Embedded Software Development
2025.09.22.

SW development environment, compiler

- Department of
Artificial Intelligence and
a ¥ (| 7§ o Systems Engineering

Budapest University of Technology and Economics © BME-MIT

Department of Artificial Intelligence and Systems Engineering

SW development environment

= |DE: Integrated Development Environment

= Duty of SW development environment:

o Gives a frame for the available toolchains
(program modules), like:

 Compiler: generates low level assembly code from
high level code

e Assembler: generates machine code from low level
assembly code

* Linker: merge the numerous compilation files

o Compilation
o Debug

o ,Texting”: assistance in writing the code
* code highlighting
e automatic completion
* tracking functions and definition of variables

compiler
assembler

loader

e
=1 [FE— o
‘

Bl memonMep!DF [= (&][2]
SOBJECTS = CRT_EDR, 5CC -

#define RUNTINE(cntr) ™
asm volatile("r0 = emuclk: %0 = v0:": \

© BME-MIT

. Department of
Artificial Intelligence and

10 Systems Engineering

seg_rth { TYEE(EM Ri
seg_init { TYPE(PH Rb
nt_code { TYPE(E
seg_pnco { TYEE(EM Bb
seg_pnda { TYFE(FYH Rh

ap { TYEE(DH Rh
seg_stak { TYFE(DH Rh
ran { TYEE(DHACH

2.slide

SW development environment

(cont’d):

o Handling/storing project settings
o Downloading and running the program
o Handling the connected embedded HW

systems

o Intelligent handling of error messages
o Setting up the HW configuration

= Duty of SW development environment

© BME-MIT

compiler
assembler
loader
Project high.speed_proc ——
Prject Group (Tprject) = 1 processc Bl memonMep!DF [= (&][2]
@ high_s *ﬂ”m A 7 SOBJECTS = CRT_HDR, SCC 4
529 Souroe Fies ‘:‘ m: sous alian 2
nnnnn a seauent(“seg_dnda®) float du m[N1]: MEHORY
Dbt
#deting FUTHIE(catz) wth { TYPE(EH R
"“‘35" Stk wolatile("x0 = emuclk: 40 = r0:" e e edl
o entr) a (mner) seqint_c
20" sepmes T et
L seg_pnda { TYPE(EN Ri

= — =
=R
¥ Project
b Proje: #pragna optimize_for_speed
—_— uvoid pra
Ax

d process(void)

RUNTIME{ runTimeCounter }: // runtime Fasisl
dos (R VHL padly cular buffering
%[i] = getADC(): // get ADC d ta
ut = 0.0;
#pragna SIMD_for // SIND node filtering
1y fo =D ks ++>{

wlil = =[(i+1)%N

. Department of
Artificial Intelligence and
lonno Systems Engineering

8=00

#ifdef IDDE_ARGS
rstin = ARGY_START 0xb8
argy { TYPE(DN RA_
g dnda { TYPE(DH RA[E

g dnda { TYPE(DH Rb
e
seg,hesp { TYPE(DH RA
seg_stak { TYFE(DH Rh

it

seg_sran { TYPE(DHACH

3.slide

SW development environments for

embedded systems

= Not easy to provide comprehensive summary since unlike
PC approach, in the embedded field many processors and
platforms and so many development environments exist
o Special features = special compilers
o Different architectures and instruction set

= Debugging is difficult since the processor is an
autonomous unit that cannot be accessed directly by PC

= Relationship between the compiler and the graphical
user interface (GUI):

o Compiler (and other supplementary program tools) and the GUI
build up a complex system (e.g. provided by the manufacturer)

o General toolchain (e.g. gcc compiler) + editor (e.g. Eclipse env.)

. Department of
Artificial Intelligence and

© BME-MIT g ¥ T g8 o Systems Engineering 4 Sllde

Q

An example: Simplicity Studio

= SW development environment in the course:
Silicon Laboratories (SiLabs): Simplicity Studio
= Architecture:

o Eclipse-based GUI
o gcc-based compiler

o GUI helps in exploiting the services offered by the
compiler

mi} Department of
Artificial Intelligence and H
© BME-MIT T Systems Engineering 5 Sllde

Compilation steps

= Source codes in C =2 Assembly code/object file
= Assembly code = object file

o object file: the file compiled into a machine code + extra auxiliary information
for the linker

= Linker: integrates object files
o Generating the whole machine code from the program

o Based on the auxiliary information places real addresses in the code (e.g.
resolving function- or variable links from different C-language files)

o Storing variables and functions in the memory

* Linker file contains information of which variable stored into which
segment of the memory

mi} Department of
Artificial Intelligence and H
© BME-MIT ITh Systems Engineering 6 Sllde

8=00

Compilation steps

= Typical ‘intercompilation’ files containing auxiliary information:
o .i:file processed by the preprocessor (e.g. substitution of #define-s)
.5 :asm file
.0 : object file

o
o

o .d: file containing dependencies (e.g. main.c file contains init.c)

o .axf: (ARM) object file containing (among others) debug information
o

.map: memory map

= Final result of the compilation: files that can be loaded on
the embedded unit, e.g. development board (.hex, .bin, ...)

. Department of
Artificial Intelligence and 7 S I | d e

T Systems Engineering

© BME-MIT

Compilation process example

u Example: handling buttons: L T_E'l initDevice_man.c &3 I -
1 p . &1 P by
= |nintialization 2 hinclude "reg_defs.h”] e — b
3 int buttons;

- koid initDevice(void){

" Read bUtton Stater f int LED_blink _cntr = 9; : /! set RC oscillator frequency
; = L ERLE : A 5 CMU_HFRCOCTRL &= ~{@x7<<HFRCO_BAND); // erz
setting LED & extern void initDevice(void); : CMU_HFRCOCTRL |= r;]IEEFRC'D WHE{EHFR{E! BAND) ;
™ H £ - = i . 7
LED blinks repeatedly E Ent main(void) = {1 endileBrTe peripherel clack
= Files: e i 9 CMU_HFPERCLKEN® |= 1<<GPIO_clk;
. 11 initDevice(); o e
[| 12 I3 4 -58%LC iU O
main.c = ahile (1) £ 12 GPIO_PE_MODEL |= GPIO PUSHPULL << MODEZ;
. . =75 GPIO_PE_MODEL |= GPIO_PUSHPULL << MODE3;
= initDevice_man.c 14 - S | =
15 buttons = GPIO_PB_DIN; :
: : T 15 GPIO_PE CTRL |= @;
= reg_defs.h 16 if (buttons& (1<<18)){ 16 RIS |
- 17 GPIO_PE_DOUTSET = LED®; . _ i set 50 port
= startup_gcc_efm32gg.s 12 }Elszém PE—— GPIO PE MODEH |= GPIO INPUT << MODES;
= S = ' 1g GPIO_PE_MODEH |= GPIO_INPUT << MODE1@;
(startup code: 20 }
21 i
provided by the 22 LED_blink_cntr++; e
manufacturer for = =¥ %E?ﬁi;”%ﬁﬁ;f‘?ﬁﬁ 23 GPIO_PE_DOUTSET = LED@;
= et ? 24 GPIO_PE_DOUTSET = LED1;
initiali i 25 LED blink cntr = 8; e &
initialization purposes) “° _blink_ : 25 }
;: 3 Y 26
28 }

mi} Department of
e — Artificial Intelligence and I
it % © BME'MIT H 180 Systems Engineering 8 Sllde

8ol

Compilation process example

CDT Build Console [Simple_Manual_Compile]
B | 18:38:47 **** Build of configuration GNU ARM v4.9.3 - Debug for project Simple Manual Compile ***+

{make -j4 all

{Building file: ../src/initDevice_man.c

|Building file: ../CMSIS/EFM32GG/startup gcc efm32gg.s

|Building file: ../src/main.c

; TE= , Compiling C-language files
[Invoking: GNU ARM C Compiler

| Invoking: GNU ARM Assembler

|arm-none-eabi-gec -g -gdwarf-2 -mcpu=cortex-m3 -mthumb -std=c99 '-DDEBUG=1' '-DEFM32GG998F1@24=1" -I"D:\MyInstall D\Si:
| arm-none-eabi-gec -g -gdwarf-2 -mcpu=cortex-m3 -mthumb -std=c99 '-DDEBUG=1" '-DEFM32GG998F1824=1" -I"D:\MyInstall D\5i:
| arm-none-eabi-gcc -g -gdwarf-2 -mcpu=cortex-m3 -mthumb -c -x assembler-with-cpp '-DEFM32GG998F1824=1" -0 "CMSIS/EFM32G(
l+ofsrc/main.c: In function 'main’:

| oo/src/main.c:1@:6: warning: unused variable 'cntr' [-Wunused-variable]

int cntr; 1s .
= Compiling ASM file
|Finished building: ../CMSIS/EFM326GG/startup_gcc_efm32gg.s
| Finished building: ../src/main.c
| Finished building: ../src/initDevice_man.c
Linker

{Building target: Simple Manual_Compile.axf
‘ | Invoking: GNU ARM C Linker
| arm-none-eabi-gec -g -gdwarf-2 -mcpu=cortex-m3 -mthumb -T "Simple Manual Compile.ld" -Xlinker --gc-sections -Xlinker -1
| Finished building target: Simple Manual Compile.axf
Generating file to be loaded on embedded unit
| Building hex file: Simple Manual_Compile.hex
| arm-none-eabi-objcopy -0 ihex "Simple Manual Compile.axf" “Simple Manual_ Compile.hex"

[Running size tool
| arm-none-eabi-size "Simple_Manual_Compile.axf"
text data bss dec hex filename
892 laes 36 1836 48c Simple Manual_Compile.axf

mi} Department of
Artificial Intelligence and H
© BME-MIT T Systems Engineering QSIIde

‘Manual’ compilation

" Let us be a ‘manual’ compiler

SET COMP="d:\MylInstall_D\SiliconLabs\SimplicityStudio\developer\toolchains\gnu_arm\4.9_2015q3\bin)\,,
Compilation of C files:
%COMP%arm-none-eabi-gcc
-g -gdwarf-2 -mcpu=cortex-m3 -mthumb -std=c99
-D DEBUG=1 -D EFM32GG990F1024=1 -1 ./src
-00 -Wall -c -fmessage-length=0 -mno-sched-prolog -fno-builtin -ffunction-sections -fdata-sections
-MMD -MP -MF"initDevice_man.d" -MT"initDevice_man.o"

-0 "initDevice_man.o" "initDevice_man.c,,

%COMP%arm-none-eabi-gcc
-g -gdwarf-2 -mcpu=cortex-m3 -mthumb -std=c99
-D DEBUG=1 -D EFM32GG990F1024=1 -1 ./src
-00 -Wall -c -fmessage-length=0 -mno-sched-prolog -fno-builtin -ffunction-sections -fdata-sections
-MMD -MP -MF"main.d" -MT"main.o"
-0 "main.o" "main.c,,

Compilation of ASM file:

%COMP%arm-none-eabi-gcc
-g -gdwarf-2 -mcpu=cortex-m3 -mthumb -c -x assembler-with-cpp
-D EFM32GG990F1024=1
-0 "startup_gcc_efm32gg.o

startup_gcc_efm32gg.s"

mi} Department of
Artificial Intelligence and 1
© BME-MIT T Systems Engineering 1 OSI Ide

‘Manual’ compilation

" Let us be a ‘manual’ compiler

Linking:
%COMP%arm-none-eabi-gcc
-g -gdwarf-2 -mcpu=cortex-m3 -mthumb
-T "Simple_Manual_Compile.ld" -Xlinker --gc-sections -Xlinker -Map="Simple_Manual_Compile.map'
--Specs=nano.specs
-0 Simple_Manual_Compile.axf
"startup_gcc_efm32gg.o" "main.o" "initDevice_man.o"
-WI,--start-group -lgcc -lc -Inosys -WI,--end-group

Generating the file to be downloaded to the embedded device
%COMP%arm-none-eabi-objcopy -0 ihex "Simple_Manual_Compile.axf" "Simple_Manual_Compile.hex"

Calculating size:
%COMP%arm-none-eabi-size "Simple_Manual_Compile.axf"

Generating dissassemby file:
%COMP%arm-none-eabi-objdump -S --disassemble Simple_Manual_Compile.axf > Simple_Manual_Compile.dump

mi} Department of
Artificial Intelligence and H
© BME-MIT lomno Systems Engineering 1 1 Sllde

8ol

Meaning of compile switches (C compiler)

%COMP%arm-none-eabi-gcc
-g -gdwarf-2 -mcpu=cortex-m3 -mthumb -std=c99
-D DEBUG=1 -DBLINK_DELAY=4000L -D EFM32GG990F1024=1 -I ./src
-00 -Wall -c -fmessage-length=0 -mno-sched-prolog -fno-builtin -ffunction-sections -fdata-sections
-MMD -MP -MF"initDevice_man.d" -MT"initDevice_man.o"

-0 "initDevice_man.o" "initDevice_man.c,,

= -g-gdwarf-2: saving debug information into dwarf-2 format

= -DDEBUG=1-D BLINK_DELAY=4000L -D EFM32GG990F1024=1: as if these
variables have been given by #define in all our program files. By this, conditional
compilation or general parameters can be given, e.g. type of processor

= -|./src: libraries can be given where to search for included files
"= -mcpu=cortex-m3: type of CPU for which the compilation is done
= -mthumb: thumb instruction set (16-bit reduced instruction set)
= -std=c99: the C-language standard used
= -00: optimization level: 0, no optimization

o Possible levels: 00...03, Os: optimization for size

= -Wall -c -fmessage-length=0: all warnings are on, messages are not truncated
(instead of O truncation length can be given)

mi} Department of
Artificial Intelligence and 1
© BME-MIT i Systems Engineering 1 2 - SI Ide

sclomno

Meaning of compile switches (C compiler)

%COMP%arm-none-eabi-gcc
-g -gdwarf-2 -mcpu=cortex-m3 -mthumb -std=c99
-D DEBUG=1 -DBLINK_DELAY=4000L -D EFM32GG990F1024=1 -I ./src
-00 -Wall -c -fmessage-length=0 -mno-sched-prolog -fno-builtin -ffunction-sections -fdata-sections
-MMD -MP -MF"initDevice_man.d" -MT"initDevice_man.o"

-0 "initDevice_man.o" "initDevice_man.c,

= -mno-sched-prolog: in case of functions their header (stack pointer handling,
parameter handling...) is coded separately in a non-optimized manner, not
included into the function body -> easier to read and debug the assembly code

= -fno-builtin: the embedded C-language functions are not optimized but appears
in the compiled code -> easier to read and debug the assembly code

= -ffunction-sections -fdata-sections: the compiler will not mix the data and the
program but they are stored in dedicated memory segments -> easier to debug

= -MMD -MP -MF"initDevice_man.d" -MT"initDevice_man.o,,: generate the
dependency structure of files and saves it into a file with extension of .d (e.g.
which file uses variables and functions of other files)
o Example: content of main.d: src/main.o: ../src/main.c ../src/reg_defs.h

= -0 '"initDevice_man.o" "initDevice_man.c,,: from initDevice_man.c file
initDevice_man.o output object file if generated

mi} Department of
Artificial Intelligence and 1
© BME-MIT i Systems Engineering 1 38' Ide

sclomno

Meaning of compile switches (linker)

%COMP%arm-none-eabi-gcc
-g -gdwarf-2 -mcpu=cortex-m3 -mthumb
-T "Simple_Manual_Compile.ld" -Xlinker --gc-sections -Xlinker -Map="Simple_Manual_Compile.map"
--specs=nano.specs
-0 Simple_Manual_Compile.axf

"startup_gcc_efm32gg.o0" "main.o" "initDevice_man.o"
-WI,--start-group -lgcc -lc -Inosys -WI,--end-group
= -T"Simple Manual _Compile.ld,: linker file. This file defines at which memory
address the data program code should be stored. The memory can be
segmented into more parts

= -Xlinker: the command followed by this switch is passed to the linker

= -Xlinker --gc-sections: tries to leave out the non-used functions (only if they are
compiled using switches -ffunction-sections and -fdata-sections)

= -Xlinker -Map="Simple_Manual _Compile.map,,: providing map file
" --specs=nano.specs: special command file given to the linker
= -o0Simple_Manual_Compile.axf: output file

= "startup_gcc_efm32gg.o" "main.o" "initDevice_man.o,,: these files are linked

into a single source file
= -WI,--start-group -lgcc -lc -Inosys -WI,--end-group: not interested for us

mi} Department of
Artificial Intelligence and 1
© BME-MIT i Systems Engineering 1 4 - SI Ide

sclomno

Setting of compile switches

= Development environ. generates appropriate switches

type filter text Settings g -

4 Resource P EISTNTE [NV TR ST lLII.'I'UHI\.I'I'r WSS T LICLUL | MLV E | = | | VI I E W DT U LI .,

Linked Resources
Resource Filters

Briiclens _ 7 Tool Settings | & Buyild Steps Build Artifactl ! Binary Parsersl (] ErmrParser5|

a4 C/C++ Build
Board / Part / SDK ﬁ'« Debug Settings Command: arm-none-eabi-gce
Build Variables P J e -
Frit lf i — All options: g -gdwarf-2 -mcpu=cortex-m3 -mthumb - -
i 4 |[5) GNU ARM C Compiler std=c99 '-DDEBUG=1' '-DEFM32GGI90FL024=1' []
Legging (5 Dialect -I'Di\Mylnstall_D\SiliconLabs i
Project Modules (% Preprocessor \SimplicityStudic_projects

i

Settings
4 CfC++ General

Symbols
(8 Includes

i Code Analysis (% Optimization Expert settings:
File Types B : :
= Debuggin Command 3
i Lenugging . ${COMMAND} ${FLAGS} ${OUTPUT_FLAG} ${OUTPU
Formatter (% Warnings line pattern:
4 Resource CCUNNYUIEUUI: | DI A v - wEbuy | Aveee | | [Mdnaye Connguiausns... |
Linked Resources
Rescurce Filters
Builders)) Tool Settings | _5“ Build Steps Build Artifact I E{u Binary Parsers I &3 Error Parsersl |
4 C/C++ Build
Board / Part / SDK ¥ Debug Settings Optimization Level Mone (-00) =
Build Variables (E Memory Layout i (-0
Environrment 4 5 GNU ARM C Compiler Qther aptimization fhigs oy e £01)
Logging @ Dialect [7] Pack structures (—fpackOpt!m!ze more (-02)
Project Modules % Preprocessor [7] Short enums (-fshort-egp:!m!ze;m# (?‘2)
: ; = ptimize for size (-Os;
Seftings (2 Symbols [¥] Place each function into s B SECtOR (- UNCHON-SECTGNS
C/C++ G | Si] i
b oy . ¢ Includes [#] Place each data itern into its own section {-fdata-sections)
¢+ Code Analysis (2 Optimization
File Types # Debugging
Formatter B Warninas

mi} Department of
Artificial Intelligence and 1
© BME-MIT lomno Systems Engineering 1 5S|Ide

8ol

Standard configurations

= Generally standard configurations exist, typically:
o Debug: for development

* Contains more debug information, code can be read better,
using switch -mno-sched-prolog

o Release: final product

No optimization

Debug: '\
-g -gdwarf-2 -mcpu=cortex-m3 -mthumb -std=c99 '-DDEBUG=1" '-DEFM32GG990F1024=1"' -00 -Wall
-c -fmessage-length=0 -c -save-temps -mno-sched-prolog -fno-builtin -ffunction-sections -fdata-

sections v ~
Saves temporary files Keep the function
as well (e.g.assembly) header in one piece
Release:

-g -gdwarf-2 -mcpu=cortex-m3 -mthumb -std=c99 '-DNDEBUG=1" '-DEFM32GG990F1024=1"' -03 -Wall
-c -fmessage-length=0 -ffunction-sections -fdata-sections

mi} Department of
Artificial Intelligence and 1
© BME-MIT ITh Systems Engineering 1 6SI Ide

8ol

Configuration of compiler in source code

= Hpragma directive: giving compiler specific settings
" Hpragma GCC optimize("O3")

o Setting optimization level for a certain code segment
= Hpragma optimize for speed

o E.g. Analog Devices DSP-s: a kind of optimization again

= Hpragma SIMD_for
o Where SIMD (Single Instruction Multiple Dada) is applicable

= Hpragma message “message” -> e.g. “it needs more development”

o Writes a message during compilation
= f#pragma push = #pragma pop: saving and fetching the settings
= Hpragma once: the header file is included only once

mi} Department of
Artificial Intelligence and 1
© BME-MIT T Systems Engineering 1 7SI Ide

Development-compiler relationship

= Development environment and compiler are two
separated SW units

" Theoretically the same rules are applied for both
but inconsistencies may occur

o Example:
* development environment finds and error (uint32 cannot be

resolved) but
* the compiler compiles the project without even a warning

- t
8 1TEEEIUi”BE—tI could not be resolvedf optimization is ¢ arm-none-eabi-size “Konfig proba.axf
8 wintiZ T GPIO _IF walue_copy; text ata bss dec hex filename
18 wolatile yjint32 f x add=8x83, y_add=8x18; 28 48 SB6E 16ec Konfig proba.axf

@8:32:49 Build Finished (took 4s.528ms)

mi} Department of
Artificial Intelligence and 1
© BME-MIT T Systems Engineering 1 8SI Ide

Automatic compilation

= Many compiler use command make

o Originally developed for UNIX system as an auxiliary program
(used since 1976)

o Can be used for automate compilation (or in other cases, generally when
files has to be generated from other files based on certain rules, e.g.
automatic program installation)

o The makefile contains compilation rules

o The compiler calls the make program that search for the make file of the
project. Based on the rules found in the makefile, the source code is
compiled and files are generated.

o Make command has switches, e.g. —jN, N: number of processes run parallel
(like in Simplicity Studio)
" The standardized structure makes possible the use of the same
compiler for various graphical development environment or even
the manual compilation

mi} Department of
Artificial Intelligence and 1
© BME-MIT i Systems Engineering 1 98' Ide

sclomno

structure of makefile

= The makefile contains rules
= Structure of rules (dependencies)
target file: precondition(s)
instruction(s) [starts with a Tab]
Example:

main.o: main.c

gcc -o main.o main.c

The main.o file depends on main.c file (generated from that). A
main.o file is generated by using command gcc

= |nstruction(s) are executed if:
o If the target file still not exists

o The program checks the dates of target and precondition files in the
dependencies. Instructions are executed only if precondition files are
generated later than the target files

* Checking dates saves time by not performing unnecessary compilation

mi} Department of
Artificial Intelligence and 1
© BME-MIT ITh Systems Engineering 208' Ide

8=00

‘manual’ makefile

= Compilation of previous example given in makefile

this is a comment
#giving the path of compiler COMP in a variable. Later can be used SCOMPS as a reference of the compiler
COMP := d:\MylInstall_D\SiliconLabs\SimplicityStudio\developer\toolchains\gnu_arm\4.9 2015q3\bin\\

#all: default target. Final file is axf file
all: Simple_Manual_Compile.axf

#First dependence: what is needed for generating Simple_Manual_Compile.axf file:
#If files with .0 extensions are not available then based on the applicable rules those are generated (see next page)

Simple_Manual_Compile.axf: startup_gcc_efm32gg.o main.o initDevice_man.o
@echo ' ‘#@echo: writing text
@echo 'Simple_Manual_Compile.axf compilation’
link command is given here (see previous example)
S(COMP)arm-none-eabi-gcc -g -gdwarf-2 -mcpu=cortex-m3 -mthumb -T Simple_Manual_Compile.ld
-Xlinker --gc-sections -Xlinker -Map=Simple_Manual_Compile.map --specs=nano.specs
-0 Simple_Manual_Compile.axf startup_gcc_efm32gg.o main.o initDevice_man.o —
WI,--start-group -lgcc -lc -Inosys -WI,--end-group
hex file generation
S(COMP)arm-none-eabi-objcopy -O ihex Simple_Manual_Compile.axf Simple_Manual_Compile.hex

mi} Department of
Artificial Intelligence and 1
© BME-MIT lomno Systems Engineering 21 SI Ide

8ol

‘manual’ makefile

cont.

startup_gcc_efm32gg.s compilation by assembler. Generation of the startup_gcc_efm32gg.o file.
startup_gcc_efm32gg.o: startup_gcc_efm32gg.s
@echo '’
@echo 'startup_gcc_efm32gg.s compilation'
S(COMP)arm-none-eabi-gcc -g -gdwarf-2 -mcpu=cortex-m3 -mthumb -c -x assembler-with-cpp
-D EFM32GG990F1024=1 -o startup_gcc_efm32gg.o startup_gcc_efm32gg.s

Compilation of C-language files = generation of object files (compilation parameters are found in the previous

example)

main.o: main.c
@echo '’
@echo 'main.c compilation’
S(COMP)arm-none-eabi-gcc -g -gdwarf-2 -mcpu=cortex-m3 -mthumb -std=c99 -D DEBUG=1
-D EFM32GG990F1024=1 -00 -Wall -c -fmessage-length=0 -mno-sched-prolog -fno-builtin
-ffunction-sections -fdata-sections -MMD -MP -MFmain.d -MTmain.o -0 main.o main.c

initDevice_man.o: initDevice_man.c
@echo '’
@echo 'initDevice_man.c compilation’
S(COMP)arm-none-eabi-gcc -g -gdwarf-2 -mcpu=cortex-m3 -mthumb -std=c99 -D DEBUG=1
-D EFM32GG990F1024=1 -00 -Wall -c -fmessage-length=0 -mno-sched-prolog -fno-builtin
-ffunction-sections -fdata-sections -MMD -MP -MFinitDevice_man.d -MTinitDevice_man.o
-0 initDevice_man.o initDevice_man.c

. Department of
Artificial Intelligence and 2 2 SI |d e

T Systems Engineering

© BME-MIT

structure of makefile

= Previous examples are ‘simple’. Make program includes many
parameters, it has automatic variables, using them results compact
but hard-to-understand rules.:
o S@: name of target
o S<:list of preconditions

o Extension-based rules, example: generate every c file into object file:
¢ .C.O:
gee S< -0S@
o Pattern matching (%: all non-zero string):
* %.0: %.C
gee S< -05@
= Variables in the program can be accessed between SS.
Example:
o PATH=C:\MCU\
o SPATHSheader.h & C:\MCU\header.h

mi} Department of
Artificial Intelligence and 1
T Systems Engineering 23 - SI Ide

© BME-MIT

Basic properties of make

= Typical targets: all, clean
o all: compilation of everything (see previous examples)

o clean: delete generated files. Worth to use it when something behaves in a
strange manner, e.g. a file has been modified but the consequences cannot be
seen.

* example:
clean:

rm *.c *.0 Simple_Manual_Compile.axf
o .PHONY: all clean dependents
* Indicates that these are not real targets, therefore no need to generate ‘all’ file

= Some variables are declared implicitly, like:

o $(CC) : C compiler
S(CFLAGS) : parameters of C compiler
S(LDFLAGS): linker flags
S(RM) : remove command

O
O
O

mi} Department of
Artificial Intelligence and 1
© BME-MIT ITh Systems Engineering 24S| Ide

8=00

Makefile hierarchy of template project

= Editing makefile manually is extremely rare since
in most cases it is generated by the development
environment.

= Example: makefile hierarchy of template project

o The makefile found in the source library includes other
makefiles that are necessary for the compilation of
other files of the project

= See some example of makefiles in a simplified
form (some parts are ignored for better
understanding)

mi} Department of
Artificial Intelligence and 1
© BME-MIT T Systems Engineering 253' Ide

makefile (automatically generated)

HHGHHH T HHH R H R H R H R H R
Automatically-generated file. Do not edit!
HHGHHH T HHH H HHH R R H R H R H R H R

-include ../makefile.init

RM :=rm -rf
\
All of the sources participating in the build are defined here
-include sources.mk
-include src/subdir.mk
-include CMSIS/EFM32GG/subdir.mk
-include subdir.mk
-include objects.mk

>

-include ../makefile.defs

© BME-MIT

Including makefiles that belong other
source files of the project

. Department of
Artificial Intelligence and
"I Systems Engineering

26.slide

makefile (automatically generated)

All Target
all: Simple_Manual_Compile.axf

Tool invocations

Simple_Manual_Compile.axf: S(OBJS) S(USER_OBIS)
@echo 'Building target: S@'
@echo 'Invoking: GNU ARM C Linker'
arm-none-eabi-gcc/...comp. switches...]Simple_Manual_C
" /src/initDevice_man.o" "./src/main.o...
@echo 'Finished building target: S@'
@echo "'

-

@echo 'Building hex file: Simple_Manual_Compile.hex'

Rule for .axf file: generated from what object
files and how (switches are ignored for better
understanding)

}mpile.axf "./CMSIS/EFM32GG/startup_gcc_efm32gg.o"

arm-none-eabi-objcopy -0 ihex "Simple_Manual_Compile.axf" "Simple_Manual_Compile.hex"

@echo '’

@echo 'Running size tool'
arm-none-eabi-size "Simple_Manual_Compile.axf"

@echo "'

Other Targets

clean:
-S(RM) S(EXECUTABLES)S(OBJS)S(C_DEPS) Simple_Manual_Compile.axf Deleting all files: executed when
-@echo '’ Clean Project is called

© BME-MIT

mi} Department of
Artificial Intelligence and H
HTh Systems Engineering 27S| |de

8=00

Example for an included file (subdir.mk)

HHSHHH T HHHH HHH R H R H R H R H R
Automatically-generated file. Do not edit!
HHSHHH T HHH H HHH R R H R
Add inputs and outputs from these tool invocations to the build variables

C_SRCS +=\.

./src/initDevice_man.c \../src/main.c

OBIJS +=\./src/initDevice_man.o \./src/main.o

C_DEPS +=\.

/src/initDevice_man.d \./src/main.d

Each subdirectory must supply rules for building sources it contributes
src/initDevice_man.o: ../src/initDevice_man.c

src/main.o: .

@echo 'Building file: 5<'

@echo 'Invoking: GNU ARM C Compiler'
arm-none-eabi-gcc [... comp. switches ...] -0 "S@" "$<"
@echo 'Finished building: S<'

@echo "'

./src/main.c

@echo 'Building file: 5<'

@echo 'Invoking: GNU ARM C Compiler'
arm-none-eabi-gcc [... comp. switches ...] S@" "$<"
@echo 'Finished building: S<'

@echo "'

© BME-MIT

N

J \

Rule for the compilation of
initDevice_man.c file

>, Rule for the compilation of main.c file

Department of

it
"I Systems Engineering

Artificial Intelligence and

28.slide

GCC compiler manual (.pdf)

e Search the internet for GCC.pdf to find the comprehensive description of the
GCC compiler
 Example: See below the explanation of C language versions:

2 Language Standards Supported by GCC

For each language compiled by GCC for which there is a standard, GCC attempts to follow
one or more versions of that standard, possibly with some exceptions, and possibly with
some extensions.

2.1 C Language

The original ANSI C standard (X3.159-1989) was ratified in 1989 and published in 1990.
This standard was ratified as an ISO standard (ISO/TEC 9899:1990) later in 1990. There
were no technical differences between these publications, although the sections of the ANSI
standard were renumbered and became clauses in the ISO standard. The ANSI standard,
but not the ISO standard, also came with a Rationale document. This standard, in both its
forms, is commonly known as C89, or occasionally as C90, from the dates of ratification. To
select this standard in GCC, use one of the options —ansi, ~std=c90 or -std=1s09899:1990;
to obtain all the diagnostics required by the standard, you should also specify -pedantic
(or ~pedantic-errors if you want them to be errors rather than warnings). See Section 3.4
[Options Controlling C Dialect], page 42.

Errors in the 1990 ISO C standard were corrected in two Technical Corrigenda published
in 1994 and 1996. GCC does not support the uncorrected version.

mi} Department of
Artificial Intelligence and 1
© BME-MIT T Systems Engineering 298||de

