Embedded and ambient systems 2024.09.18.

Practice 3

Peripheral handling at register level

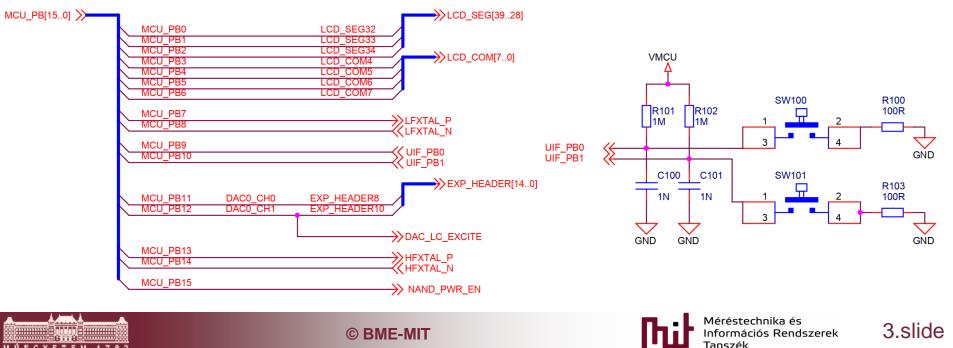
Méréstechnika és Információs Rendszerek Tanszék

Budapest University of Technology and Economics Department of Measurement and Information Systems

© BME-MIT

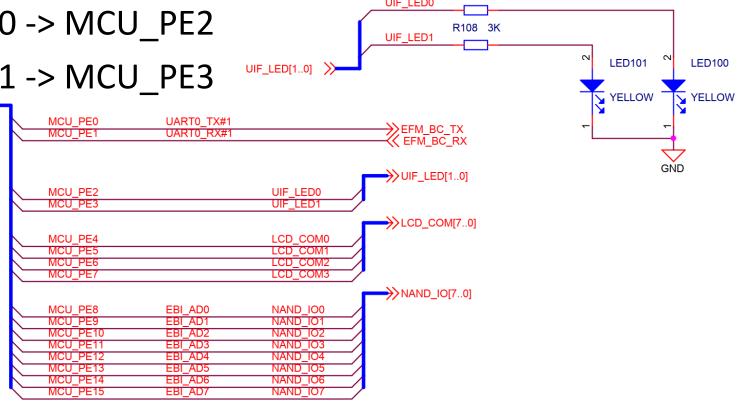
1) Peripheral handling at low level

- Useful to see how peripherals work at a register level (hidden by the high-level functions)
- See the LED-blinking-by-button project built up from empty code at a low level
- Source files needed:
 - o EFM32GG-BRD2200A-A03-schematic.pdf
 - Board schematic: peripherals and their interconnection
 - o EFM32GG-RM.pdf (RM=reference manual)
 - Use it as a reference, i.e., the necessary chapters are needed only to be read
 - It is a good way to understand general topics, e.g., communication (e.g. UART) used by the uC



1) Physical connections on the board

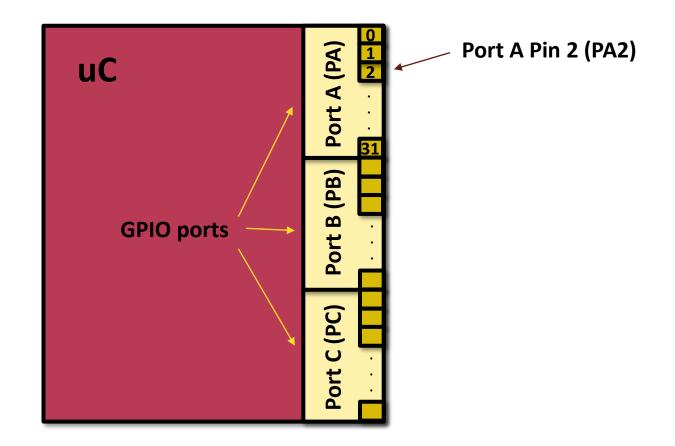
- Find the connections between the uC and the buttons based on the schematic
- Buttons: connected to 'Port B' of GPIO peripheral


 UIF_PBO -> MCU_PB9
 UIF_PB1 -> MCU_PB10

1) Physical connections on the board

- Find the connections between the uC and the LEDs based on the schematic
- LEDs: connected to 'Port E' of GPIO
 UIF_LED0 -> MCU_PE2
 UIF_LED1 -> MCU_PE3
 UIF_LED1.01

© BME-MIT

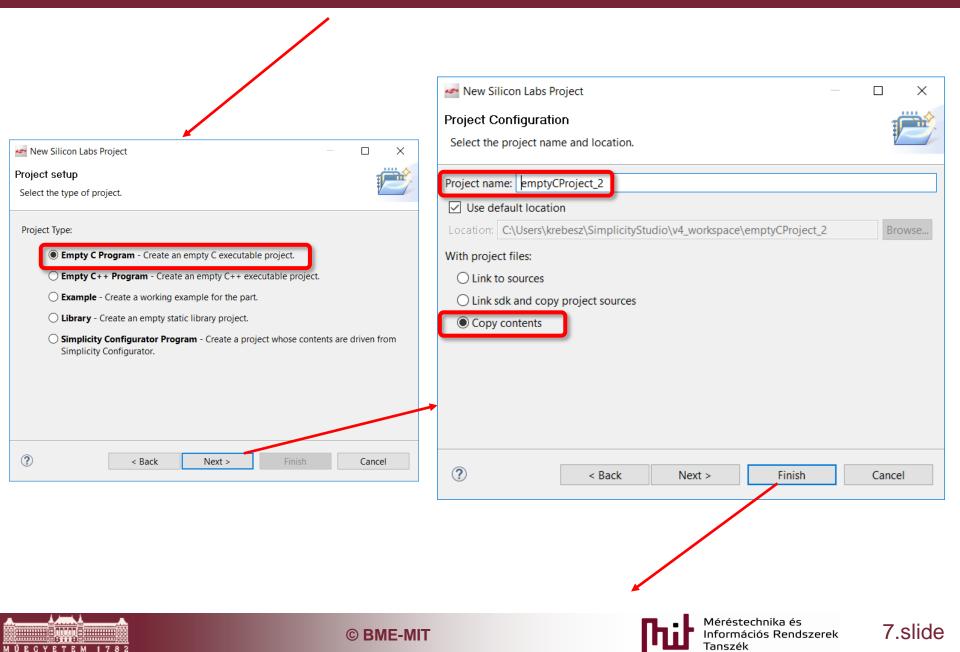

Méréstechnika és

Tanszék

Információs Rendszerek



1) Physical connections on the board


2) Start a new empty project

File->New->Project:

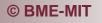
мÚ

- 🗆	🗙 🔤 New Silicon Labs Project	– 🗆 X
Select a wizard Create a C/C++/Assembly project targeting Silicon Labs MCUs.	Project setup Select the board, part, and SDK for the project	t.
Wizards:	Boards: EFM32 Giant Gecko Starter Kit board (BRD22 Part: Search EFM32GG990F1024 SDK: Gecko SDK Suite: MCU 5.8.3.0, Micrium OS Ke	v 200A Rev A03) × v ernel 5.7.0 (v2.6.3) (I:\Simplicity_studio\devel v) <u>Manage SDKs</u>
Image: Sector	? < Back	Next > Finish Cancel
© BME-MIT		Néréstechnika és nformációs Rendszerek 6.Slide

3) Start a new empty project

3) Empty project created

Simplicity IDE - emptyCProject_2/src/main.c - Simplicity Studio ™

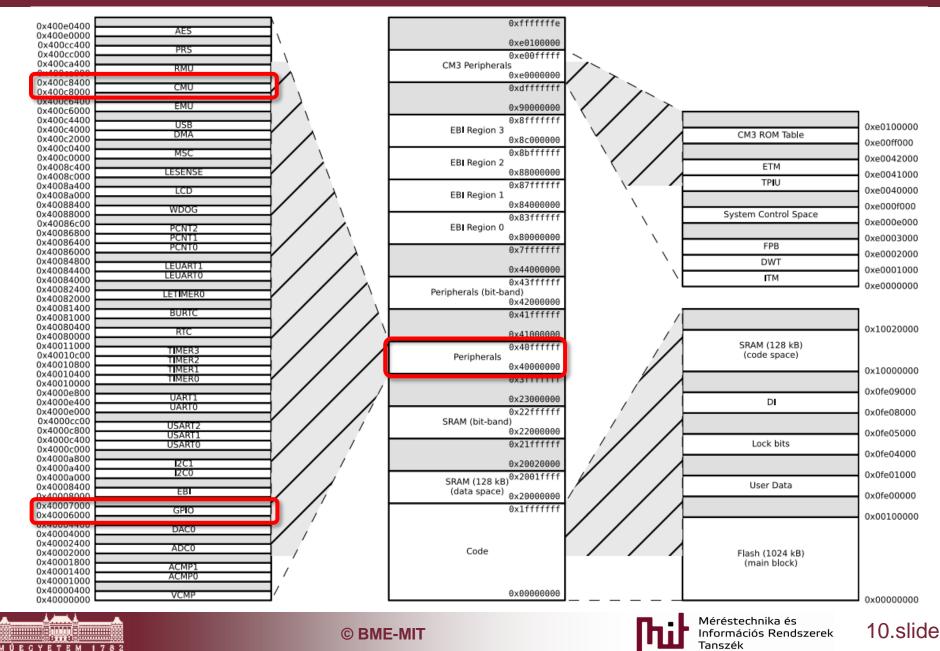

File Edit Source Refactor Navigate Search Project Run Window Help

* ▼ 🗣 ▼ 🗁 ▼ 🔚 🐚 | 🗞 ▼ 🗞 ▼ 🖢 ▼ 🖓 ▼ 🏷 → 🔿 ▼ 🕮

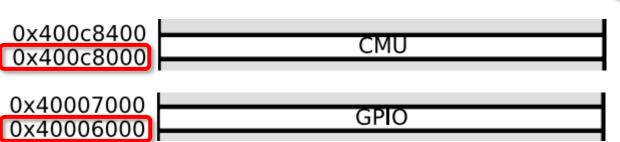
င်္ခ Project Explorer 🛛	🖻 🔄 🏹 🗖 🗖 🚺 main.c 🛛
✓ ^{Imest} emptyCProject_2 [GNU ARM v7.2.1 - Debu	g] [EFM32GG990F1024 - Gecko SDK Sui 1 #include "em_device.h"
> 🔊 Includes	2 #include "em_chip.h"
> 🗁 CMSIS	3
> 🗁 emlib	4⊖int main(void) 5 {
🗸 🗁 src	6 /* Chip errata */
> 🖻 main.c	7 CHIP_Init();
	8
	9 /* Infinite loop */
	10 while (1) {
	11 }
	12 }
	13

Comment out CHIP_Init(); function

4) Get to know necessary peripherals


- Two peripherals are needed

 General Purpose Input Output (GPIO)
 Clock Management Unit (CMU)
- Check p.17 Fig.5.2 of EFM32GG-RM.pdf
 - Memory map of the system
 - 32-bit uC -> 4GB addressable memory theoretically but only a small part is physically available
 - Obviously only the physically available amount of memory is shown in the map
 - (see next slide for the map)



4) Memory map (full)

4) Memory map (CMU and GPIO regs.)

- The address space is important
 - Starts from bottom and increasing to the top
 - Base addresses of peripheral registers have to be determined
 - CMU base address: 0x400c8000
 - GPIO base address: 0x40006000

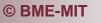
0x400c8400	СМО	
0x400c8000	СМО	
0X400C0400	EMU	
0x400c6000	ENO	
0x400c4400	USB	
0x400c4000	DMA	
0x400c2000	DINA	
0x400c0400	MSC	
0x400c0000	1150	
0x4008c400	LESENSE	
0x4008c000	LEGENGE	
0x4008a400	LCD	
0x4008a000	200	
0x40088400	WDOG	
0x40088000	11000	Y
0x40086c00	PCNT2	
0x40086800	PCNT1	
0x40086400	PCNTO	
0x40086000		
0x40084800	LEUART1	
0x40084400	LEUARTO	
0x40084000	LEGARTO	
0x40082400	LETIMERO	i
0x40082000	Letimento	
0x40081400	BURTC	
0x40081000	bollic	
0x40080400	RTC	
0x40080000	Ric	/
0x40011000	TIMER3	
0x40010c00	TIMER2	
0x40010800	TIMER1	
0x40010400	TIMERO	
0x40010000	THERE	
0x4000e800	UART1	
0x4000e400	UARTO	
0x4000e000	- OAIGO	
0x4000cc00	USART2	r
0x4000c800	USARTI	
0x4000c400	USARTO	
0x4000c000	USANO	
0x4000a800	2C1	
0x4000a400	201	
0x4000a000	200	
0x40008400	EBI	
0×40008000		
0x40007000	GPIO	
0x40006000	610	
	Méréstechnika és	4.4
Init	Információs Rendszerek	11.slide

Tanszék

5) Base address aliases in code

 Avoid memorizing memory addresses using aliases in the code (use <u>Tab</u> instead of Space)

```
🖻 main.c 🖾
 1 #include "em device.h"
   #include "em chip.h"
  3
   #define CMU BASE ADDR
                           0x400c8000
    #define GPIO BASE ADDR 0x40006000
  6
 7⊖int main(void)
 8
      /* Chip errata */
 9
      //CHIP Init();
10
11
12
   /* Infinite loop */
13
    while (1) {
14
15 }
16
```

6) Accessing registers using base addr.

- Base address is only the start address of a certain kind of register array, like CMU registers
- To access a specific register (e.g. register for REG_A of a register array) an offset address have to be used relative to the base address
 - The address of a specific register is the base + offset address
 - e.g. REG_A -> 0x400c8000+0x044
- Note, that registers usually contain configuration bits to be set (see later)

6) Explanation for setting reg. content

- 32-bit registers are addressed
- Memory address is determined to store data there
 - Remember: base address + offset = memory address
 - Problem: this is a number for the compiler not an address
 - Solution: to turn this number into a memory address it has to be converted into a **pointer** (use * to mark a pointer)
 - In C, pointer is a variable type that points to a certain part of the memory (to a memory address where e.g. a register store data)
 - Turning a number into a pointer means forcing the change of variable type, called **cast**ing
- The way to refer to a certain register is uC dependent, its implementation has to be checked via examples, description, manual, etc.

6) Explanation for setting reg. content

In our case a pointer can be given by:

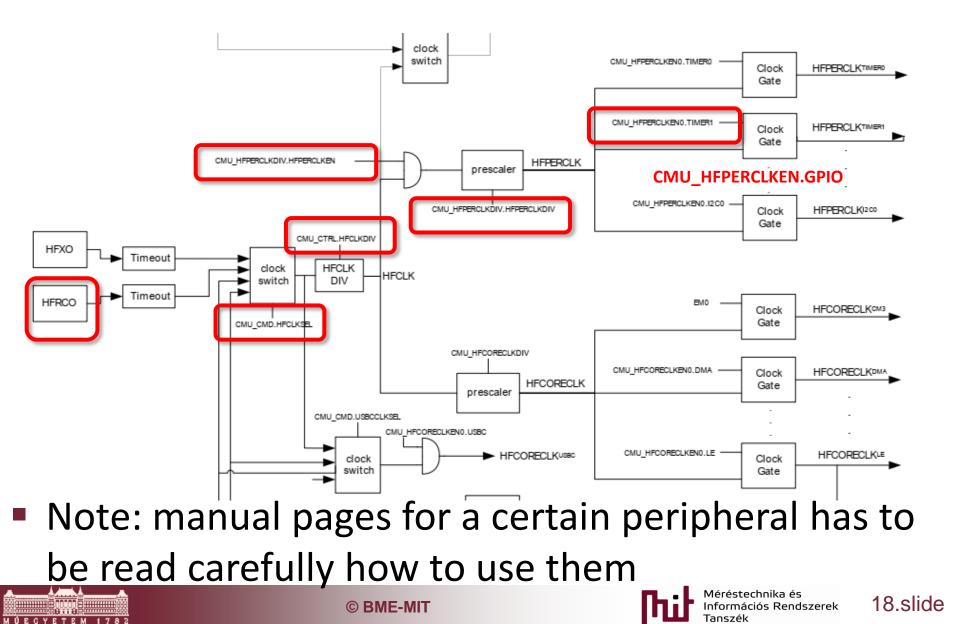
- (*(volatile long unsigned int *)(0x400c8000+0x044))
 - First *: a value is to be written into the memory (register) at the given address
 - volatile: avoid to be optimized out
 - long unsigned int: type of the pointer (note: 32-bit reg.)
 - Second *: this is a pointer
 - 0x400c8000+0x044 : this is the known memory address
- The pointer itself:
 - (volatile long unsigned int *)(0x400c8000+0x044)
 - To give a value for this pointer the first * is used

6) Explanation for setting reg. content

- Useful to make it more structured looking
 - #define REG_A (*(volatile long unsigned int *)(0x400c8000+0x044))
- Setting a bit, e.g., set Bit13
 - REG_A |=1<<13
 - |= : bitwise OR used for setting a bit
 - bbbbbbb |= 00100000 results bb1bbbb where b is either 0 or 1
- Clearing a bit, e.g., clear Bit13
 - REG_A &=~(1<<13)
 - &=~ : bitwise AND of inverted values used for clearing
 - bbbbbbb &=~ 00100000 -> bbbbbbbb &= 11011111
 bb0bbbbb



Check p.128 Fig.11.1 of EFM32GG-RM.pdf

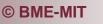

- Clock distribution network is shown
- Clock has to be provided for the peripherals
 - This is uC dependent but always has to be take care of providing CLK for the peripherals and enabling the peripherals
- Find HFRCO: high-frequency RC osc
 - Not too much precise but readily available -> no external CLK source is needed

Check the signal path toward the GPIO peripheral

- Check p.136 of EFM32GG-RM.pdf
 - Registers of CMU peripheral are shown with brief description
 - Register addresses are given relative to the base address
 - E.g. CMU_CTRL addr: from 0x000 to the next register starting 0x004, which is 4bytes, i.e. 32 bits

The offset register address is relative to the registers base address.

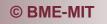
Offset	Name	Туре	Description
0x000	CMU_CTRL	RW	CMU Control Register
0x004	CMU_HFCORECLKDIV	RW	High Frequency Core Clock Division Register
0x008	CMU_HFPERCLKDIV	RW	High Frequency Peripheral Clock Division Register
0x00C	CMU_HFRCOCTRL	RW	HFRCO Control Register
0x010	CMU_LFRCOCTRL	RW	LFRCO Control Register
	© BME-MIT	1	Méréstechnika és Információs Rendszerek 19.Slid


Use copy-paste to put the register addresses into the code

- 0x008 CMU_HFPERCLKDIV_OFFS
- 0x044 CMU_HFPERCLKEN0_OFFS

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	CMU_CTRL	RW	CMU Control Register
0x004	CMU_HFCORECLKDIV	RW	High Frequency Core Clock Division Register
0x008	CMU_HFPERCLKDIV	RW	High Frequency Peripheral Clock Division Register
0x00C	CMU_HFRCOCTRL	RW	HFRCO Control Register
0x010	CMU_LFRCOCTRL	RW	LFRCO Control Register



- Check p.137 of EFM32GG-RM.pdf
 - Bit-level description of CMU registers
 - Check default values: values after Reset
 - 11.5.1 CMU_CTRL CMU Control Register

Offset		·						-							Bi	t Po	ositi	on														
0x000	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	6	8	7	9	5	4	ю	2	-	0
Reset		0		0				0×0			0×0			0x3	0		0×0		0	ç	nxn	0	0X3		0	50	1XU		0x3		0~0	222
Access		RW		RW				RW			RW		I	RW	RW		RW		RW	Ì			2 2 2		RW		۶ ۲		RW		MA MA	
Name		HFLE		DBGCLK				CLKOUTSEL1			CLKOUTSELO			LFXOTIMEOUT	LFXOBUFCUR		HFCLKDIV		LFXOBOOST				HFXUIIMEUUI		HFXOGLITCHDETEN		HFXOBUFCUK		HEXOROOST		HEXOMODE	1
Bit	Na	me						Re	set			A	CC	cess		De	scr	iptio	on													
22:20	CLK	(OU	TSE	L0				0x0)			R	W			Clo	ock (Outp	out	Sel	ect ()										
	Con	trols	the	cloc	k ou	tpu	t m	ultipl	exer	: To	actu	ally	ou	tput (on th	ne pi	n, se	et CL	KC	DUT	0PE	N in	СМ	J_R	OUT	E.						
	Valu	Je			M	ode)escr	iptior	ı															
	0				HF	RC	0							H	IFRC	CO (d	irectl	y froi	m o	scilla	itor).											
		_																											a óc			

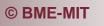
stechnika és nációs Rendszerek

- Check p.140 of EFM32GG-RM.pdf
 - Enable CLK

11.5.3 CMU_HFPERCLKDIV - High Frequency Peripheral Clock Division Register

Offset															Bi	t Po	siti	on														
0x008	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	5	10	6	80	2	9	5	4	e	2	-	0
Reset																								-						0x0		
Access																								RV						RW		
Name																								HFPERCLKEN						HFPERCLKDIV		
Bit	Na	me						Re	set			A	ссе	ss		De	scri	ipti	on													
31:9	Re	serve	ed					То	ensu	re co	mpa	atibil	ity n	vith	futu	re de	vice	əs, a	lwa	iys n	vrite	bits	to 0.	More	e int	form	atior	n in S	Secti	on 2.	1 (p.	3)
8	HF	PER	CLK	EN				1				R۷	N			HFI	PER	CL	< Er	nabl	е											

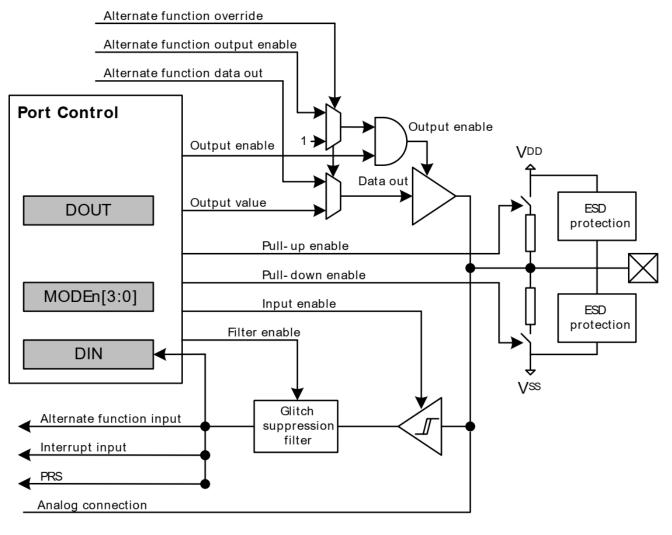
Set to enable the HFPERCLK.


Check p.150 of EFM32GG-RM.pdf

Enable CLK for GPIO

11.5.18 CMU_HFPERCLKEN0 - High Frequency Peripheral Clock Enable Register 0

Offset															Bi	t Po	ositi	on		1												
0x044	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	5	10	6	8	7	9	5	4	с	2	-	0
Reset															0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access															RW	RW	RV	RV	RW	RW	RW	RV	RW	RW	RW	RV	RW	RW	RV	RV	RW	RV
Name					_										DACO	ADC0	PRS	VCMP	GPIO	12C1	12C0	ACMP1	ACMP0	TIMER3	TIMER2	TIMER1	TIMERO	UART1	UARTO	USART2	USART1	USARTO
Bit	Na	ame						Re	eset			A	٩cc	cess	•	De	scr	ipti	on													
13	G	GPIO 0 RW General purpose Input/Output Clock Enabl														abl	e	ſ				_										
	S	et to	enal	ole tł	ne cl	ock	for (GPIC	Э.																			J				


- New #define for pointer to get access to CMU register -> enabling
 - #define CMU_ HFPERCLKDIV (*(volatile unsigned long int*)(0x400c8000 + 0x008))
 - Note: CMU_BASE_ADDR+ CMU_HFPERCLKDIV_OFFS
 - #define CMU_HFPERCLKEN0 (*(volatile unsigned long int*)(0x400c8000 + 0x044))
 - Note: CMU_BASE_ADDR+CMU_HFPERCLKEN0_OFFS
- In the main function: CMU_HFPERCLKDIV |= (1<<8); CMU_HFPERCLKENO |= (1<<13);</p>
- Comment out all #include not to cause any trouble

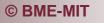
© BME-MIT

Check for errors by compiling

See pp.756-758 and Fig. 32.1 of EFM32GG-RM.pdf

© BME-MIT

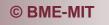
Méréstechnika és Információs Rendszerek Tanszék


Register map of GPIO (see p.764): offsets only!

Offset	Name		Туре	Description
0x02C	GPIO_PB_MODEH	Register for push button	RW	Port Pin Mode High Register
0x040	GPIO_PB_DIN	Register for push button	R	Port Data In Register
0x094	GPIO_PE_MODEL	Register for push LED	RW	Port Pin Mode Low Register
0x09C	GPIO_PE_DOUT	Register for LED	RW	Port Data Out Register

Use #define again

- o #define GPIO_PB_MODEH_OFFS 0x02C
- o #define GPIO_PB_DIN_OFFS 0x040
- o #define GPIO_PE_MODEL_OFFS 0x094
- o #define GPIO_PE_DOUT_OFFS 0x09C

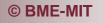


- Pointers to be used have to be created in the same way as in case of CMU
 - #define GPIO_PB_MODEH (*(volatile long unsigned int *)(GPIO_BASE_ADDR+GPIO_PB_MODEH_OFFS))
 - o #define GPIO_PB_DIN (*(volatile ...*)(...+.._OFFS))
 - o #define GPIO_PE_MODEL (*(...
 - o #define GPIO_PE_DOUT (*(...

Check pp. 765-766, the GPIO_Px_CTRL (port control) register: drive modes can be set

Offset															Bit	t Po	siti	on								I						
0x000	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	11	10	ი	8	7	9	5	4	e	2	-	0
Reset																															UXU	
Access																															MA	
Name																																

- Bit
 Name
 Reset
 Access
 Description


 31:2
 Reserved
 To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

 1:0
 DRIVEMODE
 0x0
 RW
 Drive Mode Select
 - DRIVEMODE 0x0 RW Drive Mode Sel

Select drive mode for all pins on port configured with alternate drive strength.

Value	Mode	Description
0	STANDARD	6 mA drive current
1	LOWEST	0.1 mA drive current
2	HIGH	20 mA drive current
3	LOW	1 mA drive current

Méréstechnika és Információs Rendszerek Tanszék

8) Peripheral handling in general- GPIO

Check pp. 766, the GPIO_Px_MODEL register

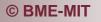
Offset			Bit Po	sition			
0x004	31 30 28 29	27 26 25 25 24 24 23 23 23 23 22 22 22 22	19 18 17 16	15 14 13 12	11 10 8	6 4 4	0 7 5 3
Reset	0×0	0×0	0×0	0×0	0×0	0×0	0×0
Access	RW	RW RW	RW	RW	RW	RW	RW
Name	MODE7	MODE6	MODE4	MODE3	MODE2	MODE1	MODE0

	Bit	Na	me	Reset		Access	Description	
	31:28	МО	DE7	0x0		RW	Pin 7 Mode	
		Cor	nfigure mode for pin 7.	Enumeration i	s equal	to MODE0.		
V	alue		Mode		Descrip	otion 4bits->	16 different r	nodes
0			DISABLED		Input d	isabled. Pullup i	f DOUT is set.	
1			INPUT		Input e	nabled. Filter if	DOUT is set	
2			INPUTPULL		Input e	nabled. DOUT o	letermines pull dire	ection
3			INPUTPULLFILTER		Input e	nabled with filte	r. DOUT determine	s pull direction
4			PUSHPULL		Push-p	ull output		
			1		1			

éstechnika és rmációs Rendszerek

8) Peripheral handling push button- GPIO

Check pp. 767, the GPIO Px MODEH register


Offset															Bi	t Po	siti	on															
0x008	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	80	7	9	5	4	ю	2	-	0	
Reset	0×0									0×0								0x0									nxn		0×0				
Access	RW RW									1010					RW			RW				Md					N Y		RV				
Name		313000				MODE14					MOUEIS				MODE12			MODE11				MODE 10					MODES		MODE8				

11:8	MODE10	0x0	RW	Pin 10 Mode
	Configure mode fo	r pin 10. Enumeration i	s equal to MOD	E8.
7:4	MODE9	0x0	RW	Pin 9 Mode

Push buttons are conncted to pins 9 and 10 -> GPIO_Px_MODEH should be used

Note: the MODEs are the same as before

8) Peripheral handling push button - GPIO

Push button

- Pins has to be set as inputs
- Use MODEH register of port B
- After CLK enable, use GPIO_PB_MODEH |= ?
 - Pin 9 (10) can be configured by bit group [7:4] [11:8]
 INPUT -> value is 1

	Value	Mode	Description
	0	DISABLED	Input disabled. Pullup if DOUT is set.
ſ	1	INPUT	Input enabled. Filter if DOUT is set
	2	INPUTPULL	Input enabled. DOUT determines pull direction
	3	INPUTPULLFILTER	Input enabled with filter. DOUT determines pull direction
	4	PUSHPULL	Push-pull output

O Use GPIO_PB_MODEH = (1<<4); //PB9 conf as input</p>

Use GPIO_PB_MODEH|=(1<<8); //PB10 conf as input

© BME-MIT

éstechnika és rmációs Rendszerek szék

Check pp. 767, the GPIO_Px_MODEL register

Offset															Bi	t Po	siti	on														
0x004	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	2	9	5	4	e	~	-	0
Reset			nxn			6	nxn		0×0						0×0			0×0				020	nxn				0×0			ç	nxn	
Access							Х Х		RŴ				RŴ					RW						RW			RW					
Name			MODE				MODE6				MUDES				MODE4			MODE3					MUDEZ				MODE1				MODEO	

15:12MODE30x0RWPin 3 ModeConfigure mode for pin 3. Enumeration is equal to MODE0.11:8MODE20x0RWPin 2 Mode

Configure mode for pin 2. Enumeration is equal to MODE0.

LEDs are conncted to pins 2 and 3 -> GPIO_Px_MODEL should be used

Note: the MODEs are the same as before

LEDs

Pins has to be set as outputs: pin 2 and 3 in Port E
Use MODEL reg of port E

After CLK enable, use GPIO_PE_MODEL |= ?

• Pin 2 (3) can be configured by bit group [11:8] [15:12]

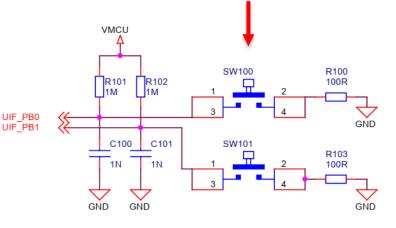
Pushpull mode has to be used whose value is a 4

Value	Mode	Description
0	DISABLED	Input disabled. Pullup if DOUT is set.
1	INPUT	Input enabled. Filter if DOUT is set
2	INPUTPULL	Input enabled. DOUT determines pull direction
3	INPUTPULLFILTER	Input enabled with filter. DOUT determines pull direction
4	PUSHPULL	Push-pull output

Use GPIO_PE_MODEL |= (4<<8); //PE2 conf as output

O Use GPIO_PE_MODEL |= (4<<12); //PE3 conf as output</p>

- LEDs' default value should be set
 - Check p.768
 - GPIO_Px_DOUT
 - Data output on port
 - GPIO_Px_DOUTSET
 - Write bits to 1 to set corresponding bits in GPIO_Px_DOUT. Bits written to 0 will have no effect.
 - GPIO_Px_DOUTCLR
 - Write bits to 1 to clear corresponding bits in GPIO_Px_DOUT. Bits written to 0 will have no effect.
 - O GPIO_PE_DOUT|=(1<<2); //LED0 set</pre>
 - O GPIO_PE_DOUT|=(1<<3); //LED1 set</pre>

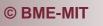

9) Operation at a code level

- What should be written in the while loop?
 - Read the status of the button (pushed/released) from the corresponding register bit and control the LED based on button state (on/off)

```
while (1) {
    if (GPIO_PB_DIN & (1<<9)){
        GPIO_PE_DOUT &= ~(1 << 3);
    } else {
        GPIO_PE_DOUT |= 1 << 3;
    }
    if (GPIO_PB_DIN & (1<<10)){
        GPIO_PE_DOUT &= ~(1 << 2);
    } else {
        GPIO_PE_DOUT |= 1 << 2;
    }
}</pre>
```

}

Here it should be checked based on the schematic that what is the value of the push button when -pushed (->low) -released (->high)


© BME-MIT

10) Some extra

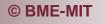
- Using GPIO_Px_CTRL register the drive strength can be set to control the luminance of the LED
 - o Check p. 767
- 32.5.1 GPIO_Px_CTRL Port Control Register

Offset				-		Bit Position																									
0x000	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	~	9	5	4	e	7	- 0
Reset					1											1								1							0×0
Access	Bit Name Reset Access Description																		RW												
	31:2 Reserved To ensure compatibility with future devices, always write bits to 0.														0.			DE													
Name					1:0			RIVEI			de fo	or all		0x0 s on	port o	config		RW d with	n alte	erna			lode treng		ect						DRIVEMODE
	_						Va	alue			N	lode								Desc	riptior	ı									
							0				S	TAN	DARI	D						6 mA	drive	curre	ent								
							1				L	OWE	ST						0	0.1 m	nA driv	ve cu	rrent								
							2				Н	IGH							:	20 m	A driv	e cur	rent								
							3				L	OW								1 mA	drive	curre	ent								

11) Reference code

//#include "em_device.h"
//#include "em_chip.h"

#define CMU_BASE_ADDR 0x400c8000 #define GPIO_BASE_ADDR 0x40006000


#define CMU_HFPERCLKDIV (*(volatile unsigned long int*)(0x400c8000 + 0x008))
#define CMU_HFPERCLKEN0 (*(volatile unsigned long int*)(0x400c8000 + 0x044))

#define GPIO_PB_MODEH (*(volatile unsigned long int*)(0x40006000 + 0x02C))
#define GPIO_PB_DIN (*(volatile unsigned long int*)(0x40006000 + 0x040))

#define GPIO_PE_MODEL (*(volatile unsigned long int*)(0x40006000 + 0x094))
#define GPIO_PE_DOUT (*(volatile unsigned long int*)(0x40006000 + 0x09C))

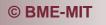
```
int main(void)
{
    /* Chip errata */
    //CHIP_Init();
    CMU_HFPERCLKDIV |= 1 << 8; // periferal clk enable
    CMU_HFPERCLKEN0 |= 1 << 13; // GPIO clk enable</pre>
```


11) Reference code (cont'd)

//

GPIO_PE_MODEL |= 4 << 8; // port E pin 2: pushpull output: page 766 GPIO_PE_MODEL |= 4 << 12;// port E pin 3: pushpull output

```
GPIO_PE_DOUT |= 1 << 2; // port E pin 2: high
GPIO_PE_DOUT |= 1 << 3; // port E pin 3: high
```


```
GPIO_PB_MODEH |= 1 << 4; // port B pin 9: input: page 67
GPIO_PB_MODEH |= 1 << 8;// port B pin 10: input
```

```
/* Infinite loop */
while (1) {
```

```
GPIO_PE_DOUT |= 1 << 2;
```


}

