In high-level languages instructions seem to be uniform can be non-atomic. 

E.g. increment of a 32-bit number can be atomic on a 32-bit architecture, 
but surely cannot be atomic on an 8-bit architecture, since an 8-bit 
processor needs more ASM instruction for sure.
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Shared variable: example
 Variable dataarray is used by both the main program and the timer IT routine

// declaration data structure
struct Type{

uint32_t data1;
uint32_t data2;

} dataarray;
// timer IT handing
void LETIMER0_IRQHandler(void){

// writing dataarray 
dataarray.data1 = 0xFF;
dataarray.data2 = 0xFF;
LETIMER0->IFC = 0xFF; // IT flag clear

}
void main(void){
// infinite loop

while (1) {
// writing dataarray 
dataarray.data1 = 0x00;
dataarray.data2 = 0x00;

// in theory progam cannot step here since either 0x00 or 0xFF is the variable value
// condition: if not true that data1 and data2 value are both 0xFF or 0x00 

if (!( (dataarray.data1==0xFF && dataarray.data2==0xFF) ||
(dataarray.data1==0x00 && dataarray.data2==0x00)) ){

error = true;
BSP_LedToggle(1);

} } }
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Shared variable: example
 Problem: data1 and data2 fields of dataarray structure is 

written in a non-atomic manner:
o IT routine may even run in the time instant when instruction 

dataarray.data1 = 0x00; has already run in the main program, 
but, data assignment of data2 has not run yet. In this case the 
following happens:

• dataarray.data1 = 0x00;  // main program
• IT routine begins
• dataarray.data1 = 0xFF;  // IT
• dataarray.data2 = 0xFF;  // IT
• IT routine ends
• dataarray.data2 = 0x00;  // main program

o Final result: data1=0xFF and data2=0x00, so data becomes 
incosistent
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Shared variable: example
 Solution: data1 and data2 fields of dataarray structure 

has to be written in an atomic manner
o In IT routine it is done automatically, since no other IT routine 

exists. If an IT routine of higher priority existed then writing in 
an atomic manner should be assured

o Writing in an atomic manner has to be assured in the main 
program. But how?

• Simple solution: IT should be disabled at the beginning of writing and 
enabled at the end of writing

• Function libraries of compilers/processors offer to insert atomic code 
parts. Its operation is also based on the disabling/enabling of IT but 
examines also whether an IT had already been enabled at the beginning 
of the critical section of the code or not
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Shared variable: example
 Let’s complement the main program by writing the variable in an 

atomic manner. In the development environment used (Simplicity
Studio – Cortex-M3) the CORE_CRITICAL_SECTION(…) macro 
defines an atomic operation

while (1) {
// critical section: let the writing be an atomic operation
CORE_CRITICAL_SECTION(

// writing dataarray
dataarray.data1 = 0x00;
dataarray.data2 = 0x00;

)
// in theory progam cannot step here since either 0x00 or 0xFF is the variable value
// condition: if not true that data1 and data2 value are both 0xFF or 0x00

if (!( (dataarray.data1==0xFF && dataarray.data2==0xFF) ||
(dataarray.data1==0x00 && dataarray.data2==0x00)) ){

error = true;
BSP_LedToggle(1);

} } }
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Shared variable: example
 One problem still exists: there is a “hidden” reading in 

the code:
o During the evaluation of if (…) condition the variable value has 

to be read. The following can happen:
• We start the evaluation of condition
(dataarray.data1==0x00 && dataarray.data2==0x00)
• During the evaluation of (dataarray.data1==0x00) partial condition the 

value of variables data1 and data2 are both 0x00, therefore this partial 
condition is true

• Then an IT event occurs and as a consequence both values of the 
variables become 0xFF.  Unfortunately partial condition
(dataarray.data2==0x00) becomes false due to the IT

• So since the partial condition becomes false (and due to the inversion (!) 
sign at the beginning of condition) if condition becomes true

o Evaluation of the condition has to be atomic (critical section)
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Shared variable: example
 Correct solution: critical section should be applied 

to the if condition
while (1) {

// critical section: let the writing be an atomic operation
CORE_CRITICAL_SECTION(

// writing dataarray
dataarray.data1 = 0x00;
dataarray.data2 = 0x00;

)
// in theory progam cannot step here since either 0x00 or 0xFF is the variable value
// condition: if not true that data1 and data2 value are both 0xFF or 0x00
CORE_CRITICAL_SECTION(

if (!( (dataarray.data1==0xFF && dataarray.data2==0xFF) ||
(dataarray.data1==0x00 && dataarray.data2==0x00)) ){

error = true;
BSP_LedToggle(1);

}
)

} }
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Shared variable: example
 In our discussed example IT routine cannot be interrupted (no other process 

exists) therefore it can be considered atomic, therefore application of critical 
section is not necessary here

 The code works properly but can be still polished
Problem:

o Critical section contains not only the evaluation of condition in terms of atomic 
execution but also some conditionally executable instructions that make the duration 
the critical section long-lasting

o As a result IT may be disabled for a long time
o Application of critical section on condition if is not advised since IT remains disabled 

if the code part after the condition cannot run:
CORE_CRITICAL_SECTION(

if (…)
) {  … code …}

 Solution: 
o Making a local copy of variables inside a critical section to continue work with
o Code parts that should be evaluated in an atomic manner should be separated and 

only them to be executed inside the critical section (evaluation of the condition here)
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Shared variable: example
 First solution: making a local copy of variables inside a critical section to 

continue work with

// critical section: making a local copy
CORE_CRITICAL_SECTION(

dataarray_loc.data1 = dataarray.data1;
dataarray_loc.data2 = dataarray.data2;

)
// continue work with local variables
if (!( (dataarray_loc.data1==0xFF && dataarray_loc.data2==0xFF) ||

(dataarray_loc.data1==0x00 && dataarray_loc.data2==0x00)) ){
error = true;
BSP_LedToggle(1);

}



© BME-MIT 2020 13.slide

Shared variable: example
 Second solution: evaluation of the condition in an atomic manner

// critical section: evaluation of condition
CORE_CRITICAL_SECTION(

condition = ! ( (dataarray.data1==0xFF && dataarray.data2==0xFF) ||
(dataarray.data1==0x00 && dataarray.data2==0x00));

)
if (condition){

error = true; 
BSP_LedToggle(1);

}
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Shared variables: summary
 If data or array of data is accessed (read and/or written) by more than only one 

entity (IT, condition, etc…) than inconsistent data may appear, if reading and/or 
writing is not atomic in terms of the entire data/sequence of data
o It can be even processor-dependent in terms of what data can be handled in an 

atomic manner (e.g. 8-bit or 32-bit uC)
 At every code parts where critical data can be accessed has to be done in a n 

atomic manner in a critical section. Typical critical (atomic) sections are:
o IT enable/disable
o When use the functions that come with the uP and apply them to critical code parts
o In embedded operation systems there are synchronization primitives available (e.g. 

semaphores, messages, etc. )
 In order not to block the running of the program when shared variables are used 

the followings have to be done:
o Only those code parts should be inserted into a critical section that contain concrete 

data
o A local copy of the variables have to be created in a critical section and continue 

work with these local variable copies
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Double buffering
 Typical problem: processing a data sequence while new data keeps arriving 

(producer/consumer problem)
o If only one array was applied to store data, overwriting the data would potentially 

happen during processing
 Double buffering: 

o When an array has been finished to be filled with data, data collection is continued in 
an other array and at the same time data processing is performed on the filled array. 
After data processing has finished the role of the two arrays are interchanged.

 Example:
o Formatted measurement data has to be continuously sent
o Two arrays are available: message_A and message_B.
o Pseudo-code: (at one time one array is being filled and the other array’s content is 

being sent, then the reverse operation takes action)
If (A_is_active)

Send(message_B) // sending message is started in the background
Create(message_A)  // composing the new message

Else
Send(message_A) // sending message is started in the background
Create(message_B) // composing the new message

end

A B

A B
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Memory management
 Specialties of embedded systems

o Limited memory
o Long-term running without restart

• Fragmentation of memory is not allowed since that may lead to error, memory 
cannot be released due to the lack of restart

o Memory protection:  due to limited resource, memory protection is not 
always available or very limited, however there exist uCs with advanced 
memory protection features

 Dynamical memory usage is prohibited or be very limited
o Dynamical memory usage: leads to fragmented memory
o Static memory usage should be used (declaration of a variable as a constant 

size array)
o Dynamical memory usage may be allowed at program initialization only but 

never during runtime
• Array size is considered dynamic since its size not known during compilation but 

static in terms of its size is not changed after initialization
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Fragmentation
 Fragmentation: allocation of memory (malloc) and later freeing them enclosures may 

occur, when block sizes are different the possibility of enclosures are higher
 Example:

uint32_t *p1 = (uint32_t *) malloc(4);
*p1 = 0x10000011;
w = *p1;
//...............
uint32_t *p2 = (uint32_t *) malloc(4);
*p2 = 0x10000012;
w = *p2;
//...............
free(p1);
//...............
uint32_t *p3 = (uint32_t *) malloc(4);
*p3 = 0x10000013;
w = *p3;
//...............
free(p3);
//...............
uint64_t *p4 = (uint64_t *) malloc(8);
*p4 = 0x2000002410000014;
w = *p4;
//...............
uint8_t *p5 = (uint8_t *) malloc(1);
*p5 = 0x15;
w = *p5;
//...............
uint32_t *p6 = (uint32_t *) malloc(4);
*p6 = 0x10000016;
w = *p6;
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Fragmentation
 Starting memory status

o Only pointer
o MEM: „memory garbage”

 Allocation p1
o p1 points to addr. 0x200001a8 
o Value of memory cell is set to 

0x10000011

 Allocation p2
o p1 points to addr. 0x200001b0 
o Value of memory cell is set to

0x10000012
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Fragmentation
 Freeing p1 and allocating p3

o In the place of pointer p1 which 
has been free, the content of 
pointer p3 exactly fits into

o To the place where p1 points to 
0x10000013 stored by p3 is 
inserted

 Freeing p3 and allocating p4 
o In the place of pointer p3 which 

has been free, the content of p3 
pointer does not fit into (p3: 32 
bit, p4: 64 bit)

o To the place where p4 points to 
0x1000001420000024 is inserted

o The original value of p3 remains 
there but this is memory garbage 
since this memory part can be re-
allocated later
o Freeing a memory part not 

the same as deleting its 
content, the old value 
remains there
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Memory management
 Memory Protection Unit

o Processor has different operation modes: Privileged / 
Unprivileged

o Privileged operation mode: no limitation
o Unprivileged operation mode: limited
o It can be set that in unprivileged operation mode certain 

memory parts or peripherals should not be accessed
o If the SW tries to access to a forbidden memory part an 

exception (which is an IT) is generated
o Using this method running of even an operation system can be 

efficiently supported in HW
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Stack overflow
 Memory is limited
 The size of the stack is changed dynamically since during function calls/It’s the 

processor status and local variables are stored here
 If the size of stack becomes too large (e.g. local variables require large memory, 

recursive function calls) an overlapping of heap and stack may happen they 
overwrite each other

 The problem may arise in the reverse direction: data may overwrite stack content 
in case of dynamical memory allocation

 By default no protection
mechanism. Certain compilers may have
built-in protection, e.g.: 
-fstack-protector option: stack 
neighbourhood is filled up by given
data pattern and after return it is checked
whether pattern has been changed or not

data-
memory

Stack top

Memory Memory

error

stack
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Stack overflow
 Example code: recursive function call, at every call the function allocates an array of 20 

elements (80 bytes) 
 In heap an array of 60 elements is allocated (240byte)
 The top of the stack is set intentionally smaller as if data memory would be 1 kB (typical 

data memory size of a very simple uC)
o Project Properties: C/C++ Build  Settings Memory Layout

#define N_dataarray 60
uint32_t dataarray[N_dataarray]; // in data memory
#define N_STACK 20
void big_stack(uint32_t depth)
{

uint32_t stack_array[N_STACK];
uint32_t iii;
for(iii=0; iii<N_STACK; iii++){

stack_array[iii] = 1;
}
if (depth<6){

big_stack(++depth);
}

}

void main(void)
{

big_stack(0);
} Stack top

Memory

error

Data-
memory

Memory

stack
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Stack overflow
 Starting After 5th level
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Checking of indexing
 By default no index checking in C
 Take care of array indexing
 Take care of pointer handling (do not use “tricks” 

with pointers)
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Timeout mechanism
 Errors made by programmer person may happen

o Malfunction has to be counted for (e.g. processor freeze)
o Errors have to be recognized and handled

 Timeout mechanism: after certain time interval the
processor has to provide some signal of operation: 
o Watchdog timer: usually it is a built-in service
o Program components, dedicated units to send keep-alive

messages
o There exist HW components that need to be polled by the

processor periodically
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Safe coding, coding conventions
 Application of safe coding and coding conventions

o Depending on the industrial field but even from company to company different
presciptions may exist how to write the code in a standardised way (MISRA). 

o Examples: 
• Use informative names for variables
• Variable name should follow the type, e.g.: fLength (float), iCount (integer): Hungarian

notation
• Use brackets after „if”

if (a>b)
a = a – b ;
b = a + 10;   // it does not belong to „if” although it seems

• In conditional structure when a comparison with a constant is applied the constant should
come first:

– Apply this way: if (5==i) and not if (i==5)
– Explanation: if a mistake is made if (5=i) results in a compilation error, while if (i=5) causes no error but the operation is 

not as expected

o Language restrictions may be applied: certain language elements are blocked to
be used since its operation is not safe (e.g. avoid the use of functions with
variable number of elements in the argument, make clean code)
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Stuctured programming
 Stuctured programming

o Make a clean code do not use overcomplicated solutions
o Use variables with as low visibility as possible (do not use global

variables if not needed)
o Take care of special variables (e.g. mutual exclusion), these

should be distinctive in their names
o Hierarchical structure should be applied:

• Application level
• Functions belonging to the device (e.g. development board, entire module)
• Functions belonging to the processor
• Functions belonging to the peripherals

o Hierarchical structure helps code portability
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Stuctured programming
 Stuctured programming

o Modularity: groups of functions should be in separated files

• .h files: contain the function and variable declaration but not the
implementation

• .c files: contain the function implementation
• Use informative file names

o Consistent names should be applied
o Function names should be informative and consequent, pl.: ADC_Init(…), 

Timer_Init(…), UART_Init(…).
o Use as few low level HW access as possible and use the dedicate
o Comment everything!!!
o Warnings should be conidered!!!
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Explicit type usage
 Type conversion done in an explicit way

o Example: number_16bit = number1_8bit * number2_8bit;
• 16-bit result of multiplication  is expected. In this case the compiler may 

transform the result of multiplication into an 8-bit number and after that 
casting to 16-bit does not help.

o Instead: number_16bit = (int16_t) number 1_8bit * (int16_t) number 2_8bit;
• It will be clear for the compiler that a 16-bit multiplication with 16-bit 

result is expected
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Redundancy
 Redundancy, double or triple checking

o Check whether a certain intervention had the expected result or not
• For instance, if the level of a certain pint is set it should be checked either polling it 

internally or externally 

o Certain task should be performed in different ways and compare the results
• May happen that different programmer group work on different variants of the 

code
• There exist such processor that has two separated cores running the same code

(lockstep). In case of some implementations the cores are physically turned 
relative to each other or delayed (delayed lockstep) in operation to experience 
external disturbances in different ways
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