
© BME-MITBudapest University of Technology and Economics
Department of Measurement and Information Systems

Embedded and Ambient Systems
2021. 12. 07.

SW architecture of data processing systems

© BME-MIT 2.slide

SW architecture of data processing system
 Model of operation:

 Based on data access and data handling two main
architectures can be distinguished:
o Sample-based data processing
o Block of data-based data processing

ADC DACSignal proc.

© BME-MIT 3.slide

Sample-based data processing
 In every sampling time instant the signal processing routine

processes a new sample, i.e. receives a new sample and generates
a new output (an other sample)
o Remarks, notes:

• Samples my be received (and generated after processing) from more, simultaneously
processed signals

• In general the presence of input/output signal is not required in a data processing system
– Measurement of signal parameter: only input is present (output is a number, representing e.g. amplitude)
– Signal generation: only output is present (input: signal parameters as numbers)

y1
 =

 p
ro

ce
ss

(x
1)

y2
 =

 p
ro

ce
ss

(x
2)

y3
 =

 p
ro

ce
ss

(x
3)

y4
 =

 p
ro

ce
ss

(x
4)

yN
=

pr
oc

es
s(

xN
)

© BME-MIT 4.slide

Study of data processing system (1/a)
 At the beginning of Timer_IT, analog-to-digital conversion (ADC) is initiated
 Simple but not resource saving method: end of ADC is waited and just after digital signal

processing (DSP) is started. Since DSP has to be finished until the next Timer_IT, time of
ADC is wasted.
o Digital to analog conversion (DAC) is less critical in general since it only has to be initiated and then

performed in the background. The result appears at the output independently from us.

 If timing is not critical this simple method can be well applied
 Delay = AD conversion + signal processing + DA conversion
 Processing time < sampling time – AD conversion

Timer_IT

time

Timer_IT

Signal processing: process()
Signal processing has to be

finished until the next
Timer_IT After the running of function

implementing data processing
has finished, output data is

ready to be sent to DAC

Signal processing

ADC data is ready
signal processing is
started

© BME-MIT 5.slide

Study of data processing system(2/a)
 Signal processing architecture with well-defined timings :

o Timer-based IT
o DAC data generated in previous DSP step is being converted into the analog domain
o Reading ADC result initiated at the previous Timer_IT
o Initiating new ADC
o Running signal processing algorithm that processes ADC result

 Delay = 2 * sampling time + DAC delay
 Processing time < sampling time

Timer_IT

time

Timer_IT

Signal processing:
process()

After the running of function
implementing data processing

has finished, output data is sent
to DAC only at the next Timer_IT

ADC data is ready, but used
only in the next signal

processing step

Signal processing

© BME-MIT 6.slide

Study of data processing system (2/b)
 Processed data is ready after return from signal processing function, therefore DAC is

possible. But DAC is performed only after next Timer_IT because this way the operation
remains deterministic: in some cases runtime of signal processing function may change
(due to parameter change or button pushed, etc.) therefore DAC data timing could suffer
from jitter. At a price of extra delay deterministic behavior is assured.

Timer_IT

time

Timer_IT

Signal processing:
process()

After the running of function
implementing data processing

has finished, output data is sent
to DAC only at the next Timer_IT

ADC data is ready, but used
only in the next signal

processing step

Signal processing
Jitter in timings

© BME-MIT 7.slide

Sample-based signal processing
 Pseudo-code (workframe and processing function):

Timer_IT(){
// result of previous signal processing step is used (sent to DAC)
writeDAC(ADCout);
// reading ADC sample (result of ADC initiated at the previous Timer_IT) into ADCin

ADCin = readADC ();
// initiation of sampling and ADC of new data: this data is stored in ADC data register

//and read after next Timer_IT: see ADCin = readADC();
sampleADCstart();
// reading ADC sample (result of ADC initiated at the previous Timer_IT) into processing function
ADCout = process(ADCin);

}

process(data_in){
…. Some kind of DSP…. E.g.: data_out = data_in * data_in; // simple squaring as an example
return data_out;

}

© BME-MIT 8.slide

Study of data processing system (3/a)
 At the beginning of Timer_IT, analog-to-digital conversion (ADC) is initiated
 Readiness of ADC data generates an IT and signal processing is just then initiated. This way delay is

shorter but SW architecture is more complicated:
o A new IT appears in the system
o It has to be assured that Timer_IT be capable of interrupting signal processing: based on the figure below, it is

possible that signal processing is going on while sampling should be initiated. Sampling cannot be waited
therefore signal processing must be interrupted to initiate ADC.

 Delay = ADC delay + sampling time+ DAC
 Processing time < sampling time

Timer_IT

time

Timer_IT

Signal processing:
process()

After the running of function implementing
data processing has finished, output data is

sent to DAC only at the next ADC_IT

Signal processing

ADC_IT: ADCdata is ready, signal
processing is initiated immidiatrely.

© BME-MIT 9.slide

Example: first order IIR filter (Giant Gecko)
 Handling of ADC ands DAC, timing

void TIMER0_IRQHandler(void){
DAC_Channel0OutputSet(DAC0, DAC_data_out);
ADC_data_in = ADC_DataSingleGet(ADC0);
ADC_Start(ADC0, adcStartSingle);
DAC_data_out = process_Filter(ADC_data_in);
TIMER_IntClear(TIMER0, TIMER_IF_OF);

}

© BME-MIT 10.slide

Example: first order IIR filter (Giant Gecko)
 Data processing: first order filtering

o Time constant: 1 msec
oWill be taught later

uint32_t process_Filter(uint32_t data_in){
uint32_t data_out;
float data_in_f;
float alpha = (1- 0.9802);
static float y; // static variable since its value has to be preserved between

function calls

data_in_f = (float)data_in; // format conversion
y = y + alpha*(data_in_f - y); // exponential averaging
data_out = (uint32_t) y; // format conversion

return data_out; // return of result of filtering
}

© BME-MIT 11.slide

Measurement setup
 Measurement: USB oszcilloscope and signal generator (PicoScope)
 Signal generator: board connected to ADC and trigger input

Generator
+

Oscillosc.
µC

ADC (in)

ADC (out)

© BME-MIT 12.slide

Measurement results
 Excitation: 50Hz square, 0V DC, 1.27V peak value
 Red: excitations (used also as a trigger signal)

© BME-MIT 13.slide

Measurement results
 Delay: ~40µsec (2 samples at 50 kHz, 2*1/50000 sec)
 Source of 2-sample delay:

o Input data is processed one sampling time later
o Output data is sent out one sampling time later

© BME-MIT 14.slide

Measurement results
 Time constant: 1.27V*e-1=467mV: where level reduced by factor 1/e
 40µsec delay be subtracted: as expected (1.047ms-0.050ms)

© BME-MIT 15.slide

Measurement results
 Filtering of noisy signal (blue signal is filtered)

© BME-MIT 16.slide

Measurement results
 Filtering of noisy signal: filtering is off, signal just let pass the system

© BME-MIT 17.slide

Block of data-based data processing
 Processing function receives blocks of N-data and returns with

N-data blocks
 Notes, remarks:

o Remarks, notes:
• Samples my be received (and generated after processing) from more, simultaneously

processed signals
• In general the presence of input/output signal is not required in a data processing system

– Measurement of signal parameter: only input is present (output is a number, representing e.g. amplitude)
– Signal generation: only output is present (input: signal parameters as numbers)

oB1=process(block1)
oB2=process(block2)

oB3=process(block3)
oB4=process(block4)

© BME-MIT 18.slide

Examination of data processing system
 1st priority level:

o Saving data into input buffer and sending data from output buffer (Timer_IT)
o Signal processing should be interruptable by Timer_IT

 2nd priority level:
o Data processing: having N-size buffer, then signal processing has to be finished in N CLK cycles

(by the time change of input and output buffers are to be interchanged)
o Data processing is performed in the main program using a flag to indicate it: therefore Timer_IT

will be able to interrupt it
o There exist low-priority SW ITs where data processing could be implemented in: it is only

advised when non-time-critical but long lasting tasks are in the program (e.g. display handling)

Signal processing: process()

Timer_IT: saving data into input buffer, sending
data from the output buffer

Interchange of buffers after processing N samples

© BME-MIT 19.slide

Block of data-based data processing
 Buffer handling

Timer_IT(){
block_cntr++;

// implementation of double buffering: when the end of the actual block is reached, interchange the buffers
if (block_cntr==BLOCK_SIZE){

block_cntr = 0;
exchangeBuffer(IN_new, IN_proc); // interchange of input buffers
exchangeBuffer(OUT_ready, OUT_proc); // interchange of output buffers

}

Input buffers Output buffers

IN
_n

ew

IN
_p

ro
c

O
U

T_
pr

ocprocess()

O
U

T_
re

ad
y

ADC
DAC

Data is continuously arriving into one of the input
buffers from ADC while the content of the other buffer

that is full is being processed

Processed data is continuously arriving into one of the
output buffers while the content of the other buffer that

is full is being sent toward the DAC

© BME-MIT 20.slide

Block of data-based data processing
 Buffer handling

Input buffers Output buffers

IN
_n

ew

IN
_p

ro
c

O
U

T_
pr

ocprocess()

O
U

T_
re

ad
yADC DAC

After processing interchange of buffers is performed
(status after interchange is seen)

Timer_IT(){
block_cntr++;

// implementation of double buffering: when the end of the actual block is reached, interchange the buffers
if (block_cntr==BLOCK_SIZE){

block_cntr = 0;
exchangeBuffer(IN_new, IN_proc); // interchange of input buffers
exchangeBuffer(OUT_ready, OUT_proc); // interchange of output buffers

}

After processing interchange of buffers is performed
(status after interchange is seen)

© BME-MIT 21.slide

Block of data-based data processing
 Pseudo code (framework and processing function):

Timer_IT(){
block_cntr++;

// implementation of double buffering: when the end of the actual block is reached, interchange the buffers
if (block_cntr==BLOCK_SIZE){

block_cntr = 0;
exchangeBuffer(IN_new, IN_proc); // interchange of input buffers
exchangeBuffer(OUT_ready, OUT_proc); // interchange of output buffers

// processing data of the full input buffer and saving processed data into new output buffer
processStart = true;

}
// result of data processing is sent
writeDAC(OUT_ready[block_cntr]);
// reading ADC sample (result of the ADC initiated at the previous Timer_IT)
IN_new[block_cntr] = readADC ();
// initiating of sampling new ADC: this sample is saved into the data register of ADC
//and read just after the next Timer_IT: see ADCin = readADC();

sampleADC();
}

while(1){
if (processStart) { processBuffer(IN_proc , OUT_proc); processStart=false;}

}

processBuffer(*in_buff, *out_buff){ // data processing
…. Some kind of DSP …. Eg: FFT(in_buff, out_buff); // example (a): FFT
for (ii=0; ii<BLOCK_SIZE;ii++) out_buff[ii] = in_buff[ii]* in_buff[ii]; // example (b): squaring

}

© BME-MIT 22.slide

Block of data-based data processing
 Interchange of buffers:

o Actual data interchange does not happen only the
interchange of pointers

exchangeBuffer(dataType **buff1, dataType **buff2){
dataType tmp = *buff1;
*buff1 = *buff2;
*buff2 = tmp;

}

© BME-MIT 23.slide

Example
 Pitch-shift algorithm in real time

o Frequency: an objective measure of the periodicity of voice
o Pitch: this term corresponds to frequency, but in many cases used to describe the

subjective measure of how a voice or music is “high” or “low”
 Goal:

o Increase pitch (by one octave: doubling)
o Real-time operation
o Speed of speech should not change
o Simple algorithm, to be implemented by uC

 A sample function of voice (~400msec duration):

© BME-MIT 24.slide

Example
 Algorithm (Step 1)

o Pitch can be changed by increasing/decreasing play speed
• One octave increase requires double play speed

o Problem:
• The signal will be shorter (since played faster)
• In real-time cannot work since signal “disappear” too early: buffer is emptied out

fast

?

© BME-MIT 25.slide

Example
 Algorithm (Step 2)

o Repeat the whole voice signal signal length will not change, therefore can
be played in real-time, the buffer will not be emptied too early

o Problem 1: The cut pieces may not fit correctly (see example: signal would be
(expected to be) decreasing after the red line however after repeating it, the signal is
increasing after red line). Solution:

• Windowing the signal providing a smooth transition between the original and
repeated one: not too complicated solution but not applied in this example

• This problem will not cause a subjective error (one person will not hear it as a
bad quality voice) and the result is heard to be good. Out ear will “smoothen”
it…

© BME-MIT 26.slide

Example
 Algorithm (Step 2)

o Repeat the whole voice signal signal length will not change, therefore can
be played in real-time, the buffer will not be emptied too early

o Problem 2: The sampling frequency of the output signal is twice that of the
input one (see figure below)

• In a DSP system it is required to have the same sampling frequency at the input and output
as well. If not, then the frequency difference somehow has to be corrected (e.g.
decimation, interpolation, resampling, etc…) since that is a basic requirements dor the HW
and SW elements of the system. Otherwise some serous difficulties arise to cop with.

• It is required to have the same amount of data per time unit at the output than at the input

© BME-MIT 27.slide

Example
 Algorithm (Step 3)

o At the output side the number of samples are halved
(decimation by factor 2)

o Simple (but not too good solution): removing every second sample
• Sampling frequency is halved the spectrum of sampled signal is repeated not by Fs, but

Fs’=Fs/2 -> overlapping may occur in spectrum, if the Nyquist sampling criteria is just met
since no possibility for decimation in that case.

X(f) X(f)

FsFs/2=Fs’Fs/4 Fs’Fs’/2

© BME-MIT 28.slide

Example
 Algorithm (Step 3)

o At the output side the number of samples are halved
(decimation by factor 2)

o Correct solution: signal components above Fs/4 are removed by a
decimating filter (=simple low-pass filer of cutoff frequency Fs/4) and
samples are removed just after filtering

X(f)

FsFs/2=Fs’Fs/4

X(f)

Fs’Fs’/2

© BME-MIT 29.slide

Example
 Algorithm (Step 3)

o At the output side the number of samples are halved
(decimation by factor 2)

o Compromise solution: take the average of two neighboring samples and
keep only that one instead of the two (this solution is used in the example,
averaging is a simple filtering by sin(x)/x frequency response)

X(f)

FsFs/2=Fs’Fs/4

X(f)

Fs’Fs’/2

© BME-MIT 30.slide

Example: implementation of pitch shift
 Block of data-based data processing:

o Signal processing shall be block-based since a whole block os data has to be
repeated

o Sampling frequency: 25 kHz (audio signal, personal frequency choice)
o Determination of block size:

• Not to be too short: inside one tone more than one period should be present to
be stored in the data buffer: be longer than 10ms, i.e.: 250 samples

• Not to be too long: not longer than one whole (to avoid repeatiton of whole): be
shorter than 100ms, i.e.: 2500 samples

• Our choice: 30ms: 0.03*25000 = 750 samples

: too short

Too long:

© BME-MIT 31.slide

Example: implementation of pitch shift
 Code part of ADC and DAC handling (Giant Gecko)

void TIMER0_IRQHandler(void){
block_pos_cntr++; // position inside the buffer
if (block_pos_cntr>=N_PITCH_DATA){ // actual buffer is full

block_pos_cntr = 0;
// double buffering: buffer storing processed data is full,
// its content is sent to DAC,
// the other output buffer will store the newly processed data
exchangeBuffer(&IN_new, &IN_proc); // interchange of input buffers
exchangeBuffer(&OUT_ready, &OUT_proc); // interchange of output buffers
processData = true; // a flag is used to indicate that processing can be started

}
DAC_Channel0OutputSet(DAC0, OUT_ready[block_pos_cntr]);
ADC_data_in = ADC_DataSingleGet(ADC0);
IN_new[block_pos_cntr] = ADC_data_in;
ADC_Start(ADC0, adcStartSingle);
TIMER_IntClear(TIMER0, TIMER_IF_OF);

}

© BME-MIT 32.slide

Example: implementation of pitch shift
 Signal processing:

while (1) {
if (processData){

processData = false;
process_Pitch(IN_proc , OUT_proc);

}
}

void process_Pitch(uint32_t *buff_in, uint32_t *buff_out){
uint32_t decim_sample;
uint16_t sample;
for (sample=0; sample<N_PITCH_DATA; sample+=2){

// take the average of every two samples and place the result in position n-th and n+N/2-th
decim_sample = (buff_in[sample] + buff_in[sample+1])>>1;
buff_out[sample>>1] = decim_sample;
buff_out[N_PITCH_DATA/2+(sample>>1)] = decim_sample;

}
}

buff_in

buff_out

2
21

1
inind +

=
2

87
4

inind +
=

d1 d1d4 d4d2 d2d3 d3

© BME-MIT 33.slide

Data- and block-based DSP
Data-based Block-based

Delay (important, e.g.: in
control applications)

good bad

Memory requirement good bad (buffering requires extra
memory block)

Possibility of reduction
computation complexity

bad Good (e.g.: filtering by FFT)

Real-time operation Critical: short timings,
timing requirements must
be met in sample time

Less critical: timing requirements
have to be met in block time (in
case of PC practically only block
based processing is possible)

© BME-MIT 34.slide

Change between data processing modes
 Change between data- and block-based data processing is possible
 The SW architecture must fit to the mode of data processing

o E.g.: FFT cannot be sample-based

 Change from sample-based to block-based data processing
o Incoming and outgoing data must be organized into buffers
o When buffers are full:

• Interchange of buffers
• Data processing is strated

 Change from block-based to sample based signal processing
o Data elements of the block are processed one by one
o Processing function is called sample-wise
o Result of processing is stored in the output buffer
for (ii=0; ii<N; ii++){

outBuff[ii] = process(inBuff[ii]);
}

	Embedded and Ambient Systems�2021. 12. 07.
	SW architecture of data processing system
	Sample-based data processing
	Study of data processing system (1/a)
	Study of data processing system(2/a)
	Study of data processing system (2/b)
	Sample-based signal processing
	Study of data processing system (3/a)
	Example: first order IIR filter (Giant Gecko)
	Example: first order IIR filter (Giant Gecko)
	Measurement setup
	Measurement results
	Measurement results
	Measurement results
	Measurement results
	Measurement results
	Block of data-based data processing
	Examination of data processing system
	Block of data-based data processing
	Block of data-based data processing
	Block of data-based data processing
	Block of data-based data processing
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example: implementation of pitch shift
	Example: implementation of pitch shift
	Example: implementation of pitch shift
	Data- and block-based DSP
	Change between data processing modes

