
© BME-MITBudapest University of Technology and Economics
Department of Measurement and Information Systems

Embedded Software Development
2024.11.27

Practice 6
Runtime measurement

© BME-MIT 2.slide

Runtime measurement
 Recall debug topic from lecture – timer for meas.

© BME-MIT 3.slide

Runtime measurement
 uC has a special built in timer/counter inside Data

Watch point and Trace (DWT) unit of Debug
interface

 DWT is a 32-bit one, i.e., using default 14MHz CLK
signal the maximum amount of time that can be
measured is T_max=2^32/14MHz=5min

 Runtime measurement is actually measurement
of CLK cycles that can be easily transformed into
time via CLK frequency

 Counter used to measure runtime: Cycle Count
Register

© BME-MIT 4.slide

Runtime measurement
 Counter used to measure runtime: Cycle Count

Register (CYCCNT)
o When processor starts CYCCNT is zero
o Register can be accessed in the following way:

• DWT -> CYCCNT

o A possible solution to measure runtime:
runTime = DWT -> CYCCNT;

here comes the code whose runtime is to be measured
runTime = DWT -> CYCCNT – runtime – COMP_CONST;

o COMP_CONST is used to get zero runtime when no
code is applied -> reading of registers, calculations are
not part of the code to be measured itself

© BME-MIT 5.slide

Strating with a new project
 File->New->Project->Silicon Labs MCU Project:

© BME-MIT 6.slide

Strating with a new project
 File->New->Project->Silicon Labs MCU Project:

© BME-MIT 7.slide

Strating with a new project
 Give project name and location, and set

Copy content:

© BME-MIT 8.slide

Runtime measurement
 The value of COMP_CONST has to be measured

o Code: (CHIP_Init() has been removed)

o Value of COMP_CONST is 7

© BME-MIT 9.slide

Runtime measurement
 Determination of runtime of 3 type of operations

for 3 data types
 Use optimization level –O0 (= no optimization)
 Code that can be used:

 Remark: runtime may depend on where the variables are declared:
before the main function (longer runT) or inside the main function
 Variables are stored in different parts of the memory, and addressing

method may be different (relative or direct)

-O0 optimization Int32_t float double

Summation: + 6 91 134

Multiplication: * 7 64 120

Division: / 11 91 164

© BME-MIT 10.slide

Runtime measurement
 Checking the disassembled code can also indicate

the runtime
o Note: not every instruction can be executed in one CLK

cycle -> this method is just a rough guess

© BME-MIT 11.slide

Runtime measurement
 Division is always a time consuming operation for

an embedded system compared to summation
 HW support of division sometimes applied in a uC

that significantly reduces the runtime

© BME-MIT 12.slide

Runtime measurement
 Operations performed on floating point numbers

takes more runtime
o A function call is needed for floating point operations
o Operation on mantissa and exponents takes more time

for summation than HW-supported multiplication

© BME-MIT 13.slide

Runtime measurement
 Determination of runtime of type conversions
 Use optimization level –O0 (= no optimization)
 Recall: no explicit operation is done “just” type

conversion
 Code that can be used:

a_float = (float) a_int; OR a_float = a_int;

Source/target int32_t float double

int32_t -------------------------- 50 70

float 31 -------------------------- 26

double 36 36 --------------------------

© BME-MIT 14.slide

Change of optimization level
 To generate a more efficient (in terms of memory

usage, runtime, etc.) code optimization should be
applied:
(O3)

1

2

3

4

5

6

7

© BME-MIT 15.slide

Runtime measurement
 When optimization applied no result can be found

since the optimizer “optimized out” the result and
all those variables that are not used later

o see warnings in the code

 To avid this use volatile to force the optimizer not
to “optimize out” these variables (even runtime)

 However optimizer may use different order or
removes operations that makes extremely difficult
to follow and runtime measurement is not easy to
be correctly done

© BME-MIT 16.slide

Runtime measurement
 Determination of runtime of 3 type of operations

for 3 data types
 Use optimization level –O3
 Code that can be used:

-O3 optimization Int32_t float double

Summation: + 6 86 129

Multiplication: * 6 59 115

Division: / 10 86 159

© BME-MIT 17.slide

Runtime measurement
 Determination of runtime of type conversions
 Use optimization level –O3 (= no optimization)
 Code that can be used:

a_float = (float) a_int;

Source/target int32_t float double

Int32_t -------------------------- 48 67

float 29 -------------------------- 23

double 33 33 --------------------------

© BME-MIT 18.slide

Runtime measurement
 Sum operation using arrays:
 Use optimization level –O3
 Arrays should be volatile int32_t
 Code to be used to measure its runtime for

different N values:

© BME-MIT 19.slide

Runtime measurement
 What are the runtimes for array sizes H=15…100?

 Compare the CLK cycles for N=<15,16,17> and
N=<18,19,20,50,100>
o There is a jump in the runtime
o Explanation: loop unroll operation due to optimization

level –O3

N 15 16 17 18 19 20 50 100

CLK cycles
(-O3)

121 129 137 257 271 285 657 1207

CLK cycles
(-O0)

477 528 560 592 624 656 1513 2616

© BME-MIT 20.slide

Runtime measurement
 Loop unroll operation: (only when N is constant)

o The optimizer extracts the FOR loop and perform
multiply and accumulate operation N times when
N<18

o When N>=18 the optimizer performs the FOR loop
o Check disassembled code:

N<18 N>=18

© BME-MIT 21.slide

Time measurement, timers
 HW-based timers in Giant Gecko

© BME-MIT 22.slide

Time measurement, timers
 HW-based timers in Giant Gecko: simplified block

diagram

Time

© BME-MIT 23.slide

Time measurement, timers
 To handle the timer the

following files needed to be
added to the project:
o em_timer.c em_cmu.c
o Include the corresponding

.h files into the code

 To handle the LEDs the
following files needed to be
added to the project:
o bsp_bcc.c bsp_stk_leds.c

bsp_stk.c em_gpio.c
o Include bsp.h file into the code

 Paths: SimplicityStudio\developer\sdks\gecko_sdk_suite\v1.1\platform\emlib\src\
SimplicityStudio\developer\sdks\gecko_sdk_suite\v1.1\hardware\kit\common\bsp\

© BME-MIT 24.slide

Time measurement, timers
 The timer shall be configured using the library functions

as follows:
o Setting the prescaler of the peripheral clock
o Enabling the clock of the timer
o Generation of the parameter structure for initialization

• Prescaler is set to the appropriate value

o Reset the timer
o Setting the value of TOP
o Clear the interrupt
o Enable the interrupt

• Enable the peripheral interrupt
• Enable the core-based interrupt for the Timer (NVIC)

© BME-MIT 25.slide

Time measurement, timers
Possible implementation:

© BME-MIT 26.slide

Time measurement, timers

© BME-MIT 27.slide

Time measurement, timers
 Implementation of IT function to toggle LEDs:

 Timer_Init_Default:

© BME-MIT 28.slide

Time measurement, timers
 Calculation of TOP value:

o Toggle the LEDs in every T=1s
o CLK frequency = 14MHz (default value for this uC)
o Tick time = T_tick = 1/14MHz
o Timer value where the timer should be reset = TOP value = N

• N = T / T_tick = 1s / (1/14MHz) = 14*10^6 -> very large number
• Can we store such a large number in the Timer? What is the data width?
• When a timer data width is not enough the prescaler must be used

 Example:
o Timer is 16-bit wide -> 2^16 = 65535 is the largest number to

store
o Prescaler must be applied, e.g., Prescale_value256

• 14 000 000 / 256 = 54687.5
-> N=54688 will correspond to 1s (not precise: error ~9ppm)

© BME-MIT 29.slide

Working code

© BME-MIT 30.slide

Working code

