Embedded and Ambient Systems 2021. 11. 16.

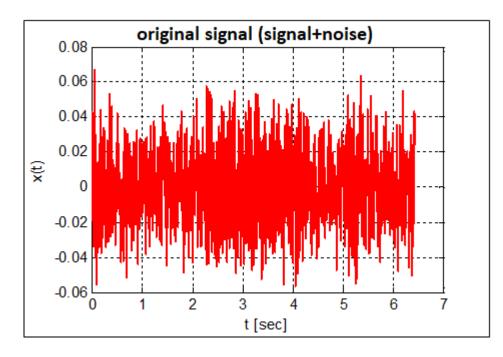
Basic tasks in signal processing, extraction of useful information

Méréstechnika és Információs Rendszerek Tanszék

Budapest University of Technology and Economics Department of Measurement and Information Systems

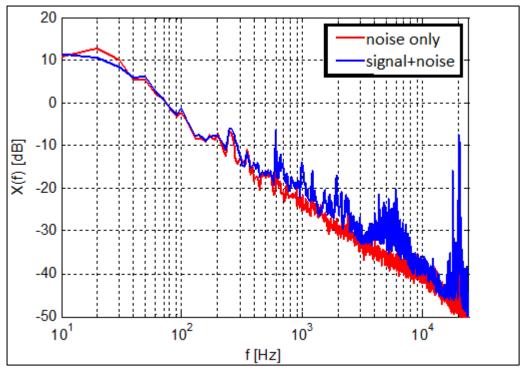
© BME-MIT

Basic tasks


- Filtering: extraction of useful information
 - Signal detection: signal distortion does not necessarily causes problem (e.g.: overshoot of a filter is not a problem when exceeding a threshold level is observed)
 - Parameter measurement: the signal parameter of interest must be preserved (e.g.: filter overshoot is not allowed when amplitude is to be measured
- Signal generation
- Measurement of signal properties
 - Average (DC component)
 - RMS (root mean square)
 - o Frequency
 - o Phase
- Determination of signal spectrum (Fourier transformation)
- Modulation/Demodulation

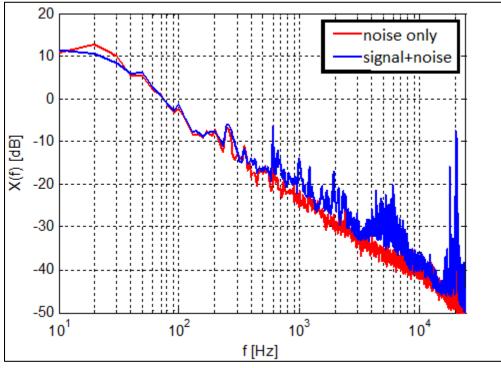
Digital filtering

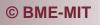
Example: measurement of acoustic noise of DC motor


- Signal measured is totally buried in the noise, the noise level seems to be very high
- How the useful signal can be distinguished from noise?

Spectrum calculation – digital filtering

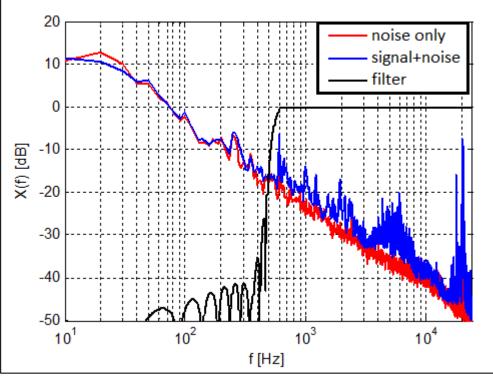
- Examination of the signal in the frequency domain
- Determine the characteristics of the signal and noise
 - It is worth to perform two measurements (if possible, one with noisy and another with noiseless signal) or one measurement but only-noise frequency parts should be examined separately (by filtering it out from the whole signal spectrum)
- Signal should not be distorted: overshoot and amplitude are important parameters





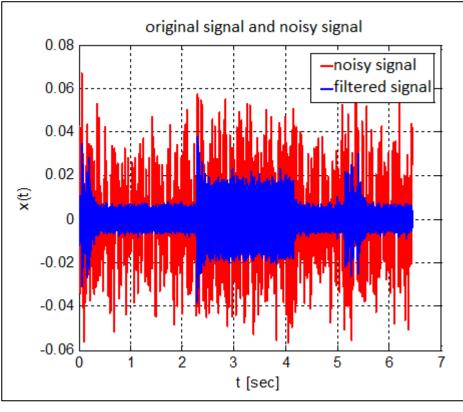
Spectrum calculation – digital filtering

- It has to be determined which part of the spectrum should be removed to reduce noise
- Noise is dominant when frequency is below approximately 600 Hz
- Above 600 Hz signal is significantly larger than noise
- Under 600 Hz due to the noise level it is not known whether signal component is present or not



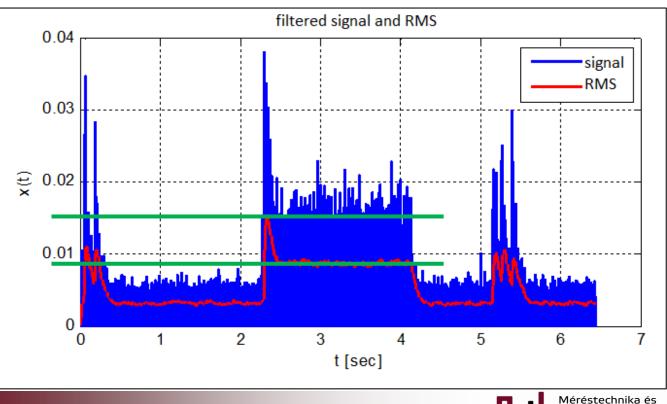
Filter design – digital filtering

- An appropriate filter needs to be designed that:
 - Preserves the spectral properties of the signal
 - Removes as much noise from the signal as possible
- Above 600 Hz the transfer characteristic should be preserved
- Under 600 Hz the cutting steepness of the filter and noise suppression should be large



Digital filtering

- Filter design (pl. MATLAB, octave, python)
- Filtering
- Measurement of parameters of the filtered signal

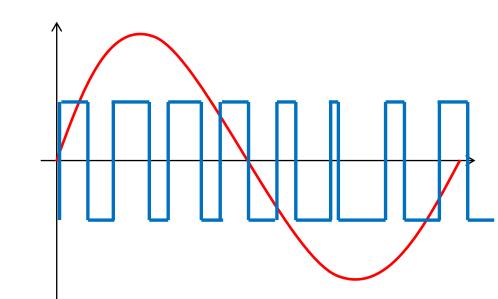

Méréstechnika és Információs Rendszerek Tanszék

Measurement of signal parameters

- Parameters to be measured:
 - Instantaneous RMS value (in a certain window)
 - Maximal instantaneous RMS level

© BME-MIT

Stationary RMS level


Információs Rendszerek

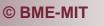
Tanszék

Signal generation

- Typical waveforms:
 - o Sinusoidal
 - o Triangle
 - Sawtooth
 - o Square
 - Trapezoid
 - o Noise
- Sinusoidal signal:
 - General excitation for testing
 - Modulation
 - Motor control: sinusoidal phase current based on PWM (pulse width modulation)

9.slide

© BME-MIT


Design of data processing systems

Preliminary measurements

- Signal analysis
 - Time-domain measurements and examination of time-domain signal properties
 - Examination of spectrum (filtering the signal to remove noise)
- Algorithm design
 - Searching for possible solution (scientific/technical literature, internet, etc.)
 - Choosing an algorithm that fits (i) for the resources of the embedded system intended to be used and (ii) expected quality features of the processing
 - Offline testing of algorithm (e.g. MATLAB, python, octave)
 - HW choice
 - Based on the expected features, e.g. accuracy, speed, etc.
 - More severe quality requirements -> more powerful processor (e.g. floating point calculations)
 - Computational capabilities
 - o Memory needed
 - o Price
- Algorithm implementation
 - o Implementation of the SW environment is also time consuming: sampling, timing, etc...
- Testing

Mutual influence on each other

