
© BME-MIT 2020Budapest University of Technology and Economics
Department of Measurement and Information Systems

Embedded and ambient systems
2020.11.03.

Practice 4
Development of UART communications:

a more sophisticated approach

© BME-MIT 2020 2.slide

Problems with our UART implementation
 Remember the final solution:

o This solution is a blocking implementation since
USART_Rx will not return until data is received

o Better solution to call USART_Rx function only if a
character can be found in the buffer

o An other good way to use interrupt

 Better to start a new project in the same way
done before
 See the following sides to remember stating a

new project

© BME-MIT 2020 3.slide

Strating with a new project
 File->New->Project->Silicon Labs MCU Project:

© BME-MIT 2020 4.slide

Strating with a new project
 File->New->Project->Silicon Labs MCU Project:

© BME-MIT 2020 5.slide

Strating with a new project
 Give project name and location, and set

Copy content:

© BME-MIT 2020 6.slide

Project created – start programming
 Main.c can be also renamed to UART_COM.c
 Although an empty C project has been created a

program skeleton is offered automaticly

© BME-MIT 2020 7.slide

Files to be added to the project
 Search the library where Simplicity Studio is

installed
o Contains include (inc: *.c) and source (src: *.h) files:
i:\Simplicity_studio\developer\sdks\gecko_sdk_suite\v2.6\platform\emlib\

 Following files have to be drag-and-dropped into
emlib library of the project (see next slide):
o em_cmu.c (clock management unit)
o em_gpio.c
o em_usart.c
o em_core.c
o em_emu.c (energy management unit)

© BME-MIT 2020 8.slide

Files to be added to the project
 Furthermore they have to be included into the

program:

© BME-MIT 2020 9.slide

Code to start with

#include "em_device.h"
#include "em_chip.h"
#include "em_cmu.h"
#include "em_gpio.h"
#include "em_usart.h"
#include "em_core.h"
#include "em_emu.h"

int main(void)
{

/* Chip errata */
CHIP_Init();

// Enable clock for GPIO
CMU->HFPERCLKEN0 |= CMU_HFPERCLKEN0_GPIO;

// Set PF7 to high
GPIO_PinModeSet(gpioPortF, 7, gpioModePushPull, 1);

// Configure UART0
// (Now use the "emlib" functions whenever possible.)

// Enable clock for UART0
CMU_ClockEnable(cmuClock_UART0, true);

// Initialize UART0 (115200 Baud, 8N1 frame format)

// To initialize the UART0, we need a structure to hold
// configuration data. It is a good practice to initialize it with
// default values, then set individual parameters only where needed.
USART_InitAsync_TypeDef UART0_init = USART_INITASYNC_DEFAULT;

USART_InitAsync(UART0, &UART0_init);
// USART0: see in efm32ggf1024.h

// Set TX (PE0) and RX (PE1) pins as push-pull output and input resp.
// DOUT for TX is 1, as it is the idle state for UART communication
GPIO_PinModeSet(gpioPortE, 0, gpioModePushPull, 1);
// DOUT for RX is 0, as DOUT can enable a glitch filter for inputs,
// and we are fine without such a filter
GPIO_PinModeSet(gpioPortE, 1, gpioModeInput, 0);

// Use PE0 as TX and PE1 as RX (Location 1, see datasheet (not refman))
// Enable both RX and TX for routing
UART0->ROUTE |= UART_ROUTE_LOCATION_LOC1;
// Select "Location 1" as the routing configuration
UART0->ROUTE |= UART_ROUTE_TXPEN | UART_ROUTE_RXPEN;

/* Infinite loop */
while (1) {
}

}

Use the following code as a reference for your work (continue from previous result):

© BME-MIT 2020 10.slide

Setting the terminal program
 Check UART (COM port number and its settings) in

Device Manager in Windows (now it is COM4)

© BME-MIT 2020 11.slide

Setting the terminal program
 A PC-based terminal program is needed to get

access to COM4 port: an option is putty.exe

1

2 3

4

5

6

© BME-MIT 2020 12.slide

Non-blocking character reception

 Check our previous solution again
oWhat does USART_Rx do(stay on it by mouse pointer)?

o Operation: remains in while loop until in
USART_STATUS_RXDATAV bit flips to 1, then returns
with the received character (RXDATA)

• See 03_EFM32_Reference_manual_EFM32GG-reference_manual.pdf
on page 481 (and next slide)

o Blocking can be avoided if we check the STATUS reg

© BME-MIT 2020 13.slide

Non-blocking character reception

 Non-blocking solution: check STATUS reg. and call
USART_Rx() function only if incoming character is
available

© BME-MIT 2020 14.slide

Non-blocking character reception
 Search em_usart.h for a function that checks

STATUS register (if available, hopefully it is):

© BME-MIT 2020 15.slide

Non-blocking character reception
 Application of USART_StatusGet() function:

 Even more elegant solution if we implement an
own non-blocking function to receive characters

Implementation of non-blocking function
(put it before the main function)

Application of non-blocking function
(put it in the main function)

© BME-MIT 2020 16.slide

Non-blocking character reception
 Remark on USART_Tx() function:

o If data to be sent is too much even USART_Tx()
function can be blocking – have a look at USART_Tx()

o Clearly seen that blocking may happen but “less
severe” –> USART_STATUS_TXBL bit is checked in
STATUS register

© BME-MIT 2020 17.slide

Non-blocking character reception
o USART_STATUS_TXBL bit (TXBL may appear in other registers- be careful)

See 03_EFM32_Reference_manual_EFM32GG-reference_manual.pdf
on page 481

© BME-MIT 2020 18.slide

Non-blocking character reception
o Operation of data transmission:

• Generated data is loaded into TX
Register only if TX Register is empty

– Otherwise data in TX Register is
overwritten and data loss may occur

• If TX Buffer is empty data is loaded
into it from TX Register

• From TX Buffer data is sent out via
the communication line (UART)

• R=115200bps->1byte needs 70us
• T_clk=1/14MHz=70ns->1000cycles

per byte!!!

© BME-MIT 2020 19.slide

Interrupt-based character reception
 Problem with non-blocking character reception

o If the main program executes a long-lasting task before
repeated checking of character is done data loss may
occur

o To prevent that kind of data loss application of
interrupt can be a solution

© BME-MIT 2020 20.slide

IT initialization for a peripheral
 Initialization of IT in a general case:

o Enabling peripheral (turn perif. on, config., etc.)
o Determination of IT-handling function
o Clear of IT flag belonging to the certain IT

• An IT request may be stuck from a previous state that can
cause problem since after enabling IT a false interrupt can
take action. A stuck IF can be the consequence of a non-
initialized peripheral (e.g. IT occurs on a floating input)

o Enabling the IT of a certain peripheral
o Clearing of global IT flag (if needed)
o Enabling of global IT

NOTE: THIS SLIDE COMES FROM THE INTERRUPT TOPIC OF LECTURES
USE THAT LECTURE AS A REFERENCE IF NEEDED

DONE
previously (UART_init)

C
O
M
E
S

N
O
W

L
A
T
E
R

© BME-MIT 2020 21.slide

Interrupt-based character reception
 Interrupt has to be enabled for UART

03_EFM32_Reference_manual_EFM32GG-reference_manual.pdf
See page 475

03_EFM32_Reference_manual_EFM32GG-reference_manual.pdf
See page 490

© BME-MIT 2020 22.slide

Interrupt-based character reception
o Check em_usart.h for interrupt enable function

o Insert USART_IntEnable() function
flags = register content, here the 2nd bit is interesting
(see previous slide)

• Check efm32_gg_usart.h
#define USART_IEN_RXDATAV (0x1UL << 2) /**< RX Data Valid Interrupt Enable */

• Code to be applied:

© BME-MIT 2020 23.slide

Interrupt-based character reception
 Interrupts have to be cleared (all ITs) for UART

o Check em_usart.h for interrupt clear function

03_EFM32_Reference_manual_EFM32GG-reference_manual.pdf See page 489

© BME-MIT 2020 24.slide

Interrupt-based character reception
o All bits in USARTn_IFC register have to be cleared

• A define can be found in efm32gg_usart.h for that purpose:
#define _USART_IFC_MASK 0x00001FF9UL /**< Mask for USART_IFC */

o Insert USART_IntClear() function after UART init
o Code to be applied:

o This step is precautious: it is very probable that the
program would work but in general, not clearing IT
flags can cause a trouble

© BME-MIT 2020 25.slide

Interrupt-based character reception
JUST DONE COMING NEXT

 So far UART peripheral-related IT has been dealt
with
 From now let’s see the core-related IT

© BME-MIT 2020 26.slide

Interrupt-based character reception
 Core-related IT– IT for the UART has to be enabled

o em_decive.h + F3 (among included header files in at
the top of the program)

-> find in it efm32gg990f1024.h + F3
-> find in it core_cm3.h + F3

NVIC functions are needed

 In core_cm3.c search for

© BME-MIT 2020 27.slide

Interrupt-based character reception
o In core_cm3.c search for

• void __NVIC_EnableIRQ(IRQn_Type IRQn)

– IRQn_Type IRQn + F3 to check the possible ITs to find:
UART0_RX_IRQn = 20, /*!< 20 EFM32 UART0_RX Interrupt */

o Code to be applied:

© BME-MIT 2020 28.slide

Interrupt-based character reception
 Core-related IT– IT flags has to be cleared

o em_decive.h + F3 (among included header files in at
the top of the program)

-> find in it efm32gg990f1024.h + F3
-> find in it core_cm3.h + F3

NVIC functions are needed

 In core_cm3.c search for

© BME-MIT 2020 29.slide

Interrupt-based character reception
o In core_cm3.c search for

• void __NVIC_ClearPendingIRQ(IRQn_Type IRQn)

– IRQn_Type IRQn + F3 to check the possible ITs to find:
UART0_RX_IRQn = 20, /*!< 20 EFM32 UART0_RX Interrupt */

o Code to be applied:

UART Perif. IT
clear and enable

Proc. core IT
clear and enable

© BME-MIT 2020 30.slide

Interrupt-based character reception
 ITs have just been correctly configured

oWhen a character is received at UART0, IT is generated

 IT function has to be implemented
oWhat should happen when IT event occurs
o Check startup_gcc_efm32gg.s in Project Explorer

© BME-MIT 2020 31.slide

Interrupt-based character reception
o Check startup_gcc_efm32gg.s in Project Explorer
o Search for UART0_RX_IRQHandler:

o UART0_RX_IRQHandler is a weak function so it can be
overdefined in the program without causing any error:

© BME-MIT 2020 32.slide

Interrupt-based character reception
o Implementation of IT function in the program code
o UART_RX_IRQHandelr function has to be defined

before the main function
• During IT the received data has to be sent to UART

o Code to be applied:

o Note: no input parameter and no return value
-> void func(void){

what happen during IT;
clear IT flag; }

© BME-MIT 2020 33.slide

Appendix: code – a working version

© BME-MIT 2020 34.slide

Appendix: code – a working version

© BME-MIT 2020 35.slide

Appendix: code – a working version

	Embedded and ambient systems�2020.11.03.
	Problems with our UART implementation
	Strating with a new project
	Strating with a new project
	Strating with a new project
	Project created – start programming
	Files to be added to the project
	Files to be added to the project
	Code to start with
	Setting the terminal program
	Setting the terminal program
	Non-blocking character reception
	Non-blocking character reception
	Non-blocking character reception
	Non-blocking character reception
	Non-blocking character reception
	Non-blocking character reception
	Non-blocking character reception
	Interrupt-based character reception
	IT initialization for a peripheral
	Interrupt-based character reception
	Interrupt-based character reception
	Interrupt-based character reception
	Interrupt-based character reception
	Interrupt-based character reception
	Interrupt-based character reception
	Interrupt-based character reception
	Interrupt-based character reception
	Interrupt-based character reception
	Interrupt-based character reception
	Interrupt-based character reception
	Interrupt-based character reception
	Appendix: code – a working version
	Appendix: code – a working version
	Appendix: code – a working version

