
© BME-MITBudapest University of Technology and Economics
Department of Artificial Intelligence and Systems Engineering

Embedded Software Development
2025. 09. 08.

Introduction
Remark: first practice on 10 September in IE225,

Due to the limited number of seats with PC/notebook offered,
have your notebook with you Simplicity Studio 4 installed

(NOT version 5 but 4)
Managing of student travels/flight tickets is out of the scope of

this subject!!!

© BME-MIT 2.slide

Preliminaries
 Embedded Software Development

o Subject Code: BMEVIMIAC17 (the English course)
o Lectures and Practice:

• Lecture: every Monday 08:30-10:00 in IE224
• Practice: every Wednesday 08:30-10:00 in IE320

o Lecturer: Krébesz Tamás (Thomas) (BME-MIT IE423)
• E-mail: krebesz@mit.bme.hu

o Requirements:
• Midterm (Oct. 20. during lecture)
• Exams in the exam period (three exams in January)
• Homework (details come later)

o Web page of the course:
• https://www.mit.bme.hu/en/subjects/vimiac17
• https://home.mit.bme.hu/~krebesz/bambi_angol/

© BME-MIT 3.slide

Embedded systems
 Possible definitions

o Those computer-based application systems, that are:
• Autonomous in operation
• In strong information-based connection with their

physical/technological environment

o Such a unit that control or supervise a machine, instrument or
industrial process.

o A computer without a keyboard, i.e. every processor-based or
digital unit that is not a PC.

 The traditional microprocessor-based systems can be
considered embedded systems.

© BME-MIT 4.slide

Embedded systems: examples
 Examples:

o Consumer electronics: music player, TV, watch, wireless headphone, camera,
display, wireless mouse/keyboard

o Handheld devices: mobilephone, GPS, calculator
o Household appliances: washing machine, microwave oven, fridge
o Home automatization: elevators, alarm system, heating control, remote

home surveillance
o Vehicular electronics: ECU, ABS, ESP, assisted steering, remote control,

parking radar, on-board computer, gear control, etc.
o Industrial robots, intelligent power supply, engine control
o Ticket machine, ATM, electronic information center
o Medical instrument: blood pressure meter, complex diagnostic devices,
o Measurement instruments: software defined measurement
o Info communication: modem, router, switch

© BME-MIT 5.slide

Developers of embedded systems

 Why is it good to learn embedded
sysmtes?
o Development is done at the edge of the HW-

based and SW-based worlds: the SW developed
can acquire direct information from the real
physical world and can react into real-world
processes.

o Starting from the circuit design through SW
development one can get in touch with PCs and
higher level information systems.

o Continuously developing industrial field, makes
a living for lots of people, new professionals are
always needed.

© BME-MIT 6.slide

Example: direct connection with environ.
 What does it mean ‘being in direct connection

with the physical environment’?
o The signals of the environment can be sensed at a low

(abstraction) level, or react to them even in real time.

Example #1: open door?

#define RELAY_ON (0)
#define DOOR_BIT (3)
.
.
.
// PORT_A_REG: I/O register nested in memory
door_is_open = PORT_A_REG & (1 << DOOR_BIT);
if (door_is_open){

PORT_A_REG |= 1 << RELAY_ON;
}
.
.
.

PO
RT

_A
_R

EG
PO

RT
_A

_R
EG

00

33

µC

© BME-MIT 7.slide

Example: direct connection with environ.

#define HEATING_ON_BIT (0)
#define TEMP_LIMIT (25) //below-> heating on
#define TEMP_HIST (2) //HISTeresis
#define SCALE_FACT (0.145)
.
.
// PORT_A_REG: I/O register nested in memory
// ADC_IN_REG: register for ADC result nested in memory
TEMP = ADC_IN_REG*SCALE_FACT;
if (TEMP < TEMP_LIMIT){

PORT_A_REG |= 1 << HEATING_ON_BIT;
} else
if (TEMP > (TEMP_LIMIT+TEMP_HIST)){

PORT_A_REG &= ~(1 << HEATING_ON_BIT);
}
.
.

PO
RT

_A
_R

EG
PO

RT
_A

_R
EG

00

33

µC

AD
C_

IN
_R

EG
AD

C_
IN

_R
EG

P
T
C

 Example #2: heating control:
o PTC (Positive Temperature Coefficient)

temperature-dependent resistance is used to
measure the temperature

o Analog-to-digital converter (ADC) is used to digitize
the temperature-dependent voltage

o Relay that controls heating is switched in accordance
with the temperature

25C+2C
|

© BME-MIT 8.slide

Evolution of embedded systems
 Milestones in short

o In the ‘60s: first embedded systems were the
controllers used in Apollo program

o ‘70s: popular microprocessor manufactured in high
volume (e.g. 8086), first PCs

o ‘80s: microcontrollers with integrated pripherals
o ‘90s: handheld devices, embedded systems in

household appliances and System on Chip (SoC) ICs
o From year 2000: embedded systems become part

of everyday life
• Ambient systems (around us, in our environment)

o 2010s: connecting embedded systems into
complex systems:

• Internet of Things (‘network of embedded systems’)
• Cyber Physical Systems (‘embedded systems

exploiting high level of artificial intelligence and
integration of databases’)

© BME-MIT 9.slide

Development of embedded systems
 Development tasks

o HW development
o SW development
o Testing
o Tight cooperation among different phases of development

 HW development
o Circuit design, implementation, initial testing of operation
o ‘Fine-tuning’ of circuit based on development experience
o HW components change the least frequently among system components
o More and more multifunctional devices exist that require ‘only’ SW development

 SW development
o Plan for SW development is needed
o Development of both low- and high level components
o Continuous development, modified dynamically, much more frequently changed

compared to HW
o Most of the developers are SW oriented in the embedded field (including testers)

 The course focuses on embedded SW development and data processing
techniques and systems

© BME-MIT 10.slide

Engineering tasks

© BME-MIT 11.slide

Specialties of embedded SW
 HW-aware programming
 Implementation of functionality in SW (either at system- or source-

code level) is not enough, awareness is required
 The specialties of the HW must be considered

o The SWs are for general use but they cannot be totally independent of the
platform

 Save the resources:
o Memory/Data
o Processor time

• Complexity of algorithms

o Current consumption

 Runtime may be critical (real-time systems)->what is real-time property?

 Understanding of the code operation is required: what resources
are used, how much the resources are consumed by the code, etc.

© BME-MIT 12.slide

Architecture of embedded systems
 Main components of embedded systems:

o Connection to physical world (input):
• Sensor/transducer
• Signal conditioner
• Input devices

o Computing unit
o Communications
o Actuator

© BME-MIT 13.slide

Input devices
 Input devices

o Signals from environment, e.g. temperature, luminance,…
o Human Interface (HMI)/User Interface (UI), e.g. push button,

touch sensor
 Definition of ‘sensors’:

o Transducer: transforms a physical quantity into an other type of
physical quantity

o Sensor: transforms a physical quantity into an electrical quantity
(voltage tipically)

• Either in a direct or indirect way, e.g. strain-gauge: strech turned into
resistance turned into voltage

 Categories of sensors:
o Active: external excitation is needed (e.g. strain-gauge,

thermistor)
o Passive: electrical signal is generated by the device at its output

(e.g. photo diode, thermocouple)

© BME-MIT 14.slide

Type of sensors
 Signals from the environment

o Temperature, luminance, air pressure, humidity, gas presence,
airflow, radiation, CCD (charge-coupled device)

 Vibroacoustic signals
o Microphone, vibration sensor, geophone

 Distance, proximity and presence sensors
o Ultrsound-based or IR-based distance sensing, PIR (passive

infrared sensor) in motion detectors, reed relay, contact switch,
inductive/capacitive proximity sensors

 Sensing of position
o Accelerometer, magnetic compass, gyroscope, encoder, linear

variable differential transformer
 Mechanical signals

o Torque sensor, strain-gauge, force-sensing resistor (FSR)

© BME-MIT 15.slide

Signal conditioning
 Goals of signal conditioning

o Amplification (e.g. generate 1V from 5mV)
o Level matching (e.g. from +/-1V range to 0V…2V range)
o Galvanic decoupling (e.g. high voltage disturbance)
o Impedance matching (e.g. buffer amplifier)
o Linearization (non-linear amplifier made linear usually digitally)
o Filtering (removing noise)

 Nowadays high complexity sensors provides compact
form and integration of signal conditioning not only the
sensor itself

 Further advancement when the sensor provides digital
output, i.e., signal conditioning is obviously integrated
as well

© BME-MIT 16.slide

Complexity of sensors
 The complexity of sensors keeps increasing:

o Only the sensor without any electrical components
o Analogue signal conditioning, like amplification is integrated
o Integrated ADC, digital interface, other high level functions:

• e.g. internal calibration, identification, configuration

o Fully integrates ‘smart’ sensor, high level data acquisition
subsystem

Example: accelerometer – increasing complexity

Increasing com
plexity

Increasing com
plexity

Accelerometer Sensor with Sensor+signal conditioning+ Fully integrated
Only the sensor integrated signal conditioning internal ADC Wireless comm.
Output is charge Output is voltage Digital output Digital output

© BME-MIT 17.slide

Sensor choice
 Advantages of high complexity sensors

o Less external components
o Less development time
o Less errors
o Many services are integrated

 Advantages of low complexity sensors
o Cost efficient for high volume manufacturing
o No unnecessary functions
o Can be tailored for the specific development goal with

special function and features

© BME-MIT 18.slide

Analog-to-digital converter (ADC)
 Frequently used ADC types

o Successive approximation
• Most popular to be used in a uC

o Flash
o Sigma-delta
o Dual slope

 Main features
o Sampling frequency/Conversion time
o Resolution (number of bits)
o Zero order hold (ZoH) is needed or not
o Linearity
o Delay

© BME-MIT 19.slide

ADC typical parameters

Application: video, RF audio meas. inst in uC

© BME-MIT 20.slide

ADCs in embedded systems
 External ADC

o In special cases (high resolution, accuracy, speed, low
noise)

o Difficulty: HW and SW matching to the uC is a must
• Development time and possible errors

 Internal ADC
o Lots of uC have internal ADC

• In a general purpose uC: 10-16 bit successive approximation
• Audio processors: rare, sigma-delta, ~16bit

o Advantages: integrated, matching done, function
library offered, template/example codes available

© BME-MIT 21.slide

Control unit
 Most important types of control units

o uP (Microprocessor)
o uC (Microcontroller)
o FPGA (Field Programmable Gate Array)
o DSP (Digital Signal Processor)
o GPU (Graphics Processing Unit)
o ASIC (Application-specific Integrated Circuit)

performance

MCUMCU

Task complexity

ARMARM

FPGA/ASICFPGA/ASIC

DSPDSP

GPUGPU

performance

MCUMCU

Development time

ARMARM

FPGA/ASICFPGA/ASIC

DSPDSP
GPUGPU

© BME-MIT 22.slide

Microcontroller
 Microcontroller = microprocessor + integrated peripherals
 Peripherals:

o Memory (data and program in separated memory) – SRAM, Flash, ERAM
o Timers – measurement of time, event generation
o Communications (UART, SPI, I2C, CAN, USB, Ethernet)
o ADC and DAC
o GPIO (General Purpose Input Output)
o Energy management
o Debug interface

 Typical clock frequency: 1 MHz … 100 MHz+
 Choice preferences:

o Availability
o Adequate complexity for the task, peripherals (e.g. automotive, video, security)
o Price (not only chip but development SW and debugger must be considered)
o Previous experiences
o Support (technical support, forums, function library, development environment,

examples, debug features)
o Physical features of the chip (not a BGA case for a home project )

© BME-MIT 23.slide

Microcontroller examples

ATTiny25
8 bit architecture
10 MHz
2 kB prog MEM
128 Byte RAM
2 Timer, 2 PWM
10 bit ADC 4 ch
6 GPIO (spec func)
SPI

ATmega128
8 bit architecture
16 MHz
128 kB prog MEM
4 kByte RAM
4kB EEPROM
8 bit HW multiplier
5 Timer, 8 PWM
10 bit ADC 8 ch
53 GPIO (spec funkc)
SPI, UART, I2C

EFM32GG995 (Gecko)
32 bit architecture
48 MHz
1024 kB prog MEM
128 kByte RAM
6 Timer
12 bit ADC 8 ch
12 bit DAC 2 ch
93 GPIO (spec func)
3*SPI, 2*UART, 2*I2C,
USB
OPA
Sensor Interface
DMA
HW encryption
LCD driver

Balckfin BF537
16/32 bit architecture
600 MHz
1pcs 16 bit MAC
2 pcs 40 bit ALU
4pcs 8 bit ALU (video)
Parallel operations
132 kB prog/data RAM
Parallel data fetch
HW supported cycles
Circular buffer
8 Timer
48 GPIO (spec func)
SPI, 2*UART, 2*I2C, Ethernet,
CAN, I2S
DMA

© BME-MIT 24.slide

FPGA (Field Programmable Gate Array)
 Circuit of general logic cells/gates (combinatorial and sequential logic)
 The logical relationship among logic gates is programmable
 Flexible: no new circuit is needed when functionality is modified – ‘only’ the SW

has to be replaced
 Parallelism is inherently supported: one SW defined component can be duplicated

‘endlessly’ (the limit is the number of logic cells in the FPGA unit)
 Traditional FPGA development is difficult:

o Development requires highly experienced professionals
o The functionality has to be implemented at a low level (like shift register), therefore

time consuming – nowadays higher level modules are readily available

 Used for high computation load, fast or parallel needs (high sampling rate,
multiple inputs, RF, video signal processing)

© BME-MIT 25.slide

Digital signal processors (DSP)
 Special HW components and architectures to speed up computation, like:

o MAC (Multiply and accumulate: a+=x*y)
o Circular buffer
o Parallel memory access to several memory blocks
o HW supported loops
o Even floating point multiplication in one CLK cycle
o HW supported division and extraction of roots,…

 Applications:
o Multimedia: compressing, effects, coding (e.g. MP3, JPG, MP4), equalizer,

noise filtering
o Control systems: engine control, state observer, feedback systems
o Math operations: mtx multiplication, trigonometrical functions
o Measurements: noise filtering, parameter estimation
o Info comm: modulation/demodulation, coding, compression

 More and more DSP functions appear in general purpose uC

© BME-MIT 26.slide

Hybrid solutions
 Several types of processing units integrated

into one application
 Tasks can be decomposed for the most

appropriate computing type:
o Decoding digital graphic information by FPGA or

DSP in a TV
o uC-based handling of remote controller and

menu system

 System containing several types of
processing units can be integrared into a
single IC (system-on-chip: SoC) :
o Soft-core processors to be downloaded to an

FPGA are available
o A uC can be integrated into an FPGA

© BME-MIT 27.slide

Hybrid solutions
 Analog Devices SC589:

o 2 pcs DSP core: computational tasks
o 1 pc ARM cortex-A5: general tasks, e.g. communications,

peripheral handling, etc.

© BME-MIT 28.slide

Communications units, examples
 TRF6900 (TI)

o Bit level communications (‘wireless wire’)

 IA4420 (Silabs)
o Byte level communications

 CC2420 (TI)
o Packet level comm
o Automatic receiver detection

 ESP8266
o WiFi modul
o Integrated protocol stack

 Some uCs are available with integrated RF module
 Complex unit offers shorter development time, but special

functionality may not be implemented or can be a hard task

