
© BME-MITBudapest University of Technology and Economics
Department of Measurement and Information Systems

Embedded Software Development
2024.11.27

Practice 6
Runtime measurement

© BME-MIT 2.slide

Runtime measurement
 Recall debug topic from lecture – timer for meas.

© BME-MIT 3.slide

Runtime measurement
 uC has a special built in timer/counter inside Data

Watch point and Trace (DWT) unit of Debug
interface

 DWT is a 32-bit one, i.e., using default 14MHz CLK
signal the maximum amount of time that can be
measured is T_max=2^32/14MHz=5min

 Runtime measurement is actually measurement
of CLK cycles that can be easily transformed into
time via CLK frequency

 Counter used to measure runtime: Cycle Count
Register

© BME-MIT 4.slide

Runtime measurement
 Counter used to measure runtime: Cycle Count

Register (CYCCNT)
o When processor starts CYCCNT is zero
o Register can be accessed in the following way:

• DWT -> CYCCNT

o A possible solution to measure runtime:
runTime = DWT -> CYCCNT;

here comes the code whose runtime is to be measured
runTime = DWT -> CYCCNT – runtime – COMP_CONST;

o COMP_CONST is used to get zero runtime when no
code is applied -> reading of registers, calculations are
not part of the code to be measured itself

© BME-MIT 5.slide

Strating with a new project
 File->New->Project->Silicon Labs MCU Project:

© BME-MIT 6.slide

Strating with a new project
 File->New->Project->Silicon Labs MCU Project:

© BME-MIT 7.slide

Strating with a new project
 Give project name and location, and set

Copy content:

© BME-MIT 8.slide

Runtime measurement
 The value of COMP_CONST has to be measured

o Code: (CHIP_Init() has been removed)

o Value of COMP_CONST is 7

© BME-MIT 9.slide

Runtime measurement
 Determination of runtime of 3 type of operations

for 3 data types
 Use optimization level –O0 (= no optimization)
 Code that can be used:

 Remark: runtime may depend on where the variables are declared:
before the main function (longer runT) or inside the main function
 Variables are stored in different parts of the memory, and addressing

method may be different (relative or direct)

-O0 optimization Int32_t float double

Summation: + 6 91 134

Multiplication: * 7 64 120

Division: / 11 91 164

© BME-MIT 10.slide

Runtime measurement
 Checking the disassembled code can also indicate

the runtime
o Note: not every instruction can be executed in one CLK

cycle -> this method is just a rough guess

© BME-MIT 11.slide

Runtime measurement
 Division is always a time consuming operation for

an embedded system compared to summation
 HW support of division sometimes applied in a uC

that significantly reduces the runtime

© BME-MIT 12.slide

Runtime measurement
 Operations performed on floating point numbers

takes more runtime
o A function call is needed for floating point operations
o Operation on mantissa and exponents takes more time

for summation than HW-supported multiplication

© BME-MIT 13.slide

Runtime measurement
 Determination of runtime of type conversions
 Use optimization level –O0 (= no optimization)
 Recall: no explicit operation is done “just” type

conversion
 Code that can be used:

a_float = (float) a_int; OR a_float = a_int;

Source/target int32_t float double

int32_t -------------------------- 50 70

float 31 -------------------------- 26

double 36 36 --------------------------

© BME-MIT 14.slide

Change of optimization level
 To generate a more efficient (in terms of memory

usage, runtime, etc.) code optimization should be
applied:
(O3)

1

2

3

4

5

6

7

© BME-MIT 15.slide

Runtime measurement
 When optimization applied no result can be found

since the optimizer “optimized out” the result and
all those variables that are not used later

o see warnings in the code

 To avid this use volatile to force the optimizer not
to “optimize out” these variables (even runtime)

 However optimizer may use different order or
removes operations that makes extremely difficult
to follow and runtime measurement is not easy to
be correctly done

© BME-MIT 16.slide

Runtime measurement
 Determination of runtime of 3 type of operations

for 3 data types
 Use optimization level –O3
 Code that can be used:

-O3 optimization Int32_t float double

Summation: + 6 86 129

Multiplication: * 6 59 115

Division: / 10 86 159

© BME-MIT 17.slide

Runtime measurement
 Determination of runtime of type conversions
 Use optimization level –O3 (= no optimization)
 Code that can be used:

a_float = (float) a_int;

Source/target int32_t float double

Int32_t -------------------------- 48 67

float 29 -------------------------- 23

double 33 33 --------------------------

© BME-MIT 18.slide

Runtime measurement
 Sum operation using arrays:
 Use optimization level –O3
 Arrays should be volatile int32_t
 Code to be used to measure its runtime for

different N values:

© BME-MIT 19.slide

Runtime measurement
 What are the runtimes for array sizes H=15…100?

 Compare the CLK cycles for N=<15,16,17> and
N=<18,19,20,50,100>
o There is a jump in the runtime
o Explanation: loop unroll operation due to optimization

level –O3

N 15 16 17 18 19 20 50 100

CLK cycles
(-O3)

121 129 137 257 271 285 657 1207

CLK cycles
(-O0)

477 528 560 592 624 656 1513 2616

© BME-MIT 20.slide

Runtime measurement
 Loop unroll operation: (only when N is constant)

o The optimizer extracts the FOR loop and perform
multiply and accumulate operation N times when
N<18

o When N>=18 the optimizer performs the FOR loop
o Check disassembled code:

N<18 N>=18

© BME-MIT 21.slide

Time measurement, timers
 HW-based timers in Giant Gecko

© BME-MIT 22.slide

Time measurement, timers
 HW-based timers in Giant Gecko: simplified block

diagram

Time

© BME-MIT 23.slide

Time measurement, timers
 To handle the timer the

following files needed to be
added to the project:
o em_timer.c em_cmu.c
o Include the corresponding

.h files into the code

 To handle the LEDs the
following files needed to be
added to the project:
o bsp_bcc.c bsp_stk_leds.c

bsp_stk.c em_gpio.c
o Include bsp.h file into the code

 Paths: SimplicityStudio\developer\sdks\gecko_sdk_suite\v1.1\platform\emlib\src\
SimplicityStudio\developer\sdks\gecko_sdk_suite\v1.1\hardware\kit\common\bsp\

© BME-MIT 24.slide

Time measurement, timers
 The timer shall be configured using the library functions

as follows:
o Setting the prescaler of the peripheral clock
o Enabling the clock of the timer
o Generation of the parameter structure for initialization

• Prescaler is set to the appropriate value

o Reset the timer
o Setting the value of TOP
o Clear the interrupt
o Enable the interrupt

• Enable the peripheral interrupt
• Enable the core-based interrupt for the Timer (NVIC)

© BME-MIT 25.slide

Time measurement, timers
Possible implementation:

© BME-MIT 26.slide

Time measurement, timers

© BME-MIT 27.slide

Time measurement, timers
 Implementation of IT function to toggle LEDs:

 Timer_Init_Default:

© BME-MIT 28.slide

Time measurement, timers
 Calculation of TOP value:

o Toggle the LEDs in every T=1s
o CLK frequency = 14MHz (default value for this uC)
o Tick time = T_tick = 1/14MHz
o Timer value where the timer should be reset = TOP value = N

• N = T / T_tick = 1s / (1/14MHz) = 14*10^6 -> very large number
• Can we store such a large number in the Timer? What is the data width?
• When a timer data width is not enough the prescaler must be used

 Example:
o Timer is 16-bit wide -> 2^16 = 65535 is the largest number to

store
o Prescaler must be applied, e.g., Prescale_value256

• 14 000 000 / 256 = 54687.5
-> N=54688 will correspond to 1s (not precise: error ~9ppm)

© BME-MIT 29.slide

Working code

© BME-MIT 30.slide

Working code

