
© BME-MITBudapest University of Technology and Economics

Department of Measurement and Information Systems

Embedded and ambient systems
2024.09.18.

Practice 3

Peripheral handling at register level

© BME-MIT 2.slide

1) Peripheral handling at low level
▪ Useful to see how peripherals work at a register

level (hidden by the high-level functions)

▪ See the LED-blinking-by-button project built up
from empty code at a low level

▪ Source files needed:

o EFM32GG-BRD2200A-A03-schematic.pdf

• Board schematic: peripherals and their interconnection

o EFM32GG-RM.pdf (RM=reference manual)

• Use it as a reference, i.e., the necessary chapters are needed
only to be read

• It is a good way to understand general topics, e.g.,
communication (e.g. UART) used by the uC

© BME-MIT 3.slide

1) Physical connections on the board

▪ Find the connections between the uC and the
buttons based on the schematic

▪ Buttons: connected to ‘Port B’ of GPIO peripheral

o UIF_PB0 -> MCU_PB9

o UIF_PB1 -> MCU_PB10

© BME-MIT 4.slide

1) Physical connections on the board

▪ Find the connections between the uC and the
LEDs based on the schematic

▪ LEDs: connected to ‘Port E’ of GPIO

o UIF_LED0 -> MCU_PE2

o UIF_LED1 -> MCU_PE3

© BME-MIT 5.slide

1) Physical connections on the board

uC
.
.
.

.

.

.

.

.

.

GPIO ports

P
o

rt
 A

 (
PA

)
P

o
rt

 B
 (

P
B

)
P

o
rt

 C
 (

P
C

)

Port A Pin 2 (PA2)
0
1
2

31

© BME-MIT 6.slide

2) Start a new empty project

▪ File->New->Project:

© BME-MIT 7.slide

3) Start a new empty project

© BME-MIT 8.slide

3) Empty project created

▪ Comment out CHIP_Init(); function

© BME-MIT 9.slide

4) Get to know necessary peripherals

▪ Two peripherals are needed

o General Purpose Input Output (GPIO)

o Clock Management Unit (CMU)

▪ Check p.17 Fig.5.2 of EFM32GG-RM.pdf

oMemory map of the system

o 32-bit uC -> 4GB addressable memory theoretically
but only a small part is physically available

o Obviously only the physically available amount of
memory is shown in the map

o (see next slide for the map)

© BME-MIT 10.slide

4) Memory map (full)

© BME-MIT 11.slide

4) Memory map (CMU and GPIO regs.)

▪ The address space is important

o Starts from bottom and
increasing to the top

o Base addresses of peripheral
registers have to be determined

• CMU base address: 0x400c8000

• GPIO base address: 0x40006000

© BME-MIT 12.slide

5) Base address aliases in code

▪ Avoid memorizing memory addresses using
aliases in the code (use Tab instead of Space)

© BME-MIT 13.slide

6) Accessing registers using base addr.

▪ Base address is only the start address of a certain
kind of register array, like CMU registers

▪ To access a specific register (e.g. register for
REG_A of a register array) an offset address have
to be used relative to the base address

o The address of a specific register is the base + offset
address

• e.g. REG_A -> 0x400c8000+0x044

▪ Note, that registers usually contain configuration
bits to be set (see later)

© BME-MIT 14.slide

6) Explanation for setting reg. content
▪ 32-bit registers are addressed

▪ Memory address is determined to store data there

o Remember: base address + offset = memory address

• Problem: this is a number for the compiler not an address

• Solution: to turn this number into a memory address it has to
be converted into a pointer (use * to mark a pointer)
– In C, pointer is a variable type that points to a certain part of the

memory (to a memory address where e.g. a register store data)

– Turning a number into a pointer means forcing the change of variable
type, called casting

▪ The way to refer to a certain register is uC
dependent, its implementation has to be checked
via examples, description, manual, etc.

© BME-MIT 15.slide

6) Explanation for setting reg. content

▪ In our case a pointer can be given by:

o (*(volatile long unsigned int *)(0x400c8000+0x044))

• First *: a value is to be written into the memory (register) at
the given address

• volatile: avoid to be optimized out

• long unsigned int: type of the pointer (note: 32-bit reg.)

• Second *: this is a pointer

• 0x400c8000+0x044 : this is the known memory address

o The pointer itself:

• (volatile long unsigned int *)(0x400c8000+0x044)

• To give a value for this pointer the first * is used

© BME-MIT 16.slide

6) Explanation for setting reg. content

▪ Useful to make it more structured looking
o #define REG_A (*(volatile long unsigned int *)(0x400c8000+0x044))

▪ Setting a bit, e.g., set Bit13

o REG_A |=1<<13

• |= : bitwise OR used for setting a bit

• bbbbbbbb |= 00100000 results bb1bbbb
where b is either 0 or 1

▪ Clearing a bit, e.g., clear Bit13

o REG_A &=~(1<<13)

• &=~ : bitwise AND of inverted values used for clearing

• bbbbbbbb &=~ 00100000 -> bbbbbbbb &= 11011111
-> bb0bbbbb

© BME-MIT 17.slide

7) Peripheral handling - CMU

▪ Check p.128 Fig.11.1 of EFM32GG-RM.pdf

o Clock distribution network is shown

o Clock has to be provided for the peripherals

• This is uC dependent but always has to be take care of
providing CLK for the peripherals and enabling the
peripherals

o Find HFRCO: high-frequency RC osc

• Not too much precise but readily available -> no external CLK
source is needed

o Check the signal path toward the GPIO peripheral

© BME-MIT 18.slide

7) Peripheral handling - CMU

CMU_HFPERCLKEN.GPIO

▪ Note: manual pages for a certain peripheral has to
be read carefully how to use them

© BME-MIT 19.slide

7) Peripheral handling - CMU
▪ Check p.136 of EFM32GG-RM.pdf

o Registers of CMU peripheral are shown with brief
description

o Register addresses are given relative to the base
address

• E.g. CMU_CTRL addr: from 0x000 to the next register
starting 0x004, which is 4bytes, i.e. 32 bits

© BME-MIT 20.slide

7) Peripheral handling - CMU

o Use copy-paste to put the register addresses into the
code

• 0x008 CMU_HFPERCLKDIV_OFFS

• 0x044 CMU_HFPERCLKEN0_OFFS

© BME-MIT 21.slide

7) Peripheral handling - CMU
▪ Check p.137 of EFM32GG-RM.pdf

o Bit-level description of CMU registers

o Check default values: values after Reset

© BME-MIT 22.slide

7) Peripheral handling - CMU
▪ Check p.140 of EFM32GG-RM.pdf

o Enable CLK

© BME-MIT 23.slide

7) Peripheral handling - CMU
▪ Check p.150 of EFM32GG-RM.pdf

o Enable CLK for GPIO

© BME-MIT 24.slide

7) Peripheral handling - CMU
▪ New #define for pointer to get access to CMU

register -> enabling

o #define CMU_ HFPERCLKDIV (*(volatile unsigned long
int*)(0x400c8000 + 0x008))

• Note: CMU_BASE_ADDR+ CMU_HFPERCLKDIV_OFFS

o #define CMU_HFPERCLKEN0 (*(volatile unsigned long
int*)(0x400c8000 + 0x044))

• Note: CMU_BASE_ADDR+CMU_HFPERCLKEN0_OFFS

▪ In the main function: CMU_HFPERCLKDIV |= (1<<8);
CMU_HFPERCLKEN0 |= (1<<13);

▪ Comment out all #include not to cause any trouble

▪ Check for errors by compiling

© BME-MIT 25.slide

8) Peripheral handling - GPIO

▪ See pp.756-758 and Fig. 32.1 of EFM32GG-RM.pdf

© BME-MIT 26.slide

8) Peripheral handling - GPIO

▪ Register map of GPIO (see p.764): offsets only!

▪ Use #define again

o #define GPIO_PB_MODEH_OFFS 0x02C

o #define GPIO_PB_DIN_OFFS 0x040

o #define GPIO_PE_MODEL_OFFS 0x094

o #define GPIO_PE_DOUT_OFFS 0x09C

Register for push button

Register for push button

Register for push LED

Register for LED

© BME-MIT 27.slide

8) Peripheral handling - GPIO

▪ Pointers to be used have to be created in the
same way as in case of CMU

o #define GPIO_PB_MODEH (*(volatile long unsigned int
*)(GPIO_BASE_ADDR+GPIO_PB_MODEH_OFFS))

o #define GPIO_PB_DIN (*(volatile …*)(…+…_OFFS))

o #define GPIO_PE_MODEL (*(…

o #define GPIO_PE_DOUT (*(…

© BME-MIT 28.slide

8) Peripheral handling - GPIO

▪ Check pp. 765-766, the GPIO_Px_CTRL (port
control) register: drive modes can be set

© BME-MIT 29.slide

8) Peripheral handling in general- GPIO

▪ Check pp. 766, the GPIO_Px_MODEL register

4bits->16 different modes

© BME-MIT 30.slide

8) Peripheral handling push button- GPIO

▪ Check pp. 767, the GPIO_Px_MODEH register

▪ Note: the MODEs are the same as before

Push buttons are conncted to pins 9 and 10 -> GPIO_Px_MODEH should be used

© BME-MIT 31.slide

8) Peripheral handling push button - GPIO
▪ Push button

o Pins has to be set as inputs

o Use MODEH register of port B

▪ After CLK enable, use GPIO_PB_MODEH |= ?

o Pin 9 (10) can be configured by bit group [7:4] [11:8]

o INPUT -> value is 1

o Use GPIO_PB_MODEH|=(1<<4); //PB9 conf as input

o Use GPIO_PB_MODEH|=(1<<8); //PB10 conf as input

© BME-MIT 32.slide

8) Peripheral handling LED - GPIO

▪ Check pp. 767, the GPIO_Px_MODEL register

▪ Note: the MODEs are the same as before

LEDs are conncted to pins 2 and 3 -> GPIO_Px_MODEL should be used

© BME-MIT 33.slide

8) Peripheral handling LED - GPIO
▪ LEDs

o Pins has to be set as outputs: pin 2 and 3 in Port E

o Use MODEL reg of port E

▪ After CLK enable, use GPIO_PE_MODEL |= ?

o Pin 2 (3) can be configured by bit group [11:8] [15:12]

o Pushpull mode has to be used whose value is a 4

o Use GPIO_PE_MODEL |= (4<<8); //PE2 conf as output

o Use GPIO_PE_MODEL |= (4<<12); //PE3 conf as output

© BME-MIT 34.slide

8) Peripheral handling - GPIO
▪ LEDs’ default value should be set

o Check p.768

• GPIO_Px_DOUT
– Data output on port

• GPIO_Px_DOUTSET
– Write bits to 1 to set corresponding bits in GPIO_Px_DOUT. Bits

written to 0 will have no effect.

• GPIO_Px_DOUTCLR
– Write bits to 1 to clear corresponding bits in GPIO_Px_DOUT. Bits

written to 0 will have no effect.

o GPIO_PE_DOUT|=(1<<2); //LED0 set

o GPIO_PE_DOUT|=(1<<3); //LED1 set

© BME-MIT 35.slide

9) Operation at a code level

▪ What should be written in the while loop?

o Read the status of the button (pushed/released) from
the corresponding register bit and control the LED
based on button state (on/off) Here it should be checked

based on the schematic
that what is the value of
the push button when
-pushed (->low)
-released (->high)

© BME-MIT 36.slide

10) Some extra

▪ Using GPIO_Px_CTRL register the drive strength
can be set to control the luminance of the LED

o Check p. 767

© BME-MIT 37.slide

11) Reference code
//#include "em_device.h"

//#include "em_chip.h"

#define CMU_BASE_ADDR 0x400c8000

#define GPIO_BASE_ADDR 0x40006000

#define CMU_HFPERCLKDIV (*(volatile unsigned long int*)(0x400c8000 + 0x008))

#define CMU_HFPERCLKEN0 (*(volatile unsigned long int*)(0x400c8000 + 0x044))

#define GPIO_PB_MODEH (*(volatile unsigned long int*)(0x40006000 + 0x02C))

#define GPIO_PB_DIN (*(volatile unsigned long int*)(0x40006000 + 0x040))

#define GPIO_PE_MODEL (*(volatile unsigned long int*)(0x40006000 + 0x094))

#define GPIO_PE_DOUT (*(volatile unsigned long int*)(0x40006000 + 0x09C))

int main(void)

{

/* Chip errata */

//CHIP_Init();

CMU_HFPERCLKDIV |= 1 << 8; // periferal clk enable

CMU_HFPERCLKEN0 |= 1 << 13; // GPIO clk enable

© BME-MIT 38.slide

11) Reference code (cont’d)
//

GPIO_PE_MODEL |= 4 << 8; // port E pin 2: pushpull output: page 766

GPIO_PE_MODEL |= 4 << 12;// port E pin 3: pushpull output

GPIO_PE_DOUT |= 1 << 2; // port E pin 2: high

GPIO_PE_DOUT |= 1 << 3; // port E pin 3: high

GPIO_PB_MODEH |= 1 << 4; // port B pin 9: input: page 67

GPIO_PB_MODEH |= 1 << 8;// port B pin 10: input

/* Infinite loop */

while (1) {

if (GPIO_PB_DIN & (1<<9)){

GPIO_PE_DOUT &= ~(1 << 3);

} else {

GPIO_PE_DOUT |= 1 << 3;

}

if (GPIO_PB_DIN & (1<<10)){

GPIO_PE_DOUT &= ~(1 << 2);

} else {

GPIO_PE_DOUT |= 1 << 2;

}

}

}

