
Embedded and Ambient Systems 
 

Topic of exercise 3 

During the exercise, we will use one of the microcontroller's serial peripherals (UART0) to send and 
receive characters. We will make some of the necessary settings at the register level. However, unlike 
the previous practice, this time the register-level access will be assisted by the C language header files 
that are part of the SDK released for the microcontroller. Most of the necessary settings will be made 
even more conveniently using emlib, which is also part of the SDK. This is a firmware library with 
functions for managing the peripherals of the microcontroller. 

The UART0 peripheral of the microcontroller is accessible for the computer through the Board Controller, 
which also includes the debugger circuit, where it appears as a virtual COM port. By default, however, 
the connection between the UART0 peripheral and the Board Controller is not establed. Enabling the 
connection can be done by setting the PF7 pin into high logical level. So this is a configuration step that 
has nothing to do with the settings of the UART0 peripheral, but we have to do it anyway. 

Task 1 
Let's enable the connection between the UART0 peripheral of the microcontroller and the Board 
Controller! For this purpose, we use the header files available in em_device.h. Since we can adjust the 
PF7 pin using the GPIO peripheral, we must first ensure that it receives a clock signal! 

Hint: during the task, we use the CMU and GPIO pointers available by em_device.h – which point to 
structures that enable CMU and GPIO peripheral settings - as well as the #defines that produce the 
appropriate bit mask, which can also be accessed using the above-mentioned header. 

The steps to be taken are therefore: 

1. Enable GPIO clock 
a. Enable high frequency peripheral clock (HFPERCLK) in general, because this is 

what the GPIO also receives (this is enabled after reset, so this step can be skipped). 
To enable it, the HFPERCLKEN bit of the HFPERCLKDIV register of the CMU 
peripheral must be set to High. 

b. Specifically enabling the clock signal going to the GPIO peripheral. Here, the 
GPIO bit of the HFPERCLKEN0 register of the CMU peripheral must be set to High. 

2. Set PF7 high 
a. To do this, you must first define the given pin as an output. Here, the appropriate setting 

of the MODEL register belonging to port F of the GPIO peripheral is required. Hint: since 
the GPIO peripheral manages several ports (A-F), the registers that are required to 
manage the specific ports (and not the entire GPIO peripheral in general) are located 
in the P array of the structure pointed to by the GPIO pointer. The individual elements 
of the array are also structures that allow access to the registers required to set the 
given port. Since in C we index with a number, starting with 0, A-F ports have indexes 
0-5. Furthermore, out of the two possible MODEx registers (MODEL and MODEH), you 
need MODEL because it contains the settings for pins 0-7 (while MODEH is responsible 
for configuring pins 8-15). 

b. After that, we need to make sure that PF7 is set to a high value. This can also be 
done with the DOUT and DOUSET registers (the latter results in more efficient code). 

Task 2 
Configuring the UART0 peripheral for 115200 Baud rate and 8N1 frame format (i.e. 8 data bits, no 
parity, 1 stop bit). The pins used are PE0 (TX, transmit) and PE1 (RX, receive), since these pins are 
wired on the STK3700 card. 

To complete this task, we will use the functions provided by emlib. Since in addition to UART0, the 
correct setting of the CMU and GPIO peripherals is also required to solve the problem, we will need 



three modules of emlib: USART1, CMU and GPIO. The three modules have three source and three 
header files: em_<module name in lower case>.(c|h). 

Hint: the header files can be used by inserting the appropriate #include lines, while the source files must 
be added to the project. The easiest way to do the latter is to select "Browse Files Here" from the menu 
that appears when you right-click on the emlib/em_system.c file that already exists in the project. 
Provided that the project was not created by selecting the "Copy contents" option, only links from the 
project point to the source files of the libraries used, and consequently the file browser displayed by 
clicking on the above menu item points to the location of the emlib files. From there, we can drag and 
drop the necessary files into the project with a simple Drag & Drop operation. In the pop-up dialog 
window, choose to link the file (compared to the STUDIO_SDK_LOC environment variable). 

The steps to be taken: 

1. First, a clock signal must be provided to the UART0 peripheral. For this, we can use the 
CMU_ClockEnable() function (predefined enum values are available to specify the clock signal 
to be enabled). 

2. After that, the requested operating mode must be configured. 
a. To do this, a USART_InitAsync_TypeDef type structure has to be created to store 

the configuration parameters. 
b. The elements of the structure must then be filled with the appropriate values: 

i. baud rate: can be entered with a number 
ii. refFreq: 0 (to generate the baudrate, the frequency of the default HFPERCLK 

clock signal of UART0 is considered as a reference) 
iii. databits: to enter, use the appropriate enum value and not a number, that will 

not be good! 
iv. parity: choose the appropriate enum value 
v. stop bits: choose the appropriate enum value 
vi. oversampling2: select the enum value for 16x oversampling 
vii. mvdis3: should be false (we don't want to disable majority voting) 
viii. prsRxEnable: false (we don't want to use PRS4system) 
ix. prsRxCh: should be 0 (although the value may be don't care if prsRxEnable is 

false) 
x. enable: choose the enum value that enables both the receiving and 

transmitting circuit 
c. After filling out the configuration structure, use the USART_InitAsync() function to 

initialize the UART0 peripheral using the above structure! (Note: for didactic purposes, 
we have now filled in all configuration options. In general, however, there are #defines 
loaded with default values to facilitate the filling of configuration structures - in our case, 
USART_INITASYNC_DEFAULT can now be used for this purpose. It is worth initializing 
the structure with this when creating it, and then only it is necessary to rewrite the 
parameters where we want to set the peripheral differently than the default case.) 

 
1There are basically two types of simple serial communication protocols: UART (Universal Asynchronous Receiver 
/ Transmitter) and USRT (Universal Synchronous Receiver / Transmitter). The difference between the two is that 
while the latter uses a dedicated clock signal, the former does not. Since their operation is the same apart from 
this, in microcontrollers we often find peripherals that can operate in either of the two modes, depending on the 
setting, and are therefore called USART. Since a clock signal is not required in most cases, we often find 
peripherals operating only in UART mode in microcontrollers. The device we use has both. Since their handling 
is very similar, emlib provides only one module called em_usart, which is designed to handle both types of 
peripherals. 
2USART receiver circuits usually take multiple samples from one bit (16 by default). 
3Among the samples taken from one bit, the middle three are usually used as a basis, and a majority vote among 
them decides if the value is not clear. 
4PRS (Peripheral Reflex System) is a special data transmission channel of Gecko microcontrollers, where these 
peripherals can communicate with each other, autonomously, without the intervention of the CPU. 



3. After setting the requested mode, the signals of the UART0 peripheral must be output to the 
pins to be used. 

a. As a first step, using the GPIO peripheral, pin PE0 must be set as output (with an initial 
value of 1, since this is the rest state of UART communication) and pin PE1 as input. 
This is necessary because the GPIO peripheral is responsible for setting the mode of 
the pins, even if they are not used. The function to be used is GPIO_PinModeSet(). The 
port can be selected using the appropriate enum, while the pin can be chosen by a 
simple number. From the several possible output and input modes, select push-pull as 
output, and simple input mode as input (with the help of the appropriate enum). (The 
value to be written in the output register in the case of output will be the initial value of 
the pin, so for PE0, choose this as 1! In the case of input, the value that can be written 
in the output register controls whether an optional filter circuit should be switched on, 
which tries to get rid of the smaller spikes or not. It is not needed here, so the value of 
the output register should be 0 for PE1.) 

b. After the pins to be used have been set, the UART0 peripheral must be requested to 
use them (several possible configurations can be set to assign the RX, TX signals to 
physical pins). Unfortunately, there is currently no emlib function for this, so we are 
forced to solve it by register-level access. To complete the task, the appropriate setting 
of the ROUTE register of the UART0 peripheral is required. The pins we want to use 
have the “Location 1” output mode. So let's select this with the appropriate #define. 
Make sure that choosing the right "Location" is not enough in itself, because you also 
have to say which signals you want to output (of course both). Thus, the enabling bits 
for the RX and TX signals must also be toggled in the ROUTE register. 

Task 3 
Let's send a character to the UART0 peripheral! The USART_Tx() function can be used for this. 

Hint: in order to display the sent character, we need a so-called terminal program that prints the 
characters received on the serial port to the screen (and the characters typed). To do this, we first need 
to know which serial port number belongs to the Gecko board. We can do this in Windows using the 
Device Manager (under "Ports (COM & LPT)", look for the entry "JLink CDC UART PORT"). A possible 
terminal program is PuTTY. Set this to monitor the corresponding serial port (with the same 
communication parameters as the UART0 peripheral)! 

Task 4 
Let's continuously receive characters from the UART0 peripheral and then send them back! The 
USART_Rx() function can be used to receive characters. 

 


	Task 1
	Task 2
	Task 3
	Task 4

