
© BME-MIT 2020Budapest University of Technology and Economics
Department of Measurement and Information Systems

Embedded and Ambient Systems
2020.12.08.

FPGA (Field Programable Gate Array)

© BME-MIT 2020 2.slide

FPGA: evolution
 Dynamically configurable devices
 When applying FPGA a system is built up based on basic digital

circuit elements
 Motivation:

o Solve problems based on digital HW:
• Rapid operation
• Slow development

– Production time is long
» In the past (mainly): printed circuit board + discrete logic gates
» Today: ASIC (Application Specific Integrated Circuits)
» NRE: Non-recurring engineering

– Testing and re-design take a long time: slow iterations

o Time to market is important, therefore the development process needs to be
accelerated

 A device is needed that is suitable for the implementation of low
level functions but the production and development time is shorter

© BME-MIT 2020 3.slide

FPGA: evolution
 PLA: Programmable Logic Array

o In 1970s
o Programmable AND and OR gates
o Implementation of logical functions in

canonical form
o Advancement: special circuit for the

implementation of complex logic functions
o Drawback: PLSs can be configured during

production process and cannot be
reconfigured later

© BME-MIT 2020 4.slide

FPGA: evolution
 PAL: Programmable Array Logic

o End of 1970s
o Canonical form
o Programmable input, fixed output

• Less programmed connections: faster signal
propagation

o Method of programming
• OTP: one time programmable
• Erasable: using UV light
• Flash kofiguration

o Advancement: PAL can be configured
not only during production but also by
developper

 Advanced version: GAL (Generic Array
Logic)
o Larger complexity, can substitute more PAL

device
o Reconfigurable
o Adequate for prototyping

© BME-MIT 2020 5.slide

FPGA: evolution
 CPLD (Complex Programmable

Logic Devices)
 Comlexity: between PAL and

GAL
 Architecture:

o Function block
o Macrocell
o Wiring matrix

 Function block: contains
macrocell

 Macrocell: multiple-input
single-output logic function
(combinational or register
output)
o Architecture is similar to PAL

© BME-MIT 2020 6.slide

CPLD macrocell
 Architecture of a

macrocell:
canonical
implementation
of logic
functions

© BME-MIT 2020 7.slide

FPGA: evolution
 FPGA: Field Programmable Gate Array
 High-complexity device
 Not necessarily follows the canonical structure
 Several auxiliary components are found

o Clock-management
o Flexible configurable IO block
o Embedded RAM
o Multiplier

© BME-MIT 2020 8.slide

FPGA manufacturers
 Some larger manufacturer:

o Xilinx
o Altera
o Actel
o Vantis
o Lattice
o Lucent
o QuickLogic
o Cypress
o Atmel

 In the followings Xilinx products are used
to learn about FPGAs

© BME-MIT 2020 9.slide

Storing the configuration
 Configuration file: contains the internal connections
 NOT A PROGRAM

o Word ‘programming’ mainly refers to downloading the program but in case
of FPGA not a program is written instead it is configured how the HW should
work (behave)

o The configuration is quite complex and really seems to be a program but it is
not a program

 Configuration: making connections between data lines

© BME-MIT 2020 10.slide

Storing the configuration
 Reading method of configuration (serial, parallel, JTAG) can be set using external

wires
 In FPGAs the configuration data (e.g. connections in a switching matrix) is loaded

into an internal SRAM
 Flash-based FPGAs are quite rare now

o SRAM-based configuration allows larger component density
o During operation can be reconfigured even partly 
o Booting delay of the system is larger: configuration must be loaded into the internal

SRAM cells
 Loading configuration: during booting it occurs from external Flash memory or a

host PC
 There exist FPGAs containing internal Flash but even in this case booting delay of

configuration is inevitable. Their advantage is the smaller area requirement
compared to FPGA+Flash and more secure since the configuration process
cannot be seen (reverse engineering can be prevented)

FPGA FLASH:
konfig

© BME-MIT 2020 11.slide

Storing the configuration
 FPGAs are reconfigurable

during development via a
standardized JTAG interface

 JTAG port can be used in a
daisy chain toward other
devices

 JTAG can be used for writing
the external Flash that
stores the configuration

 The configuration is stored
in the Flash and read from
Flash later at FPGA booting

Reading configuration via
serial line (can occur via
parallel lines)

JTAG port: handling
FPGA and/or Flash

storing configuration
data

© BME-MIT 2020 12.slide

Input-Output blocks in FPGA
 Flexible configurable Input-Output (IO) block
 Three main signal lines:

o Output drive
o Input lines
o Output lines

© BME-MIT 2020 13.slide

Input-Output blocks in FPGA
 Programmable input/output setting

(see: Programmable Output Driver)
 Programmable pull-up or pull-down

resistances
 Keeper latch: can be set that the last

value is kept in high-impedance
mode and not allow the level floating

 Internal delay lines: input signals are
fed directly into the FPGA, the clock
signal however get to the IO block via
the internal clock division unit and
suffers from delay: forcing delay to
the data input it can be synchronized
with the CLK
o Delay is dynamical, can be configured even

during operation

© BME-MIT 2020 14.slide

Input-Output blocks in FPGA
 DDR: Dual-Data-Rate Transmission:

data rate is doubled when data
transmission occurs for both the
rising- and falling edge of the CLK
o D flip-flops used in the conventional

manner (triggered for only rising CLK
edge) but their CLK signal is designed
in a special way:

• 180° phase shift
• inverting

o Writing is done alternately: once into
one FF, then into the other FF

© BME-MIT 2020 15.slide

Input-Output blocks in FPGA
 Input and output lines can be synchronized

using flipflops to the internal CLK
 Several standardized logic signal level can

be applied on the inuts
o TTL levels
o CMOS levels
o Differential signal inputsdifferenciális jelbemenetek
o Switching threshold voltage via external pin

 Driving can be set:
o Fast raise up: larger speed with larger noise
o Slow raise up: slower with less noise

 DCI (Digitally Controlled Impedance): to
eliminate reflexion: a certain impedance
value can be set for the output buffer

© BME-MIT 2020 16.slide

Input-Output blocks in FPGA
 Configuration of IO pins: in Verilog language find it in user

constraints file (ucf)
o Examples:
o NET “name” IOSTANDARD = "LVTTL";
o NET “net_name” LOC= " P6 " | PULLUP;

 In Verilog code they can be given by primitives
o Example:
PULLUP PULLUP_inst (

.O(signal_name) // Pullup output (connect directly to top-level
port)

);

© BME-MIT 2020 17.slide

CLK sources
 CLK signal path:

o CLK input (assigned pins)
• CLK can be received from even more than one input
• Differential CLK input is also possible

o DCM: Digital Clock Management
o BUFMUX: multiplexer to choose CLK source

• Signal on the external CLK pin
• Output of the CLK management unit
• Internal signal

o Clock division unit: Global Routing

© BME-MIT 2020 18.slide

Clock Management Unit
 Special wiring network
 The network can be divided

into several CLK domain
 Delay is minimal among the

different parts of the IC
o Fractal-like network structure
o CLK lines are more a less the

same in length

© BME-MIT 2020 19.slide

Clock Management Unit
 Special wiring network
 The network can be divided

into several CLK domain
 Delay is minimal among the

different parts of the IC
o Fractal-like network structure
o CLK lines are more a less the

same in length

© BME-MIT 2020 20.slide

Clock Management Unit
 Special wiring network
 The network can be divided

into several CLK domain
 Delay is minimal among the

different parts of the IC
o Fractal-like network structure
o CLK lines are more a less the

same in length

© BME-MIT 2020 21.slide

Clock Management Unit
 Special wiring network
 The network can be divided

into several CLK domain
 Delay is minimal among the

different parts of the IC
o Fractal-like network structure
o CLK lines are more a less the

same in length

© BME-MIT 2020 22.slide

DCM: Digital Clock Manager
 DCM used for:

o Eliminating CLK shift
o Phase shifting
o Multiplication/division of CLK frequency
o CLK conditioning, restoring duty cycle of CLK
o CLK buffering, relay

 Capable of generation of high quality CLK from internal signals
 Components:

o Delay Locked Loop (DLL)
o Digital Frequency Synthesizer (DFS)
o Phase Shift (PS)
o Status Logic (SL)
o Internal- and external buffer stages

© BME-MIT 2020 23.slide

DCM – phase shift
 Phase shift: the incoming CLK is shifted by a certain value of delay

by the appropriate signal extraction from the delay line
o Basically it implements a DLL without feedback

 Example: DDR (Dual Data Rate)
o Generation of negated and not-negated CLK signal
o Is it better than inversion? Yes, since 180° phase-shift can be set accurately:

in case of inversion the delay of the inverter should be accounted.

© BME-MIT 2020 24.slide

DCM – delay line & DLL
 Delay Locked Loop

o Similar to phase-locked-loop but now the control is based on the delay
between two signals

o The incoming signal is routed to a delay line with variable delay and the
delay is tuned until the delay between the two inputs disappears.

Delay line
Reference input

Feedback input

Control device

extracted delayed signal

Feedback applied

© BME-MIT 2020 25.slide

DCM – delay line & DLL
 DLL application: compensation of CLK

shift inside or outside of the device:
o CLK signal connected to an internal module or

external device is fed back to the DLL input
o DLL set the delay of the output signal in such a

way that no delay occur between the reference
signal and the measured output

o It basically implements a control loop

CLK signals appearing at points C and B are
measured and both are controlled by a DCM
module based on a common reference (A)

© BME-MIT 2020 26.slide

Considerations in terms of CLK signals
 Design only synchronous logic networks

o Use one CLK signal inside one block
o If slower operation is needed use enabling signals
o Changing between different CLK domains is complicated, avoid

it if possible, take care of it during development

 Synthesizer can buffer the CLK inputs in an autonomous
manner in normal case

© BME-MIT 2020 27.slide

Resources
 Main components:

o IO Blocks
o DCM (digital clock management)
o CLB (Configurable Logic Block)
o RAM
o Multiplier

 Synthesiser usually allocate
automatically the resources based on
the HW description. Nevertheless it is
worth to keep in mind the resources
available and their main features since
it determines the HW description.
o E.g.: if a shift register does not need a

parallel input/output it will not be used up
therefore can be implemented more
efficiently (see later)

© BME-MIT 2020 28.slide

Type of connections
 Connections are basically done by the synthesizer
 Different type of connections exist. Basis of grouping: how far the

components to be connected are
 Components logically connected should be close to each other

physically as well and let them be connected by a ‘rapid line’
 There exist direct connections inside a logic, e.g., carry logic (see

later)
 For more details: https://www.xilinx.com/support/documentation/user_guides/ug331.pdf

https://www.xilinx.com/support/documentation/user_guides/ug331.pdf

© BME-MIT 2020 29.slide

Architecture of CLBs
 CLB: Configurable Logic Block
 CLB building element: Slice

o 1 CLB conatins 4 slices
o The basic functions of the slices are

the same but differences can be found

 CLBs can be connected to each
other in several ways

© BME-MIT 2020 30.slide

Architecture of a slice

 LUT: look-up table
o Implementation of combinational

logic

 Flip-flop:
o Implementation of synchronous

logic

 Accelerating arithmetical
operation
o carry propagation
o direct AND and XOR gates

 Multiplexers

© BME-MIT 2020 31.slide

LUT: Look-up Table
 LUT: can be sonsidered as a 1-bit wide memory

of 4 addressing bits (RAM)
 Implementation of 4-bit input 1-bit output logic

functions
o Direct implementation: the output is given to each

input code

 If more variables are used then the LUTs inside
and outside of the slices can be connected to
each other hence expanding the inputs

Input code out
0 0 0 0 O0
0 0 0 1 O1
0 0 1 0 O2
0 0 1 1 O3
0 1 0 0 O4
0 1 0 1 O5
0 1 1 0 O6
0 1 1 1 O7
1 0 0 0 O8
1 0 0 1 O9
1 0 1 0 O10
1 0 1 1 O11
1 1 0 0 O12
1 1 0 1 O13
1 1 1 0 O14
1 1 1 1 O15

© BME-MIT 2020 32.slide

Flip flop
 Basic component for

synchronous digital network
o State machine: combinational

logic (LUT)+FF

 Widely configurable
o Set/reset input
o Clock enable
o Data input can be selected
o CLK can be inverted in some

cases
o Latch

© BME-MIT 2020 33.slide

Implementation of functional blocks
 Architecture of FPGAs facilitates the

implementation of functional blocks
o ALU: arithmetical and logical unit (addition,

subtraction)
• multiplication: not always but there exist solutions that

support multiplication

o Multiplexer
o Shift regiszter
o RAM

© BME-MIT 2020 34.slide

ALU: addition
 Addition: A xor B xor Carry

o Partial result of inputs A and B is generated
by the LUT

o Result (A+B) and the sum with C is generated
by a XOR gate no need for two LUTs

 carry: determines whether the carry bit
shall be propagated or modified:

COUT?=CIN

több bites összeadó lánc:

This branch is active when A=B
so any of them can be connected

© BME-MIT 2020 35.slide

Implementation of comparators
 Evaluation of equivalence (A==B ?):

o All bits shall be matched
o Using a LUT equivalence of two bit pairs can be

evaluated (two XNOR applied to an AND, but in
a LUT it is mapped into a truth-table)

o Using an internal multiplexer-chain it is
propagated whether previously matched all the
bits or not. In case of difference, 0 is propagated
forward the chain

 Evaluation of inequality (A>B):
o The results for lower significant bits are

propagated in this case as well
o Let’s have an N bit variable
o If An=Bn (n: N-1…0):

• The result of the lower stages are propagated

o If An≠Bn :
• If An =1, then A>B
• Otherwise A≤B

 Comparison can be efficiently
implemented using fast propagation

LUT

LUT

if An≠Bn, then in case An=1: An>Bn , since
An=1 és Bn=0

An=Bn branchAn≠Bn branch

© BME-MIT 2020 36.slide

Binary counter
 Counter:

• 000
• 001
• 010
• 011
• 100
• 101
• 110
• 111

 Lower bit is kept changing
 Bit n-th changes only when every previous bits

are 1
 The propagation multiplexers propagate the

lower bits if the actual bit is a 1. The
propagation will be a 1 for bit n-th if all the
lower bits are one.

 Using this technique addition logic is not
needed for the implementation of counter.

© BME-MIT 2020 37.slide

Multiplexer
 1-input multiplexer can be implemented using a

LUT :
o Enable line, select line and two inputs are needed

 Multiple-input multiplexer:
o Implementation based on LUTs: cascading 1-input

multiplexers

Input code out
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 1
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 0
1 1 1 0 1
1 1 1 1 1

en sel in1 in0

© BME-MIT 2020 38.slide

Multiplexer
 Cascading based on only LUTs: multi-level logic slower signal porpagation
 Logic inside slices: using further auxiliary components LUT-multiplexers can be

connected to each other inside a slice
 Using internal multiplexers multi-input functions can be implemented with

4-input LUTs

© BME-MIT 2020 39.slide

Multiplexer
 Synthesizer recognize it and maps into the FPGA, not needed to

implement is ‘manually’
 If-then-else structures: not always recognized

o Use simple, clean structures
o Output is required in each branches
o Minimize the number of input variables: easier to recognize what is the

intended operation

 case structure: it should be used for describing a multiplexer
o All possible outcomes has to be covered

© BME-MIT 2020 40.slide

Shift register
 General implementation: using flip-flops in slices can be

synthesized a general purpose shift-register
o Flip-flops in slices should be connected in series
o Serial/parallel in-/output can be implemented

 Resource-saving solution (SRL16 operation mode):
o Configuration SRAM cells of LUTs + LUT logic can be used as shift register
o A LUT is basically a 4-input multiplexer, therefore input code defines the

extraction point of the shift register

	Embedded and Ambient Systems�2020.12.08.
	FPGA: evolution
	FPGA: evolution
	FPGA: evolution
	FPGA: evolution
	CPLD macrocell
	FPGA: evolution
	FPGA manufacturers
	Storing the configuration
	Storing the configuration
	Storing the configuration
	Input-Output blocks in FPGA
	Input-Output blocks in FPGA
	Input-Output blocks in FPGA
	Input-Output blocks in FPGA
	Input-Output blocks in FPGA
	CLK sources
	Clock Management Unit
	Clock Management Unit
	Clock Management Unit
	Clock Management Unit
	DCM: Digital Clock Manager
	DCM – phase shift
	DCM – delay line & DLL
	DCM – delay line & DLL
	Considerations in terms of CLK signals
	Resources
	Type of connections
	Architecture of CLBs
	Architecture of a slice
	LUT: Look-up Table
	Flip flop
	Implementation of functional blocks
	ALU: addition
	Implementation of comparators
	Binary counter
	Multiplexer
	Multiplexer
	Multiplexer
	Shift register

