
© BME-MITBudapest University of Technology and Economics
Department of Artificial Intelligence and Systems Engineering

Embedded and ambient systems
2025.09.10.

Practice 1

© BME-MIT 2.dia

Preliminary

© BME-MIT 3.dia

1) Development board: EFM32GG-STK3700

 https://www.silabs.com/development-
tools/mcu/32-bit/efm32gg-starter-kit

© BME-MIT 4.dia

1.1) Main features

© BME-MIT 5.dia

1.2) Block diagram

© BME-MIT 6.dia

1.3) Power supply

• DBG: via on-board debugger energy monitor can
be used (use this)

• BAT: use CR2032 battery
• USB: MCU integrated voltage regulator is used

© BME-MIT 7.dia

1.3) Power supply and proper connection

© BME-MIT 8.dia

1.4) Peripherals-Buttons/LEDs

• Push buttons are debounced by RC filter to avoid
bouncing:

PB0=push button nr. 0
PB9=9th bit of port B
PE3=3rd bit of port E

τ = R101 * C100 = 1MΩ * 1nF = 1ms

© BME-MIT 9.dia

1.4) Peripherals-Buttons/LEDs
Overcurrent protection
against the case when
PB9 or PB10 pins are set
to output by accident

LED shunt resistor: (3.3V-2V)/3kΩ≈0.4mA (note: 2V is the typical forward voltage of the LED)
Approx. 1mA…10mA current and 1.5…2.2V is expected on a LED

© BME-MIT 10.dia

1.5) Board Controller
 Responsible for controlling board level tasks like

debugger and Advanced Energy Monitor
 Interface is provided between the EFM32 and the

board controller in the form of a UART connection
o Set the EFM_BC_EN (PF7) line high
o Use the lines

EFM_BC_TX (PE0)
and
EFM_BC_RX (PE1)

 Board Support Package (bsp) is to be installed

© BME-MIT 11.dia

2) Integrated Development Environment
 Integrated development environment (IDE):

Simplicity Studio 4
 www.silabs.com/products/development-

tools/software/simplicity-studio

© BME-MIT 12.dia

2.1) Getting started with IDE-Launcher

For your help

Connected board

Views (Launcher is now active)

© BME-MIT 13.dia

2.2) Getting started with IDE-Simplicity IDE
View (Simplicity IDE is active)

© BME-MIT 14.dia

2.3) Getting started with IDE-Debug
View (Debug is active)Debug deploy and runRun

© BME-MIT 15.dia

3) Start a new project
 File->New->Project:

© BME-MIT 16.dia

3) Start a new project

© BME-MIT 17.dia

3) Start a new project

© BME-MIT 18.dia

4) Example project created

© BME-MIT 19.dia

4.1) Project Explorer
 Binaries: “raw” files (hex, bin)
 Includes: header files (function defs)
 BSP: board support package
 CMSIS: core management
 emlib: manages the whole uC
 GNU… : compiled SW components
 src: source files

© BME-MIT 20.dia

4.2) Debug mode

© BME-MIT 21.dia

4.2.1) Breakpoints

• Right click on the line to be able to add Breakpoint

© BME-MIT 22.dia

4.2.2) Register values

• Register content can be manipulated

© BME-MIT 23.dia

4.2.2) Expressions

• Expressions can be entered, e.g.: variable1+variable2

© BME-MIT 24.dia

5) Energy profiler
 Disable one LED (use e.g. comment //)
 Switch IDE mode and choose this icon

© BME-MIT 25.dia

6) HW configurator
 Project is created by selecting configurator mode
 Simplifies peripheral initialization by presenting

peripherals in a graphical user interface

© BME-MIT 26.dia

7) Code development and manipulation
 Some useful hints

o Code completion by Content Assist
• type the first few letters of a function and press [Ctrl+Space]

– display a list of functions that match
– works for include files as well

o Symbol expansion
• stay over a function and information will pop-up

o Open declaration
• stay over a variable and press [F3]

– Redirects where it was declared

© BME-MIT 27.dia

7.1) Code development - #include
 Use a header file in your program by including it

with the C preprocessing directive #include
 Two forms exist:

o #include <file>
Used for system header files. It searches for a file
named 'file' in a standard list of system directories.

o #include "file"
Used for header files of your own program. It searches
for a file named 'file' in the directory containing the
current file.

© BME-MIT 28.dia

7.2) Code explanation
 void

o represents the absence of type
o specifies that no value is available

 volatile
o indicates that a value can change and the compiler

should be prevented to perform optimization on it
(which may lead to change the value into a constant)

 CHIP_Init();
o HW errors are corrected in SW

