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FPGA: evolution
 Dynamically configurable devices
 When applying FPGA a system is built up based on basic digital 

circuit elements
 Motivation:

o Solve problems based on digital HW: 
• Rapid operation
• Slow development

– Production time is long
» In the past (mainly): printed circuit board + discrete logic gates
» Today: ASIC (Application Specific Integrated Circuits)
» NRE: Non-recurring engineering

– Testing and re-design take a long time: slow iterations

o Time to market is important, therefore the development process needs to be 
accelerated

 A device is needed that is suitable for the implementation of low 
level functions but the production and development time is shorter
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FPGA: evolution
 PLA: Programmable Logic Array

o In 1970s
o Programmable AND and OR gates
o Implementation of logical functions in 

canonical form
o Advancement: special circuit for the 

implementation of complex logic functions
o Drawback: PLSs can be configured during 

production process and cannot be 
reconfigured later
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FPGA: evolution
 PAL: Programmable Array Logic

o End of 1970s
o Canonical form
o Programmable input, fixed output

• Less programmed connections: faster signal 
propagation

o Method of programming
• OTP: one time programmable
• Erasable: using UV light
• Flash kofiguration

o Advancement: PAL can be configured 
not only during production but also by 
developper

 Advanced version: GAL (Generic Array
Logic)
o Larger complexity, can substitute more PAL 

device
o Reconfigurable
o Adequate for prototyping
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FPGA: evolution
 CPLD (Complex Programmable

Logic Devices)
 Comlexity: between PAL and 

GAL
 Architecture:

o Function block
o Macrocell
o Wiring matrix

 Function block: contains 
macrocell

 Macrocell: multiple-input 
single-output logic function 
(combinational or register 
output)
o Architecture is similar to PAL
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CPLD macrocell
 Architecture of a 

macrocell: 
canonical 
implementation 
of logic 
functions
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FPGA: evolution
 FPGA: Field Programmable Gate Array
 High-complexity device
 Not necessarily follows the canonical structure
 Several auxiliary components are found

o Clock-management
o Flexible configurable IO block
o Embedded RAM
o Multiplier
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FPGA manufacturers
 Some larger manufacturer:

o Xilinx
o Altera
o Actel
o Vantis
o Lattice
o Lucent
o QuickLogic
o Cypress
o Atmel

 In the followings Xilinx products are used 
to learn about FPGAs
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Storing the configuration
 Configuration file: contains the internal connections
 NOT A PROGRAM

o Word ‘programming’ mainly refers to downloading the program but in case 
of FPGA not a program is written instead it is configured how the HW should 
work (behave)

o The configuration is quite complex and really seems to be a program but it is 
not a program

 Configuration: making connections between data lines
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Storing the configuration
 Reading method of configuration (serial, parallel, JTAG) can be set using external 

wires
 In FPGAs the configuration data (e.g. connections in a switching matrix) is loaded 

into an internal SRAM
 Flash-based FPGAs are quite rare now

o SRAM-based configuration allows larger component density
o During operation can be reconfigured even partly 
o Booting delay of the system is larger: configuration must be loaded into the internal 

SRAM cells
 Loading configuration: during booting it occurs from external Flash memory or a 

host PC
 There exist FPGAs containing internal Flash but even in this case booting delay of 

configuration is inevitable. Their advantage is the smaller area requirement 
compared to FPGA+Flash and more secure since the configuration process 
cannot be seen (reverse engineering can be prevented)

FPGA FLASH: 
konfig
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Storing the configuration
 FPGAs are reconfigurable 

during development via a 
standardized JTAG interface

 JTAG port can be used in a 
daisy chain toward other 
devices

 JTAG can be used for writing 
the external Flash that 
stores the configuration 

 The configuration is stored 
in the Flash and read from 
Flash later at FPGA booting

Reading configuration via 
serial line (can occur via 
parallel lines)

JTAG port: handling 
FPGA and/or Flash 

storing configuration 
data



© BME-MIT 2020 12.slide

Input-Output blocks in FPGA
 Flexible configurable Input-Output (IO) block
 Three main signal lines:

o Output drive
o Input lines
o Output lines
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Input-Output blocks in FPGA
 Programmable input/output setting

(see: Programmable Output Driver) 
 Programmable pull-up or pull-down 

resistances
 Keeper latch: can be set that the last 

value is kept in high-impedance 
mode and not allow the level floating

 Internal delay lines: input signals are 
fed directly into the FPGA, the clock 
signal however get to the IO block via 
the internal clock division unit and 
suffers from delay: forcing delay to 
the data input it can be synchronized 
with the CLK
o Delay is dynamical, can be configured even 

during operation
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Input-Output blocks in FPGA
 DDR: Dual-Data-Rate Transmission: 

data rate is doubled when data 
transmission occurs for both the 
rising- and falling edge of the CLK
o D flip-flops used in the conventional 

manner (triggered for only rising CLK 
edge) but their CLK signal is designed 
in a special way:

• 180° phase shift
• inverting

o Writing is done alternately: once into 
one FF, then into the other FF
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Input-Output blocks in FPGA
 Input and output lines can be synchronized 

using flipflops to the internal CLK
 Several standardized logic signal level can 

be applied on the inuts
o TTL levels
o CMOS levels
o Differential signal inputsdifferenciális jelbemenetek
o Switching threshold voltage via external pin

 Driving can be set:
o Fast raise up: larger speed with larger noise
o Slow raise up: slower with less noise

 DCI (Digitally Controlled Impedance): to 
eliminate reflexion: a certain impedance 
value can be set for the output buffer
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Input-Output blocks in FPGA
 Configuration of IO pins: in Verilog language find it in user 

constraints file (ucf)
o Examples:
o NET “name” IOSTANDARD = "LVTTL";
o NET “net_name” LOC= " P6 " | PULLUP;

 In Verilog code they can be given by primitives
o Example:
PULLUP PULLUP_inst (

.O(signal_name)     // Pullup output (connect directly to top-level 
port)

);



© BME-MIT 2020 17.slide

CLK sources
 CLK signal path:

o CLK input (assigned pins)
• CLK can be received from even more than one input
• Differential CLK input is also possible

o DCM: Digital Clock Management
o BUFMUX: multiplexer to choose CLK source

• Signal on the external CLK pin
• Output of the CLK management unit
• Internal signal

o Clock division unit: Global Routing
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Clock Management Unit
 Special wiring network
 The network can be divided 

into several CLK domain
 Delay is minimal among the 

different parts of the IC
o Fractal-like network structure
o CLK lines are more a less the 

same in length
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DCM: Digital Clock Manager
 DCM used for:

o Eliminating CLK shift
o Phase shifting
o Multiplication/division of CLK frequency
o CLK conditioning, restoring duty cycle of CLK
o CLK buffering, relay

 Capable of generation of high quality CLK from internal signals
 Components:

o Delay Locked Loop (DLL)
o Digital Frequency Synthesizer (DFS)
o Phase Shift (PS)
o Status Logic (SL)
o Internal- and external buffer stages
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DCM – phase shift
 Phase shift: the incoming CLK is shifted by a certain value of delay 

by the appropriate signal extraction from the delay line
o Basically it implements a DLL without feedback

 Example: DDR (Dual Data Rate)
o Generation of negated and not-negated CLK signal
o Is it better than inversion? Yes, since 180° phase-shift can be set accurately:

in case of inversion the delay of the inverter should be accounted.
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DCM – delay line & DLL
 Delay Locked Loop

o Similar to phase-locked-loop but now the control is based on the delay 
between two signals

o The incoming signal is routed to a delay line with variable delay and the 
delay is tuned until the delay between the two inputs disappears.

Delay line
Reference input

Feedback input

Control device

extracted delayed signal

Feedback applied
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DCM – delay line & DLL
 DLL application: compensation of CLK 

shift inside or outside of the device:
o CLK signal connected to an internal module or 

external device is fed back to the DLL input
o DLL set the delay of the output signal in such a 

way that no delay occur between the reference 
signal and the measured output

o It basically implements a control loop

CLK signals appearing at points C and B are 
measured and both are controlled by a DCM 
module based on a common reference (A)
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Considerations in terms of CLK signals
 Design only synchronous logic networks

o Use one CLK signal inside one block
o If slower operation is needed use enabling signals
o Changing between different CLK domains is complicated, avoid 

it if possible, take care of it during development

 Synthesizer can buffer the CLK inputs in an autonomous 
manner in normal case
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Resources
 Main components:

o IO Blocks
o DCM (digital clock management)
o CLB (Configurable Logic Block)
o RAM
o Multiplier

 Synthesiser usually allocate 
automatically the resources based on 
the HW description. Nevertheless it is 
worth to keep in mind the resources 
available and their main features since 
it determines the HW description.
o E.g.: if a shift register does not need a 

parallel input/output it will not be used up 
therefore can be implemented more 
efficiently (see later)
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Type of connections
 Connections are basically done by the synthesizer
 Different type of connections exist. Basis of grouping: how far the 

components to be connected are
 Components logically connected should be close to each other 

physically as well and let them be connected by a ‘rapid line’
 There exist direct connections inside a logic, e.g., carry logic (see 

later)
 For more details: https://www.xilinx.com/support/documentation/user_guides/ug331.pdf

https://www.xilinx.com/support/documentation/user_guides/ug331.pdf
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Architecture of CLBs
 CLB: Configurable Logic Block
 CLB building element: Slice

o 1 CLB conatins 4 slices
o The basic functions of the slices are 

the same but differences can be found

 CLBs can be connected to each 
other in several ways
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Architecture of a slice

 LUT: look-up table
o Implementation of combinational 

logic

 Flip-flop: 
o Implementation of synchronous 

logic

 Accelerating arithmetical 
operation
o carry propagation
o direct AND and XOR gates

 Multiplexers
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LUT: Look-up Table
 LUT: can be sonsidered as a 1-bit wide memory 

of 4 addressing bits (RAM)
 Implementation of 4-bit input 1-bit output logic 

functions
o Direct implementation: the output is given to each 

input code

 If more variables are used then the LUTs inside 
and outside of the slices can be connected to 
each other hence expanding the inputs

Input code out
0 0 0 0 O0
0 0 0 1 O1
0 0 1 0 O2
0 0 1 1 O3
0 1 0 0 O4
0 1 0 1 O5
0 1 1 0 O6
0 1 1 1 O7
1 0 0 0 O8
1 0 0 1 O9
1 0 1 0 O10
1 0 1 1 O11
1 1 0 0 O12
1 1 0 1 O13
1 1 1 0 O14
1 1 1 1 O15
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Flip flop
 Basic component for 

synchronous digital network
o State machine: combinational 

logic (LUT)+FF

 Widely configurable
o Set/reset input
o Clock enable
o Data input can be selected
o CLK can be inverted in some 

cases
o Latch
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Implementation of functional blocks
 Architecture of FPGAs facilitates the 

implementation of functional blocks
o ALU: arithmetical and logical unit (addition, 

subtraction)
• multiplication: not always but there exist solutions that 

support multiplication

o Multiplexer
o Shift regiszter
o RAM
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ALU: addition
 Addition: A xor B xor Carry

o Partial result of inputs A and B is generated 
by the LUT

o Result (A+B) and the sum with C is generated 
by a XOR gate no need for two LUTs

 carry: determines whether the carry bit 
shall be propagated or modified:

COUT?=CIN 

több bites összeadó lánc:

This branch is active when A=B 
so any of them can be connected
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Implementation of comparators
 Evaluation of equivalence (A==B ?):

o All bits shall be matched
o Using a LUT equivalence of two bit pairs can be 

evaluated (two XNOR applied to an AND, but in 
a LUT it is mapped into a truth-table)

o Using an internal multiplexer-chain it is 
propagated whether previously matched all the 
bits or not. In case of difference, 0 is propagated 
forward the chain

 Evaluation of inequality (A>B):
o The results for lower significant bits are 

propagated in this case as well
o Let’s have an N bit variable
o If An=Bn (n: N-1…0):

• The result of the lower stages are propagated

o If An≠Bn : 
• If An =1, then A>B
• Otherwise A≤B

 Comparison can be efficiently 
implemented using fast propagation

LUT

LUT

if An≠Bn, then in case An=1: An>Bn , since
An=1 és Bn=0  

An=Bn branchAn≠Bn branch
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Binary counter
 Counter:

• 000
• 001
• 010
• 011
• 100
• 101
• 110
• 111

 Lower bit is kept changing
 Bit n-th changes only when every previous bits 

are 1
 The propagation multiplexers propagate the 

lower bits if the actual bit is a 1. The 
propagation will be a 1 for bit n-th if all the 
lower bits are one.

 Using this technique addition logic is not 
needed for the implementation of counter.
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Multiplexer
 1-input multiplexer can be implemented using a 

LUT :
o Enable line, select line and two inputs are needed

 Multiple-input multiplexer: 
o Implementation based on LUTs: cascading 1-input 

multiplexers

Input code out
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 1
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 0
1 1 1 0 1
1 1 1 1 1

en sel in1 in0
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Multiplexer
 Cascading based on only LUTs: multi-level logic slower signal porpagation
 Logic inside slices: using further auxiliary components LUT-multiplexers can be 

connected to each other inside a slice
 Using internal multiplexers multi-input functions can be implemented with 

4-input LUTs
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Multiplexer
 Synthesizer recognize it and maps into the FPGA, not needed to 

implement is ‘manually’
 If-then-else structures: not always recognized

o Use simple, clean structures
o Output is required in each branches
o Minimize the number of input variables: easier to recognize what is the 

intended operation

 case structure: it should be used for describing a multiplexer
o All possible outcomes has to be covered
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Shift register
 General implementation: using flip-flops in slices can be 

synthesized a general purpose shift-register
o Flip-flops in slices should be connected in series
o Serial/parallel in-/output can be implemented

 Resource-saving solution (SRL16 operation mode):
o Configuration SRAM cells of LUTs + LUT logic can be used as shift register
o A LUT is basically a 4-input multiplexer, therefore input code defines the 

extraction point of the shift register


	Embedded and Ambient Systems�2020.12.08.
	FPGA: evolution
	FPGA: evolution
	FPGA: evolution
	FPGA: evolution
	CPLD macrocell
	FPGA: evolution
	FPGA manufacturers
	Storing the configuration
	Storing the configuration
	Storing the configuration
	Input-Output blocks in FPGA
	Input-Output blocks in FPGA
	Input-Output blocks in FPGA
	Input-Output blocks in FPGA
	Input-Output blocks in FPGA
	CLK sources
	Clock Management Unit
	Clock Management Unit
	Clock Management Unit
	Clock Management Unit
	DCM: Digital Clock Manager
	DCM – phase shift
	DCM – delay line & DLL
	DCM – delay line & DLL
	Considerations in terms of CLK signals
	Resources
	Type of connections
	Architecture of CLBs
	Architecture of a slice
	LUT: Look-up Table
	Flip flop
	Implementation of functional blocks
	ALU: addition
	Implementation of comparators
	Binary counter
	Multiplexer
	Multiplexer
	Multiplexer
	Shift register

