
© BME-MITBudapest University of Technology and Economics

Department of Measurement and Information Systems

Embedded Software Development

2024. 09. 02.

Introduction
Remark: first practice on 04 September,

Due to the limited number of seats with notebook offered, have
your notebook with you Simplicity Studio 4 installed

(NOT version 5 but 4)
Managing of student travels/flight tickets is out of the scope of

this subject!!!

© BME-MIT 2.slide

Preliminaries
▪ Embedded Software Development

o Subject Code: BMEVIMIAC17 (the English course)

o Lectures and Practice:

• Lecture: every Monday 08:30-10:00 in IE320

• Practice: every Wednesday 08:30-10:00 in IE320

o Lecturer: Krébesz, Tamás (BME-MIT)
• E-mail: krebesz@mit.bme.hu

• Room: IE413

o Requirements:
• Midterm (Oct. 21. during lecture)

• Exams in the exam period (one in Dec., and two in Jan.)

• Homework (details come later)

oWeb page of the course:
• https://www.mit.bme.hu/eng/oktatas/targyak/vimiac17

© BME-MIT 3.slide

Embedded systems

▪ Possible definitions
o Those computer-based application systems, that are:

• Autonomous in operation

• In strong information-based connection with their
physical/technological environment

o Such a unit that control or supervise a machine, instrument or
industrial process.

o A computer without a keyboard, i.e. every processor-based or
digital unit that is not a PC.

▪ The traditional microprocessor-based systems can be
considered embedded systems.

© BME-MIT 4.slide

Embedded systems: examples
▪ Examples:

o Consumer electronics: music player, TV, watch, wireless headphone, camera,
display, wireless mouse/keyboard

o Handheld devices: mobilephone, GPS, calculator

o Household appliances: washing machine, microwave oven, fridge

o Home automatization: elevators, alarm system, heating control, remote
home surveillance

o Vehicular electronics: ECU, ABS, ESP, assisted steering, remote control,
parking radar, on-board computer, gear control, etc.

o Industrial robots, intelligent power supply, engine control

o Ticket machine, ATM, electronic information center

o Medical instrument: blood pressure meter, complex diagnostic devices,

o Measurement instruments: software defined measurement

o Info communication: modem, router, switch

© BME-MIT 5.slide

Developers of embedded systems

▪ Why is it good to learn embedded
sysmtes?
o Development is done at the edge of the HW-

based and SW-based worlds: the SW developed
can acquire direct information from the real
physical world and can react into real-world
processes.

o Starting from the circuit design through SW
development one can get in touch with PCs and
higher level information systems.

o Continuously developing industrial field, makes
a living for lots of people, new professionals are
always needed.

© BME-MIT 6.slide

Example: direct connection with environ.
▪ What does it mean ‘being in direct connection

with the physical environment’?

o The signals of the environment can be sensed at a low
(abstraction) level, or react to them even in real time.

Example #1: open door?

#define RELAY_ON (0)
#define DOOR_BIT (3)
.
.
.
// PORT_A_REG: I/O register nested in memory
door_is_open = PORT_A_REG & (1 << DOOR_BIT);
if (door_is_open){

PORT_A_REG |= 1 << RELAY_ON;
}
.
.
.

P
O

R
T_

A
_R

EG

0

3

µC

© BME-MIT 7.slide

Example: direct connection with environ.

#define HEATING_ON_BIT (0)
#define TEMP_LIMIT (25) //below-> heating on
#define TEMP_HIST (2) //HISTeresis
#define SCALE_FACT (0.145)
.
.
// PORT_A_REG: I/O register nested in memory
// ADC_IN_REG: register for ADC result nested in memory
TEMP = ADC_IN_REG*SCALE_FACT;
if (TEMP < TEMP_LIMIT){

PORT_A_REG |= 1 << HEATING_ON_BIT;
} else
if (TEMP > (TEMP_LIMIT+TEMP_HIST)){

PORT_A_REG &= ~(1 << HEATING_ON_BIT);
}
.
.

P
O

R
T_

A
_R

EG

0

3

µC

A
D

C
_I

N
_R

EG

P
T
C

▪ Example #2: heating control:
o PTC (Positive Temperature Coefficient)

temperature-dependent resistance is used to
measure the temperature

o Analog-to-digital converter (ADC) is used to digitize
the temperature-dependent voltage

o Relay that controls heating is switched in accordance
with the temperature

25C+2C
|

© BME-MIT 8.slide

Evolution of embedded systems
▪ Milestones in short

o In the ‘60s: first embedded systems were the
controllers used in Apollo program

o ‘70s: popular microprocessor manufactured in high
volume (e.g. 8086), first PCs

o ‘80s: microcontrollers with integrated pripherals

o ‘90s: handheld devices, embedded systems in
household appliances and System on Chip (SoC) ICs

o From year 2000: embedded systems become part
of everyday life
• Ambient systems (around us, in our environment)

o 2010s: connecting embedded systems into
complex systems:
• Internet of Things (‘network of embedded systems’)

• Cyber Physical Systems (‘embedded systems
exploiting high level of artificial intelligence and
integration of databases’)

© BME-MIT 9.slide

Development of embedded systems
▪ Development tasks

o HW development

o SW development

o Testing

o Tight cooperation among different phases of development

▪ HW development
o Circuit design, implementation, initial testing of operation

o ‘Fine-tuning’ of circuit based on development experience

o HW components change the least frequently among system components

o More and more multifunctional devices exist that require ‘only’ SW development

▪ SW development
o Plan for SW development is needed

o Development of both low- and high level components

o Continuous development, modified dynamically, much more frequently changed
compared to HW

o Most of the developers are SW oriented in the embedded field (including testers)

▪ The course focuses on embedded SW development and data processing
techniques and systems

© BME-MIT 10.slide

Engineering tasks

© BME-MIT 11.slide

Specialties of embedded SW

▪ HW-aware programming

▪ Implementation of functionality in SW (either at system- or source-
code level) is not enough, awareness is required

▪ The specialties of the HW must be considered
o The SWs are for general use but they cannot be totally independent of the

platform

▪ Save the resources:
o Memory/Data

o Processor time
• Complexity of algorithms

o Current consumption

▪ Runtime may be critical (real-time systems)->what is real-time property?

▪ Understanding of the code operation is required: what resources
are used, how much the resources are consumed by the code, etc.

© BME-MIT 12.slide

Architecture of embedded systems

▪ Main components of embedded systems:
o Connection to physical world (input):

• Sensor/transducer

• Signal conditioner

• Input devices

o Computing unit

o Communications

o Actuator

© BME-MIT 13.slide

Input devices
▪ Input devices

o Signals from environment, e.g. temperature, luminance,…

o Human Interface (HMI)/User Interface (UI), e.g. push button,
touch sensor

▪ Definition of ‘sensors’:

o Transducer: transforms a physical quantity into an other type of
physical quantity

o Sensor: transforms a physical quantity into an electrical quantity
(voltage tipically)
• Either in a direct or indirect way, e.g. strain-gauge: strech → turned into

resistance → turned into voltage

▪ Categories of sensors:

o Active: external excitation is needed (e.g. strain-gauge,
thermistor)

o Passive: electrical signal is generated by the device at its output
(e.g. photo diode, thermocouple)

© BME-MIT 14.slide

Type of sensors
▪ Signals from the environment

o Temperature, luminance, air pressure, humidity, gas presence,
airflow, radiation, CCD (charge-coupled device)

▪ Vibroacoustic signals

o Microphone, vibration sensor, geophone

▪ Distance, proximity and presence sensors

o Ultrsound-based or IR-based distance sensing, PIR (passive
infrared sensor) in motion detectors, reed relay, contact switch,
inductive/capacitive proximity sensors

▪ Sensing of position

o Accelerometer, magnetic compass, gyroscope, encoder, linear
variable differential transformer

▪ Mechanical signals

o Torque sensor, strain-gauge, force-sensing resistor (FSR)

© BME-MIT 15.slide

Signal conditioning

▪ Goals of signal conditioning
o Amplification (e.g. generate 1V from 5mV)

o Level matching (e.g. from +/-1V range to 0V…2V range)

o Galvanic decoupling (e.g. high voltage disturbance)

o Impedance matching (e.g. buffer amplifier)

o Linearization (non-linear amplifier made linear usually digitally)

o Filtering (removing noise)

▪ Nowadays high complexity sensors provides compact
form and integration of signal conditioning not only the
sensor itself

▪ Further advancement when the sensor provides digital
output, i.e., signal conditioning is obviously integrated
as well

© BME-MIT 16.slide

Complexity of sensors

▪ The complexity of sensors keeps increasing:

o Only the sensor without any electrical components

o Analogue signal conditioning, like amplification is integrated

o Integrated ADC, digital interface, other high level functions:
• e.g. internal calibration, identification, configuration

o Fully integrates ‘smart’ sensor, high level data acquisition
subsystem

Example: accelerometer – increasing complexity

In
creasin

g co
m

p
lexity

Accelerometer Sensor with Sensor+signal conditioning+ Fully integrated
Only the sensor integrated signal conditioning internal ADC Wireless comm.
Output is charge Output is voltage Digital output Digital output

© BME-MIT 17.slide

Sensor choice

▪ Advantages of high complexity sensors

o Less external components

o Less development time

o Less errors

oMany services are integrated

▪ Advantages of low complexity sensors

o Cost efficient for high volume manufacturing

o No unnecessary functions

o Can be tailored for the specific development goal with
special function and features

© BME-MIT 18.slide

Analog-to-digital converter (ADC)

▪ Frequently used ADC types
o Successive approximation

• Most popular to be used in a uC

o Flash

o Sigma-delta

o Dual slope

▪ Main features
o Sampling frequency/Conversion time

o Resolution (number of bits)

o Zero order hold (ZoH) is needed or not

o Linearity

o Delay

© BME-MIT 19.slide

ADC typical parameters

Application: video, RF audio meas. inst in uC

© BME-MIT 20.slide

ADCs in embedded systems

▪ External ADC

o In special cases (high resolution, accuracy, speed, low
noise)

o Difficulty: HW and SW matching to the uC is a must

• Development time and possible errors

▪ Internal ADC

o Lots of uC have internal ADC

• In a general purpose uC: 10-16 bit successive approximation

• Audio processors: rare, sigma-delta, ~16bit

o Advantages: integrated, matching done, function
library offered, template/example codes available

© BME-MIT 21.slide

Control unit
▪ Most important types of control units

o uP (Microprocessor)

o uC (Microcontroller)

o FPGA (Field Programmable Gate Array)

o DSP (Digital Signal Processor)

o GPU (Graphics Processing Unit)

o ASIC (Application-specific Integrated Circuit)

performance

MCU

Task complexity

ARM

FPGA/ASIC

DSP

GPU

performance

MCU

Development time

ARM

FPGA/ASIC

DSP
GPU

© BME-MIT 22.slide

Microcontroller
▪ Microcontroller = microprocessor + integrated peripherals

▪ Peripherals:

o Memory (data and program in separated memory) – SRAM, Flash, ERAM

o Timers – measurement of time, event generation

o Communications (UART, SPI, I2C, CAN, USB, Ethernet)

o ADC and DAC

o GPIO (General Purpose Input Output)

o Energy management

o Debug interface

▪ Typical clock frequency: 1 MHz … 100 MHz+

▪ Choice preferences:

o Availability

o Adequate complexity for the task, peripherals (e.g. automotive, video, security)

o Price (not only chip but development SW and debugger must be considered)

o Previous experiences

o Support (technical support, forums, function library, development environment,
examples, debug features)

o Physical features of the chip (not a BGA case for a home project ☺)

© BME-MIT 23.slide

Microcontroller examples

ATTiny25
8 bit architecture
10 MHz
2 kB prog MEM
128 Byte RAM
2 Timer, 2 PWM
10 bit ADC 4 ch
6 GPIO (spec func)
SPI

ATmega128
8 bit architecture
16 MHz
128 kB prog MEM
4 kByte RAM
4kB EEPROM
8 bit HW multiplier
5 Timer, 8 PWM
10 bit ADC 8 ch
53 GPIO (spec funkc)
SPI, UART, I2C

EFM32GG995 (Gecko)
32 bit architecture
48 MHz
1024 kB prog MEM
128 kByte RAM
6 Timer
12 bit ADC 8 ch
12 bit DAC 2 ch
93 GPIO (spec func)
3*SPI, 2*UART, 2*I2C,
USB
OPA
Sensor Interface
DMA
HW encryption
LCD driver

Balckfin BF537
16/32 bit architecture
600 MHz
1pcs 16 bit MAC
2 pcs 40 bit ALU
4pcs 8 bit ALU (video)
Parallel operations
132 kB prog/data RAM
Parallel data fetch
HW supported cycles
Circular buffer
8 Timer
48 GPIO (spec func)
SPI, 2*UART, 2*I2C, Ethernet,
CAN, I2S
DMA

© BME-MIT 24.slide

FPGA (Field Programmable Gate Array)
▪ Circuit of general logic cells/gates (combinatorial and sequential logic)

▪ The logical relationship among logic gates is programmable

▪ Flexible: no new circuit is needed when functionality is modified – ‘only’ the SW
has to be replaced

▪ Parallelism is inherently supported: one SW defined component can be duplicated
‘endlessly’ (the limit is the number of logic cells in the FPGA unit)

▪ Traditional FPGA development is difficult:

o Development requires highly experienced professionals

o The functionality has to be implemented at a low level (like shift register), therefore
time consuming – nowadays higher level modules are readily available

▪ Used for high computation load, fast or parallel needs (high sampling rate,
multiple inputs, RF, video signal processing)

© BME-MIT 25.slide

Digital signal processors (DSP)
▪ Special HW components and architectures to speed up computation, like:

o MAC (Multiply and accumulate: a+=x*y)

o Circular buffer

o Parallel memory access to several memory blocks

o HW supported loops

o Even floating point multiplication in one CLK cycle

o HW supported division and extraction of roots,…

▪ Applications:

o Multimedia: compressing, effects, coding (e.g. MP3, JPG, MP4), equalizer,
noise filtering

o Control systems: engine control, state observer, feedback systems

o Math operations: mtx multiplication, trigonometrical functions

o Measurements: noise filtering, parameter estimation

o Info comm: modulation/demodulation, coding, compression

▪ More and more DSP functions appear in general purpose uC

© BME-MIT 26.slide

Hybrid solutions

▪ Several types of processing units integrated
into one application

▪ Tasks can be decomposed for the most
appropriate computing type:
o Decoding digital graphic information by FPGA or

DSP in a TV

o uC-based handling of remote controller and
menu system

▪ System containing several types of
processing units can be integrared into a
single IC (system-on-chip: SoC) :
o Soft-core processors to be downloaded to an

FPGA are available

o A uC can be integrated into an FPGA

© BME-MIT 27.slide

Hybrid solutions

▪ Analog Devices SC589:

o 2 pcs DSP core: computational tasks

o 1 pc ARM cortex-A5: general tasks, e.g. communications,
peripheral handling, etc.

© BME-MIT 28.slide

Communications units, examples

▪ TRF6900 (TI)
o Bit level communications (‘wireless wire’)

▪ IA4420 (Silabs)
o Byte level communications

▪ CC2420 (TI)
o Packet level comm

o Automatic receiver detection

▪ ESP8266
o WiFi modul

o Integrated protocol stack

▪ Some uCs are available with integrated RF module

▪ Complex unit offers shorter development time, but special
functionality may not be implemented or can be a hard task

