
© BME-MITBudapest University of Technology and Economics

Department of Measurement and Information Systems

Embedded Software Development

2024.10.08.

Debugging and testing of embedded systems

© BME-MIT 2.slide

Debugging
▪ Perfect code (especially for the first attempt) does not

exist or at least is very rare

o Some kind of testing and/or debugging are parts of the
development process

▪ Debugging is necessary not only in the final phase of
development but also important during the development
process

o The code is advised to be partitioned into subtasks and the
individual tasks have to be tested separately

o One should not proceed with the development until all tasks
are tested carefully and work as expected (if not, the problem
will appear later and can cause a lot of trouble and extra work)

o Code parts used for testing is advised to be left in the code
(commented if not used) for later debugging

© BME-MIT 3.slide

Specialties of debugging in embedded systems
▪ Development environment and the processor that runs the code are separated:

o In case of PC-based debugging PC runs the debug environment and the code as well,
therefore PC has direct access to the processor and the memory

o In case of embedded systems, especially for simple processors or simple
development environment the relationship of the PC and embedded system is
limited to program downloading

▪ Not only the processor but also the embedded environment has strong influence
on the operation:

o In case of a car braking system the reaction depends on the state of the brake pedal
or whether the wheels are blocked or not

o For testing a systems that processes an analogue signal (e.g. sound) the analogue
signal has to be generated. Furthermore a sound cannot be generated sample per
sample so it cannot be stepped

o Consequence: not only the SW-based but also the external circumstances has to be
established
• Physical implementation is not needed all the time but the external (environmental) behavior has to be

at least simulated

▪ Relationship between external events and bugs

▪ Generation of excitation signals used for examination of system behavior

© BME-MIT 4.slide

Specialties of debugging in embedded systems

▪ Possible phases of debugging:

o Implementation of an algorithm or operational mechanism on PC
• E.g.: Simulink in Matlab or C code run on PC (emulation of functions

corresponding to a HW handling)

o Implementation of a function on the embedded system,
simulation of the physical environment
• In most cases some kind of prototyping fast development board is used,

e.g. Giant Gecko

• Real input and output signals are generated and measured, respectively,
to test a system since some circumstances would be difficult to be
established in real life

o Testing the embedded system in real environment
• This is the most difficult task since the real environment is not easy to be

available (e.g. a plane that is falling unintentionally)

© BME-MIT 5.slide

Specialties of debugging in embedded systems

▪ During debugging the system is “disturbed”:
timings are changed

▪ Resources limit the debugging possibilities

o E.g. printing variables are resource- and
time-consuming

© BME-MIT 6.slide

In-circuit debugging

▪ In-circuit emulation / debugging:

o Debugging is possible in the final circuit environment, without
removing the processor

o Nowadays it is not so special but some decades ago it was
difficult

o A dedicated interface and internal complimentary circuitry is
needed to get access to peripherals / registers / memory

o Important parts of the system:
• Debug interface on the processor that provides access to the processor

• Debug circuitry to handle the debug interface
– On some development boards it is readily available, but in a few cases it has to be

bought as a separate circuit

• PC-based development environment to handle the debugger, its
functions and services

© BME-MIT 7.slide

Categories of debug tools

▪ Debugger:

o Search for static errors

o Running of program must be stopped to examine the processor
status

o Typical examinations:
• Value of variables

• Value of registers

• Status of program counter (which part of the program is executed)

o Tools:
• Breakpoint (stops the program execution at a certain line)

• Stepped execution

– Difficulty: in case of code optimization applied, execution of a command
line not necessarily follow the C-language code sequence of the originally
written code

© BME-MIT 8.slide

Categories of debug tools

▪ Tracer
o Offers the examination of the program execution as a function of time

• Execution of program, series of instructions

• Following the value of a certain variable continuously

• Saving register content

o Data logging can be a part of its duty but more frequent the collection of
low-level information

• Data logging clarification: trace-data are very low-level ones not for the end
users

o Saving data as a function of time significantly increases the runtime

o It cannot be perfectly assured that the parameter value observed is traced in
a tick-by-clock manner

o On some processors dedicated trace port can be found

© BME-MIT 9.slide

Categories of debug tools

▪ Profiler:

o Measures the dynamical performance characteristics of the
program: Runtime analysis, memory usage, function calls

o Helps to find the weaknesses of the system (which part of the
program requires more memory,
energy, runtime…)

o Examples:
• Simplicity Studio (SiLabs): Energy Profiler

– To follow current consumption

• Visual DSP (Analog Devices DSPs):
– Runtime of functions in percent

– How tasks changes, what is their time dynamic

© BME-MIT 10.slide

Embedded debug possibilities

▪ For a full debugging service, built-in (embedded) debug
peripheral is needed

▪ Debug peripheral has access to the internal processor
core, its peripherals, registers, memory

▪ Some typical debug interface:

o JTAG

o SWD: Serial Wire Debug
• Debug interface for ARM processors

• It can be considered as a JTAG interface requiring less wires

o Nexus

© BME-MIT 11.slide

Operation of JTAG
▪ JTAG: Joint Test Action Group

▪ Original goal was: testing the electrical connections on a printed
circuit board (PCB), nowadays its application is much wider

▪ Typical JTAG tasks:
o Testing connection on a PCB (rarely done during development)

o In-system programming (the circuitry not necessary to be removed during
programming)

o Debugging

▪ Can be connected in series

▪ Five wires:
o TDI: Test Data In

o TDO: Test Data Out

o TCK: Test Clock

o TMS: Test Mode Select

o (TRST: Test Reset, optional)

© BME-MIT 12.slide

Operation of JTAG

▪ Architecture of the debug system:

o PC-based development encironment

o JTAG debugger circuitry

o JTAG interface

PC (develop.
environm.)

JTAG
debugger
circuitry

microcontroller

JTAG
interface

TD
I, TD

O
, TM

S, TC
K

, (TR
ST)

CPU

Perif. 1

Perif. ...

MEM

© BME-MIT 13.slide

Operation of JTAG

▪ Structure of control:
operation is controlled
by a state machine

▪ TMS signal is used
to switch between
states

▪ Instructions can be
given and data can
be written in and
displayed

JTAG state machine (just for illustration purposes)

© BME-MIT 14.slide

Operation of JTAG

JTAG modul block diagram: ATmega128 (just for illustration purposes)

© BME-MIT 15.slide

Conditional examinations
▪ Breakpoint: Stopping the program running at a certain point

▪ Watchpoint: Stopping the program running when certain
conditions are met. Examples:
o Data watchpoint: access of data at a certain address (read and/or write)

o Instruction watchpoint: running stops when certain instruction comes

o HW-based support is possible, but take care since checking a condition can
consume processor time

o Example: Simplicity Studio (program stop can be set when a certain variable
is accessed)

© BME-MIT 16.slide

Basic debug possibilities
▪ In lack of dedicated debug interface own debug possibilities have to be used

▪ Typical questions:

o What is the value of a certain variable?

o Has a certain condition met?

o Has a certain task been successfully executed?

▪ Typical debug possibilities:

o Saving results into memory, reading memory (if it is supported, for programming a
certain level of memory access is needed)

o Display at GPIO pins (using LEDs or measured by oscilloscope)

• Very limited debug possibility

• Can be used as an indicator whether the program run into a certain condition or not,
whether a code part has been executed or not

o Sending data using a communication interface (typically UART)

o Using a display (e.g. LCD or seven segment display)

© BME-MIT 17.slide

Formatted displaying of variables
▪ Function printf puts the string on a standard output (screen), but in embedded

systems no such a standard output

▪ Convenient: generating a formatted string, data types are well handled (e.g.
printing float numbers)

▪ Output has to be re-routed to a certain peripheral

o UART

o Display

▪ Re-routing:

o Compiler, more than one option is possible

o Examples:

• Simplicity Studio: overdefinition of _write function. This is a weak function that can be
redefined. Function printf calls this function when starts.

• AVR compiler: a new stream has to be defined where the pointer, that points to the
function used to print to the output, has to be given. Stdout has to be re-routed to the new
output

© BME-MIT 18.slide

Formatted displaying of variables
▪ Be careful, function printf is resource hungry!

▪ Example: printing to the LCD

o Using a normal LCD handling function

o Program memory need: 11272 byte

o Printing using printf function by re-routing the output to the LCD

o Program memory need : 14924 byte

o Difference: 3652 byte, this would consume a smaller microcontroller totally up!!!

o In case of conversion between format types runtime does matter

© BME-MIT 19.slide

Measurement of runtime

▪ Goal of runtime measurement:

o Checking operation (does everything run?, does the processor
operate?)

o Checking runtime requirement in terms of the time needed for
the execution of the task

▪ Measurement of runtime:

o Using GPIO

o Timer
• Special timer: Coreclock timer, that counts the CLK ticks of the processor

(shows exactly how many CLK cycles has occurred since turning the
device on)

o Functions offered by the development environment

© BME-MIT 20.slide

Measurement of runtime using GPIO pins
▪ Setting the GPIO pin into high logical level at the start of the code

part whose runtime is intended to be measured and into low
logical level at the end of the code part to be measured

▪ Requirements:
o Available GPIO pin

o Oscilloscope

o Program: no special demand, try to achieve minimal overhead

Set_pin1()
…
Program code
…
Clr_pin1()

Truntime

oscilloscopemicrocontroller

Pin1

© BME-MIT 21.slide

Measurement of runtime using timer
▪ Options:

o Starting the timer at the beginning of the code part to be measured and stopping the
timer when the code part is finished

o Starting the timer (even independently of the code part to be measured) and reading
its value at the beginning of the code part to be measured then reading the timer
value again when the code part to be measured reaches its end. The runtime is the
time difference between the two timer values.

▪ Error: time needed to read timer value increases the runtime

▪ Core timer: special timer, measures the processor runtime in CLK ticks

▪ Example for using the core timer:
o ARM cortex M3 (reading and calculating the difference requires 10 CLK cycles!!!)

o ADP 21364 (32 bites, lebegőpontos DSP):<- ADSP 21365 (32-bit floating point DSP)

© BME-MIT 22.slide

Development environment (IDE)
▪ Runtime measurement features are available in the IDE

▪ Examples: see earlier at the profiler

© BME-MIT 23.slide

Measurement of runtime
▪ Runtime measurement of optimized code requires

extra care:

oMarkers inserted into the code for runtime
measurement purposes (timer, GPIO, …) may be
removed or relocated by the compiler during
optimization

• asm volatile(„nop;”); usually helps: this code is not removed
by the compiler, the preceding and succeeding code parts
becomes separated

o If not only the entire code but only some code parts
are tested, it may happen that during optimization the
compiler removes functions if their results are not
used anywhere in the rest of the code

	Embedded Software Development 2024.10.08.
	Debugging
	Specialties of debugging in embedded systems
	Specialties of debugging in embedded systems
	Specialties of debugging in embedded systems
	In-circuit debugging
	Categories of debug tools
	Categories of debug tools
	Categories of debug tools
	Embedded debug possibilities
	Operation of JTAG
	Operation of JTAG
	Operation of JTAG
	Operation of JTAG
	Conditional examinations
	Basic debug possibilities
	Formatted displaying of variables
	Formatted displaying of variables
	Measurement of runtime
	Measurement of runtime using GPIO pins
	Measurement of runtime using timer
	Development environment (IDE)
	Measurement of runtime

