Embedded and Ambient Systems
2021.09.28.

SW architectures of embedded systems

a Méréstechnika és
Informaciés Rendszerek
Tanszék

Budapest University of Technology and Economics © BME-MIT

Department of Measurement and Information Systems

SW development alternatives

= Resources! (CPU, MEM, Energy)

= Different approach compared to a PC: HW-based programming

= Direct handling of:
0 Polling
O Interrupt (IT)

= Low level programming (Assembly)
O To solve less complex tasks
O Time critical applications
O Difficult development and debugging
0 Exploiting special peripheral
= High level programming (C, C++, Java?)
O Less efficient (not always)

* Some specialties are difficult to understand by humans, e.g. delayed branch, pipeline
design...

O Faster development, reengineering and scalability
O ASM code parts can be inserted in a C-language environment

= Embedded operation system

= Graphical programming languages, automatic code generation
- R |'|-|_|_|- amsoon raaszerek 2.5lidle

Tanszék

Services

= Basic tasks
O Observations
O Handling peripherals
O Handling events
O Timing
0 Communications
O Data processing

= Problem:
O Processor: sequential operation
O Events: occur in an asynchronous manner, overlapped in time

= Various requirements (on program structure):

0 E.g.the program of the microwave oven is finished. Not a critical application, e.g. 1s
delay is not even noticed

O Direction indicator in a car: not that much time critical but safety critical therefore
the requirements are more severe

O Braking system in a car is strongly time- and safety critical (1s delay does matter)
= Handling of tasks has to be planned (process scheduling)

. Méréstechnika és .
© BME-MIT Informaciés Rendszerek 35||de

Tanszék

Considerations of program structure used

Considerations:

O

@

O O O O

O O O O O

Resources available / softver-overhead
* QOverhead due to extra computation of process scheduling

Memory (storage capacity) available (RAM, ROM)
Predictability (planning of the SW system in advance)

Scalability, re-engineering
* Need for extra development due to inserting a new task

Time needed for executing a task
Reaction time for an external asynchronous event
Prioritization of tasks

Usage of processor
* Energy saving operation, how much the resources of the processor is exploited

Protection (memory, run time)

Recursion, support of function (re)calls

Implementation of HW handling

Implementation of communications between tasks

Application field (e.g. consumer electronics, automotive industry)

- Méréstechnika és
© BME-MIT Informacios Rendszerek
Tanszék

4 slide

Program structuring disciplines

= Cyclic programming
0 Simple cyclic
0 Weighted cyclic
O Time-controlled cyclic
O Strict time-controlled cyclic

= Cyclic process scheduling with interrupt (IT)
= Scheduled functions

- Méréstechnika és .
© BME-MIT Informaciés Rendszerek 5.slide
Tanszék

Simple cyclic program structure

= Tasks are executed one after the other in a cyclic manner (e.g.
bicycle computer)

void main() {

while (TRUE){

/\l if (button1_pushed==true) {change_menu() ;}

| if (sensor_state==active) {calculate_speed() ;}

! if (speed_calculated==true) {display_speed();}

}

} Border of cycles

[ke : % : AN H l
S N

b. A

time
Service is not asked for, i.e., no button pushed, etc.

(but the processor runs /checking if a process should be run or not/->not energy friendly!)

. Méréstechnika és .
© BME-MIT Informaciés Rendszerek 6S||de

Tanszék

Simple cyclic program structure

Simple structure
Communications between tasks:

O Shared variables, no problem since the are not preemptive: only one task runs at a

time
Scalability:
O Pros: simple structure, fast development at the beginning
0 Cons: fixed structure

HW handling: polling (not IT)
If a new task is inserted the response time is increased

Not preemptive (only one task runs until it finishes its job)
O Mutual exclusion is not a problem (more than one process cannot run)
O A long lasting process can block the running of others

Applicable only where response time is not critical
Not energy friendly since the processor operates continuously

- Méréstechnika és
© BME-MIT Informacios Rendszerek
Tanszék

7.slide

Weighted cyclic program structure

= The tasks are executed one after the other in a cyclic manner, but
certain tasks are checked more frequently to make it run or not

void main() {
while (TRUE){
if (sensor_state==active) {calculate_speed() ;}
[if (sensor_state==active) {calculate_speed() ;}]

if (button1=pushed==true) {change=menu() ;)
if (sensor_state==active) {calculate_speed() ;}
if (sensor=state==active) {calculate=speed() ;)

if (button1_pushed==true) {change_menu() ;}
if (speed_calculated==true) {display_speed();}

} Border of cycles

Y Y YYYYYYYYY Y

Time

. Méréstechnika és .
© BME-MIT Informaciés Rendszerek 8S||de

Tanszék

Weighted cyclic program structure

= Simple structure
= Communications between tasks:

O Shared variables, no problem since the are not preemptive: only one task runs at a
time
= Scalability:
O Pros: simple structure, fast development at the beginning
0 Cons: fixed structure
= HW handling: polling (not IT)
= |f a new task is inserted the response time is increased
= Not preemptive (only one task runs until it finishes its job)
O Mutual exclusion is not a problem (more than one process cannot run)
O A long lasting process can block the running of others

= Applicable only where response time is not critical
= Not energy friendly since the processor operates continuously
= A basic level of priority can be assured

. Méréstechnika és .
© BME-MIT Informaciés Rendszerek 9S||de

Tanszék

Time-controlled cyclic program structure

= Polling is not continuous but controlled by a timer

= |n atime-controlled cycle the structure can be simple cyclic or
weighted cyclic

TimerITServiceRoutine(){
if (button1l_pushed==true) {change_menu();}
if (sensor_state==active) {calculate_speed();}
if (speed_calculated==true) {display_speed();}

Border of cycles (timer IT)

t— One cycle must fit in time duration—i

Y A\

A B C“ A C“ B

-« — <
-~ N R

\J Time

Processor can be in idle state

- Méré hnika é .
© BME-MIT M Ini?orer?'\t:cciés Raeremgszerek lOS“de

Tanszék

Time-controlled cyclic program structure

= During one cycle the properties of simple cyclic and weighted cyclic
structures are valid here

= Good choice for systems using scheduled control, e.g., sampling
sighal processing systems
= Cycle time must be less than the required response time
O Run time of a cycle must fit between two timer IT

= Advantage over simple cyclic and weighted cyclic structures is
energy friendly operation
O Processor can be in idle state between the executed tasks and next timer IT

- Méré hnika é .
© BME-MIT M Ini?orer?'\t:cciés Raereészerek llS“de

Tanszék

Strict time-controlled cyclic structure

e The execution of each task starts at a scheduled time in a strict

sense

e Administration:

— In a table: time instants

d function references (in hyper cycle)

o

ﬁ?‘? T

C A B A

. Méréstechnika elgé .
© BME-MIT M Informacios Rendszerek lZS“de
T !

Strict time-controlled cyclic structure

Scalability:
O Pros: start of running can be calculated precisely

0 Cons: inserting a new task requires re-scheduling every other
tasks

HW handling: polling
Non-preemptive: one task runs at a time
O No problem with shared variables

Every task must fit in its assigned time slot

O The run time of every task must be known (at least its possible
worst case runtime)

Good for real-time systems: strict timings

. Méréstechnika és .
© BME-MIT Informaciés Rendszerek 135||de
Tanszék

Cyclic process scheduling with interrupt (IT)

FLAG button, sensor;

void interrupt Button_IT Handler() { Button—fast_A(); button=TRUE; } |Low-level events are handled by interrupts
o E.g. magnetic sensor position

void interrupt Sensor_IT_Handler() { Sensor_fast(); sensor=TRUE; }

void main() {
(while (TRUEN)
if (button) =FALSE; Service_button(); }
if (sensor) {sensor =FALSE; Service_ sensor(); }

display_speed();} —
CaIcuIati(jJ1C speed based on time-stamp can happen later

Time-stamp of sensor=TRUE is known and saved

<— Simple cyclic

K } Time criticafexactly when the sensor passed
} Non-time critical: calculation and dislay speed
l Border of cycles l
ITe \ ITo \
A Acont'd B C Ccont’d A

Time

——> Response time (fast: justIT) | Response time (fast: just IT)

Response time (slow: from IT to display) 'Response time (slow: from IT to display)

- Méré hnika é .
© BME-MIT M Ini?o‘rer?'\t:cciés Raeremjszerek 14S||de

Tanszék

Cyclic process scheduling with interrupt (IT)

" |T (interrupt) is needed when polling is not enough since
the application is time-critical

O Independently, certain peripherals can be handled by polling

= Deterministic behavior is not true any more
O IT may happen any time and program have to tolerate it

" Mutual exclusion must be assured for interrupts
O Not to overwrite a variable during interrupt

= Response time is increased by time of interrupts
" Frequently applied solution (expected in many cases)
" |nserting a new task increases response time

" |T routine: execute only the most important tasks, further
processing can be done later

e . Méréstechnika és .
] © BME-MIT Informaciés Rendszerek 155||de
Tanszék

Scheduled functions

= Every task is implemented in a function

= |n case of an event (like interrupt) to execute the function, the function is put in

a function queue
= |f a function to be executed exists then the scheduler call

= Uniform function format is used

void interrupt Button_IT _Handler() { Button_fast_A();,/PutFunction(Service_button))}
void interrupt Sensor_IT _Handler() { Sensor_fast();PutFunction(Service_sensor)}
void interrupt display_timer_IT_Handler() {PutFunction(Service_display_timer)}
void Service_button();
void Service_sensor();

void Service_display_timer();

void main() {

(vhile (TRUE){) e \

while (IsFunctionQueueEmpty()) ;
A Acont’d C

CallFirstFromQueue();

at from the queue

_! Yy

—
\ 4

Response time

- Méréstechnika és
© BME-MIT Informacios Rendszerek
Tanszék

Time

16.slide

Scheduled functions

= HW handling: interrupt

= Communications between tasks:

O Task —task : no problem

O Task — IT: mutual exclusion must be assured-take care of shared
variables

= Scalability:

O Inserting a new task is easy

O The running environment requires extra care
= Calling from the function queue:

O FIFO

O Based on priority

= QOperation is similar to embedded systems

- Méré hnika é .
© BME-MIT M Ini?orer?'!t:cciés Raereészerek 17S||de

Implementation of scheduled functions

= A possible implementation

_, Function pointer
typedef void (*fp Hvoid);

fp functionToCall;
#define N_FN 8

#define N_FN_MASK (N_FN-1)

fp fnArray[N_FN]; » Array of function pointers >
uint16_ t fnArray_top=0;
uint16_t fnArray_bott=0; Pointer of new function is
- - laced in th
void putFn(void (*func)){ praced I the array
TnArray|[fnArray_ top func;
fnArray_top = (anrray_top+1)&(N_FN_MASK); putFn getkn
¥ Check if - anrl'ay top ==~ :
eck If new tfunction — J
INt32_t getFn(){ exists or hot _>| func j&—===

Int32 t retval;

fp functlonToCall;//’
1T (fnArray_top == “fnArray bott){ + Nonew function
retval = -1;
} else-§ —> New function exists
retVal anrray_bott
anrray_bott = (anrray bott+1)&(N_FN_MASK) ;
functionToCall = fnArray|[retval];
functionToCall(); —» Function is called

+
return (retval);

- Méréstechnika és
© BME-MIT Informacios Rendszerek
Tanszék

fnArray_bott

18.slide

Considerations

" Choose the simplest scheduling method that is
still able to meet the requirements

= Task scheduling has to be planned carefully since
change of concept or even inserting a new task
may lead to huge extra work

- Méréstechnika és .
© BME-MIT Informaciés Rendszerek 19.slide
Tanszék

Interrupts definition

= Running of the program is interrupted due to an
external event, and the code that belongs to the
interrupting event starts running

= The code of the interrupting event is “inserted” into the
main program

= Returning of the main program from the interrupted
state the main program should not “notice” that it had
been interrupted. To assure that:

&
(4°)
-
an
@)
bl
o
=
1°)
=

O Work registers have to be restored
O Processor status registers have to be restored
0 Stack has to be restored

0 In short: context change has to be done

"= |n embedded systems: several different architectures
and solutions exist, therefore general considerations has
to be completed in a device-specific manner

- Méré hnika é .
© BME-MIT M Ini?o‘rer?'\t:cciés Raeremjszerek ZOS“de

Tanszék

	Embedded and Ambient Systems�2021.09.28.
	SW development alternatives
	Services
	Considerations of program structure used
	Program structuring disciplines
	Simple cyclic program structure
	Simple cyclic program structure
	Weighted cyclic program structure
	Weighted cyclic program structure
	Time-controlled cyclic program structure
	Time-controlled cyclic program structure
	Strict time-controlled cyclic structure
	Strict time-controlled cyclic structure
	Cyclic process scheduling with interrupt (IT)
	Cyclic process scheduling with interrupt (IT)
	Scheduled functions
	Scheduled functions
	Implementation of scheduled functions
	Considerations
	Interrupts definition

