
© BME-MIT 2020Budapest University of Technology and Economics
Department of Measurement and Information Systems

Embedded and ambient systems
2020.11.18.

Practice 5
Development of UART communications:

even more sophisticated approach

© BME-MIT 2020 2.slide

Optimization if IT
 Recall IT topic from lecture:

© BME-MIT 2020 3.slide

Optimization if IT
 Recall IT topic from lecture:

© BME-MIT 2020 4.slide

Optimization if IT
 In our IT function three functions are used:

o An IT function has to be rapid not to block other ITs
and the running of the main program for a long time

o Those tasks that are not necessary in the IT routine
should be moved into the main program

o Time critical tasks can remain in the IT routine
o What functions can be moved into the main program?

© BME-MIT 2020 5.slide

Optimization if IT
 In our IT function three functions are used:

o What functions can be moved into the main program?
• USART_IntClear() is obviously needed in the IT function
• USART_Rx() seems that can be moved into the main program

but cannot be moved since data can only be read in IT
routine otherwise data remains in RxData buffer that
generates a new IT immediately when IT routine is left

-> we stuck in the IT
• USART_Tx() really can be and advised to be moved into the

main program since it is a blocking function and in case of
large amount of data can block e.g. other interrupts

© BME-MIT 2020 6.slide

Optimization if IT
 Previous solution for IT routine:

 Advanced solution for IT routine:

USART_Tx() is moved into the main program:

© BME-MIT 2020 7.slide

Efficient code: optimization level
 To generate a more efficient (in terms of memory

usage, runtime, etc.) code optimization should be
applied:
(O3)

1

2

3

4

5

6

7

© BME-MIT 2020 8.slide

Efficient code: optimization level
 After applying the ‘most optimized’ –O3

optimization level the code will not work any
more
 Explanation:

o The optimizer replaces variables with constants whose
value does not change in the main program (according
to the compiler)

• Such variables are rx_flag and rx_data!
• The compiler optimizes the main program and does not

consider the IT function definition before the main program
(where rx_flag and rx_data change their values)

• To prevent the optimizer changing rx_flag and rx_data they
must be volatile

© BME-MIT 2020 9.slide

Efficient code: optimization level
 To prevent the optimizer changing rx_flag and

rx_data to constants they must be volatile

 In IT functions the variables used must be volatile
o This type indicate to the compiler that the value can

change and should not be optimized

 This kind of errors (if any) are difficult to discover

© BME-MIT 2020 10.slide

Energy friendly operation
 In many cases embedded systems are operated

without any maintenance therefore energy
friendly operation can be a real issue (battery life)
 Recall lecture:

o EM1 energy
friendly operation
mode is promising

o Proc. is in idle state
but an IT can wake
it up

o Can we save
energy?

© BME-MIT 2020 11.slide

Energy friendly operation
 Energy consumption can be checked

using Energy Profiler in Simplicity St.
 Current consumption without EM1 energy saving

mode: 4.37mA

© BME-MIT 2020 12.slide

Energy friendly operation
 EMU_EnterEM1() function shall be applied and

em_emu.c and h header file must be included into
the project and into the program, respectively

o The code should be modified as:

© BME-MIT 2020 13.slide

Energy friendly operation
 Current consumption with EM1 energy saving

mode: 1.96mA (consumption reduced by 55%!!!)

© BME-MIT 2020 14.slide

Application of Stdio (UART0)
 So far UART0 has been used directly via

USART_Rx() and USART_Tx() functions
 I/O of standard C can be rerouted and upper level

routines may have been already implemented to
use low level functions for character transmitting
and reception
 If these functions are applied for UART peripheral

then actually a printf() function will send
characters to the serial port

© BME-MIT 2020 15.slide

Application of Stdio (UART0)
 To achieve this high level functionality

o retargetio.c and retargetserial.c files have to be added
to the project (drag and drop)

o The files are found in:
• [installation folder]\Simplicity_studio\developer\sdks

\gecko_sdk_suite\v2.6\hardware\kit\common\drivers\

o retargetserial.h and stdio.h must be included into the
program

o IT function and IT handling (enable, clear) should not
be active (comment them out) because the high level
print function will handle them

o Neither character sending in while is needed

© BME-MIT 2020 16.slide

Application of Stdio (UART0)

 Preprocessor directives have to be defined for the
project:
o RETARGET_UART0 : we want to use UART0
o RETARGET_VCOM : UART0 be connected to USB port

as virtual serial port via board controller

© BME-MIT 2020 17.slide

Application of Stdio (UART0)
o RETARGET_UART0 : we want to use UART0
o RETARGET_VCOM : UART0 be connected to USB port

as virtual serial port via board controller
• Both values are 1
• Set the in Project

->properties

© BME-MIT 2020 18.slide

Application of Stdio (UART0)
 Now everything is set in the project to be able to

use printf() to write to the UART
 We have to work on the code to use it:

o Initialization:
• RETARGET_SerialInit(); and
• RETARGET_SerialCrLf(true); function must be called

o Application of printf function:
• printf(“\n ********** Hello! *********** \n”);

• Code to be applied:
– Note: new functions are

before the while

	Embedded and ambient systems�2020.11.18.
	Optimization if IT
	Optimization if IT
	Optimization if IT
	Optimization if IT
	Optimization if IT
	Efficient code: optimization level
	Efficient code: optimization level
	Efficient code: optimization level
	Energy friendly operation
	Energy friendly operation
	Energy friendly operation
	Energy friendly operation
	Application of Stdio (UART0)
	Application of Stdio (UART0)
	Application of Stdio (UART0)
	Application of Stdio (UART0)
	Application of Stdio (UART0)

