
LOGSYS – Development Environment of

Embedded Systems

Tamás Raikovich, Béla Fehér, Péter Laczkó
Budapest University of Technology and Economics, Department of Measurement and Information Systems

Magyar Tudósok körútja 2, Budapest, H-1117, Hungary

Phone: (36)-(1)-463-3596, Fax: (36)-(1)-463-4112, rtamas@mit.bme.hu

Abstract – Thanks to the rapid development of electronics,

systems built with programmable logic devices (FPGAs and

CPLDs) and microcontrollers are more and more widely used.

Their great advantage that arises from their programmable

nature as compared to systems using application specific

integrated circuits is their flexibility, which cuts back the cost

of the development of the prototype to a great extent. Using of

programmable devices requires efficient development support.

As for simple applications, fast and reliable configuration of

the devices is a basic requirement. More complicated

applications require efficient support for development, debug

and verification. Unfortunately, programmable device

manufacturers have such development tools that focus on their

own devices and usually offer only a limited communication

support with the application itself. The power supply of the

target system is also usually left to external instruments. For

that reason a new development environment has been created,

which integrates the configuration, the communication and the

power supply features in a vendor independent manner.

I. EMBEDDED SYSTEMS

A. General Characteristics

An embedded system is a special-purpose computer

system designed to perform one or a few dedicated

functions, sometimes with real-time constraints. It is usually

embedded as part of a complete device including hardware

and mechanical parts. Embedded systems have become very

important today as they control many of the common

devices we use. Since the embedded system is dedicated to

specific tasks, design engineers can optimize it, reducing the

size and cost of the product, or increasing the reliability and

performance. Physically, embedded systems range from

portable devices such as PDAs and MP3 players to large

stationary installations like factory controllers. Complexity

varies from low, with a single microcontroller chip, to very

high with multiple units, peripherals and networks mounted

inside a large chassis or enclosure.

Embedded systems are typically implemented with

programmable devices: microprocessors, microcontrollers,

FPGAs or EEPROM and Flash memories. Contrary to

microprocessors that require external peripherals to operate,

microcontrollers have built-in peripherals on the chip,

reducing the size of the system. There are many different

CPU architectures used in embedded systems such as ARM,

x86, PIC, AVR, PowerPC, etc. Use of FPGAs enables to

create SoPC (System on a Programmable Chip) designs

where all logic is programmed into the FPGA, including the

CPU. ASICs are common only in very-high-volume

embedded systems because of their very high initial costs.

Power consumption of portable devices is limited because

these devices are generally powered from battery. Therefore

the low power consumption is very important in this case.

B. Development Flow

Software for microprocessor systems is usually written in

C, C++ or assembly languages. After compiling the source

code and linking, the executable file is created. ELF

(Executable and Linkable Format) is a common executable

file format. With manufacturer tools, the executable can be

downloaded to the target or can be converted to different

formats such as Intel HEX. Intel HEX files are used to

program non-volatile memories.

Designs for FPGA and CPLD devices are written in

Verilog or VHDL hardware description language. The

development environments create different configuration

file formats (BIT, JED, etc.) for these devices.

FPGAs, CPLDs and most microcontrollers support the

JTAG configuration interface [1]. This simple synchronous

serial interface was originally developed for board-level

testing purposes (boundary-scan), but it can also be used to

configure programmable devices. The standard SVF file

format [2] describes the operations on the JTAG chain.

Most manufacturer development environments support this

format. Some devices have vendor specific configuration

interface such as small Atmel AVR microcontrollers

(DebugWire) or Microchip PIC devices (ICD port).

C. Communication

Embedded systems have their own MMI (man-machine

interface) to communicate with the user. Simple embedded

devices use buttons, LEDs, and small displays, often with a

simple menu system. More complex systems can use a full

graphical display with touch sensing. A different option is

to provide a web page interface over a network connection.

Various communication interfaces can be found in

embedded systems from simple serial interfaces (UART,

SPI, I2C, etc.) to high-speed connections (USB, Ethernet,

etc.). Some systems also use wireless communication.

For development purposes, typically a UART-like

communication interface is used with moderate speed, as a

stdin/stdout peripheral.

II. THE LOGSYS SYSTEM

A. Design Goals
According to the previous section, many kinds of

programmable devices can be found in embedded systems
from different manufacturers. Different manufacturers offer
different development environments and tools. Therefore
the LOGSYS system should be used as a back-end and it
should co-operate with the manufacturer development
environments by supporting the standard file formats.

As for the configuration interface, the JTAG interface
should be chosen because it is widely available in
programmable devices. As for communication interfaces,
the common serial interfaces (UART, I

2
C, SPI) should be

supported. The LOGSYS system should be capable for
supplying power to small targets (max. 5 W) and the
measurement of the power consumption is also important.

B. Architecture

A development environment for programmable logic

devices consists of two main parts: the development

software and the download cable (Fig. 1). The development

software serves for design, debug and verification purposes.

The download cable connects the target system with the PC.

Fig. 1. Architecture of a development environment.

The communication interface determines the usability and

the performance of the development environment. An

average PC has a number of communication interfaces, like

the asynchronous serial port (UART), the parallel port and

the USB port. The UART and the parallel port don’t

provide enough data transfer rate and they will probably

disappear from the computers in the future. The USB [3] is

a user-friendly way to connect different peripherals to the

PC. It is fast (low-speed: 1.5 Mbit/s, full-speed: 12 Mbit/s,

high-speed: 480 Mbit/s) and it also provides a short circuit

protected 5 V power output. Therefore small devices that

consume less than 500 mA current can be powered from the

USB port. Because of its numerous advantages, the USB

communication interface is used in the LOGSYS system.

Fig. 2 shows the brief architecture of the LOGSYS

system. The development cable connects the target system

with the PC through the USB port. The dedicated interface

between the development cable and the target system is

called LOGSYS development port. It provides a

configuration interface, a clock and a reset signal, a serial

communication interface and a 5 V power output.

Fig. 2. The LOGSYS development system.

The user application and the device drivers run in a PC

environment and they require Windows XP operating

system. The user application has a customizable and well-

arranged graphical interface for accessing the functions

provided by the development cable.

C. Development Boards

The LOGSYS system can support almost every

programmable logic and microcontroller development

board. The only requirement is the existence of the JTAG

interface. But vendor specific development boards are

usually equipped with dedicated connector arrangement,

which in general can be handled with flying wire

connections.

Therefore a new FPGA board has been created, which is

simple enough for the beginners and it is also suitable for

implementing more complex applications and it provides

direct connection to the LOGSYS development port. Fig. 3

shows the LOGSYS Spartan-3E FPGA card.

Fig. 3. The LOGSYS Spartan-3E FPGA card.

The board contains a Xilinx XC3S250E-TQ144C FPGA

device, which enables to implement complex logic and

smaller microprocessor systems. This FPGA has 250.000

system gates, twelve 18 Kbit block-RAMs, twelve 18 x 18

bit signed multipliers and four DCM modules.

A 128 K x 8 bit SRAM and a 16 Mbit SPI serial Flash

memory are available on the board for storing program and

Development software

Communication interface

Configuration &

communication device

(download cable)

Target system

(development board)

data. The FPGA can configure itself from the serial FLASH

memory.

Other on-board peripherals are one 4-digit 7-segment

display, one 5 x 7 dot-matrix display, eight LEDs, eight

switches and five push-buttons. A 16 MHz oscillator is

available as a clock source.

The LOGSYS development cable can be directly

connected to the development port of the board. The board

is usually powered by the development cable, but a 5 V

power connector is also available for standalone operation.

Two connectors serve for attaching different expansion

modules to the board. These modules are called LOGSYS-

BLOXES. The pinout of the connectors can be seen in Fig.

4. Each expansion connector provides 13 FPGA I/O lines.

11 of the 13 FPGA I/O lines are bi-directional, the other

two are input-only. 5 V and 3.3 V power outputs are

available on each connector. However, all FPGA I/O lines

are powered from 3.3 V, and they are not 5 V tolerant.

Fig. 4. The pinout of the expansion connectors.

Fig. 5 shows some expansion modules. A range of

expansion modules has been created, including VGA and

PS/2 module, 8-channel A/D converter module, audio A/D

and D/A converter module, infrared transceiver module,

Ethernet module and SD card module.

Fig. 5. The LOGSYS-BLOXES modules.

III. THE LOGSYS DEVELOPMENT CABLE

Fig. 6 shows the LOGSYS development cable. Because

of the small size (48 mm x 17 mm), every function is

implemented within a single microcontroller. The

development cable has a mini-B type USB socket. A

standard USB cable can be used to connect the development

cable to the PC. The cable is powered from the USB

therefore no external power supply is required.

Fig. 6. The LOGSYS development cable.

A. LOGSYS Development Port

The pinout of the LOGSYS development port can be seen

in Fig. 7. The different interfaces provided by the LOGSYS

port are discussed in detail in the following sections.

JTAG

TDO

JTAG

TCK
CLK MOSI

(ser. out)

Vref

I/O
5 V

JTAG

TDI

JTAG

TMS
RST MISO

(ser. in)
GND

Vref

JTAG

Fig. 7. The pinout of the LOGSYS development port.

Programmable devices may require more than one power

supply voltage to operate. For example, the Xilinx Spartan-

3E FPGA devices have three types of power supply input

[4]: the core requires 1.2 V, the auxiliary supply voltage

(JTAG, DCM, differential drivers) is 2.5 V and each I/O

bank of the FPGA has dedicated power supply inputs. The

I/O voltage level is determined by the used I/O standard, it

can be between 1.2 V and 3.3 V. Because different target

systems can use different voltage levels for communication,

the development cable contains level shifter circuits. The

level shifter circuits have two reference voltage inputs: one

for the configuration interface (Vref JTAG) and one for the

control and communication lines (Vref I/O). This flexibility

enables the development cable to be easily attached to many

targets. Reference voltages can be between 1.65 V and 5 V.

B. Configuration Interface

The native configuration interface is the JTAG interface

for configuring programmable devices. The TCK frequency

is 1 MHz. At this clock frequency, the configuration of an

XC3S250E FPGA takes about 2100 ms.

The configuration interface also supports the low voltage

programming of Microchip PIC18F microcontrollers.

C. Communication Interface

The development cable supports a range of synchronous

and asynchronous serial communication protocols.

Basically, the popular UART can be used to

communicate with the target system. A virtual serial port

driver has been created so the UART of the development

cable can be accessed from Windows applications.

For simple tests or educational purposes a special

communication mode called BitBang I/O is available. In

this mode the firmware directly controls the clock, changes

the reset and serial data out lines and samples the serial data

input line at the rising or falling clock edge.

The development cable also supports the master USRT

(synchronous version of the UART), the master SPI and the

master I
2
C (TWI, SMBus) communication modes.

TABLE 1

DATA TRANSFER RATES

Mode Min. Max.

UART / USRT 4800 bit/s 115200 bit/s

BitBang I/O 1 Hz 1000 Hz

Master SPI 2 kHz 8 MHz

Master I2C 1 kHz 400 kHz

D. Control Interface

The user can freely control the CLK clock and the RST

reset lines when they are not used by the communication

interface. In this case, the clock frequency can be set

between 1 Hz and 8 MHz and the reset signal is controlled

asynchronously.

E. Power Supply and Measurement

USB ports have short circuit protected 5 V power output

and supply 500 mA current. Because the development cable

consumes only a small amount of current, the USB port can

be used to power the target system. The development cable

has a power switch with adjustable current limits of 450

mA, 700 mA and 950 mA. Setting the current limit greater

than 450 mA requires a Y-type USB cable. Systems that

consume more than 950 mA current cannot be powered

from the development cable, they require external power

supply.

The voltage on all power lines (power output, reference

voltage inputs) and the output current of the power output

are measured by the development cable.

F. Connection with the Development Boards

Development boards have various types of configuration

ports therefore there is no universal configuration port that

is compatible with each target system. The LOGSYS

development cable can be connected with the target systems

in different ways: directly, using an expansion module or

using a flying cable.

LOGSYS development boards are directly compatible

with the LOGSYS development cable because all of them

have the LOGSYS development port.

Some development boards can be connected with the

development cable using a small expansion module. Fig. 8

shows the expansion module made for the Xilinx Spartan-3

Starter Board [5]. In this case, the LOGSYS development

cable replaces the power supply, the download cable and

the serial cable.

Fig. 8. Expansion module for the Xilinx Spartan-3 Starter Board.

In those cases where the above two methods are

inapplicable the user can connect the target system with the

LOGSYS development cable using a flying cable.

IV. THE LOGSYS USER INTERFACE

The main window of the user application can be seen in

Fig. 9. The user application has a customizable and well-

arranged graphical interface for accessing the functions

provided by the development cable. The graphical user

interface is implemented using docking windows. Every

function has its own graphical interface and they are

displayed in separate child windows. Thanks to the usage of

docking windows, these interfaces can be arranged in

various ways by the user. Services offered by the user

application are discussed in details in the following

sections.

Fig. 9. The main window of the user application.

A. Cable Browser

The cable browser (Fig. 10) can be found in the upper left

part of the main window. It displays the connected

development cables and the available functions on each

cable. Functions that are currently available to the user are

marked with dark green or dark red circle. Functions that

are currently used are marked with light green or light red

circle. The light grey circle means that the function is

currently not available to the user. The user can enable a

function by double-clicking on its name. Functions that

require the same resources cannot be enabled at the same

time.

Fig. 10. The cable browser window.

B. Power Panel

The power panel (Fig. 11) can be found in the lower left

part of the main window, if it is enabled in the cable

browser. The user can control the 5 V power output and the

current limit from the power panel. This interface also

serves for displaying the measurement results and the

history of the current consumption.

Fig. 11. The power panel.

C. JTAG Configuration

Fig. 12 shows the JTAG download window. The

LOGSYS system uses the industry standard SVF file format

to describe the operations on the JTAG chain. Most

manufacturer development environments provide a way to

create an SVF file that contains the configuration data. In

case of Xilinx devices, the BIT and the JEDEC files are

also supported by invoking the manufacturer’s iMPACT

utility.

Fig. 12. The JTAG download window.

The LOGSYS system handles JTAG chains with devices

from different manufacturers without any difficulties. Let’s

suppose that the user has a board, which contains two

programmable devices from different manufacturers. The

first device is an Atmel AVR microcontroller, the second

device is a Xilinx CPLD. To configure these devices, the

Atmel AVR Studio 4 and the Xilinx iMPACT softwares are

needed.

The Atmel software offers a very simple way to handle

the composite JTAG chains: the necessary data have to be

entered manually (Fig. 14, left). These data are the number

of devices before and after the Atmel device, and the

number of instruction bits before and after the Atmel

device.

The Xilinx software offers a more intelligent way to

handle the composite JTAG chains: the necessary data are

imported from BSDL (Boundary Scan Description

Language) files (Fig. 14, right). These files describe the

JTAG devices and they are provided by the manufacturers.

The above ways of handling composite JTAG chains are

not convenient at all because those steps have to be

repeated every time when the user configures a new target

system. In the LOGSYS system, the configuration tool has

an internal device database (Fig. 13) to manage the devices

from different manufacturers in the JTAG chain. The

required data are stored in the database. These data can be

entered manually or can be imported from BSDL files.

Thanks to the JTAG device database, composite JTAG

chains are handled easily. At the beginning of the

configuration process, the devices in the JTAG chain have

to be queried first. Then the user can download the

configuration file to the selected device.

Fig. 13. JTAG device database.

Fig. 14. Handling composite JTAG chains: Atmel AVR Studio 4 (left), Xilinx iMPACT (right).

D. BitBang I/O

The BitBang I/O is a special low-speed synchronous

communication mode for simple tests and educational

purposes. In this mode the software directly controls the

clock (CLK), changes the reset (RST) and serial data out

(MOSI) lines, and samples the serial data input (MISO) at

the rising or falling clock edge. The user interface for the

BitBang I/O mode can be seen in Fig. 15.

The clock and reset controls are in the upper part of the

window. The user can adjust the clock frequency between 1

Hz and 1000 Hz. The clock can be in free run mode or the

user can send a given number of clock pulses. When the

clock is stopped the commands are queued, and they going

to be executed after the clock is restarted. The reset signal

can be set to low or high, also a reset pulse with a given

length can be send.

The data I/O controls are in the middle part of the

window. Different number systems and file I/O operations

are supported. In USRT mode, the data are sent in frames.

Every frame consists of a start bit, the data bits (4-16) and a

stop bit.

The timing diagram that displays the communication flow

can be found in the lower part of the window.

Fig. 15. The BitBang I/O window.

E. UART/USRT Terminal

Fig. 16 shows the simple terminal interface available for

UART and USRT communication. In the upper left part of

the window, the user can adjust various parameters such as

the baud rate, the number of data and stop bits, the parity

and the newline characters. The terminal interface supports

binary and text mode communication, as well as file I/O

operations.

In USRT mode, the development cable drives the clock

output and the clock frequency is equal with the baud rate.

Fig. 16. The UART/USRT terminal window.

V. EXTERNAL APPLICATIONS

Currently, there are some functions that are accessible

only from external applications. These functions will be

integrated into the future releases of the LOGSYS user

interface.

A. Cable Server

In the Xilinx ISE development environment, the iMPACT

application can be used to configure the programmable

devices. This application is able to handle download cables

connected to remote computers. This feature requires the

cable server application, which runs on the remote machine.

The iMPACT uses TCP/IP protocol to communicate with

the cable server. Thanks to the own cable server application

that emulates the standard Parallel-III download cable, the

JTAG interface of LOGSYS development cable can be

accessed from the iMPACT utility. In the right side of Fig.

14, the iMPACT uses the LOGSYS development cable

through the cable server.

B. PIC Programmer

The configuration interface of the LOGSYS development

cable also supports the low voltage programming of the

Microchip PIC18 microcontrollers. With the PIC

programmer application, the user can configure the older

PIC18Fxxx devices as well as the newer PIC18FxxJxx

devices.

C. Applications for I
2
C and SPI Communication

There are numerous devices equipped with I
2
C or SPI

serial communication interfaces. Such devices are

microcontrollers, serial Flash and EEPROM memories, I/O

expanders (GPIO ports), A/D and D/A converters, real time

clocks, programmable clock synthesizers, etc. Because of

the many different functions, the user interface for I
2
C and

SPI communication is device dependent.

Two applications for general I
2
C (Fig. 17) and SPI

communication, an application for programming I
2
C

EEPROM memories and an application for programming

SPI Flash memories are currently available. The general

applications support all SPI and I
2
C devices, but often a

specialized application is more useful.

Fig. 17. Application for the I2C communication.

Programming the serial Flash memory on the LOGSYS

Spartan-3E board requires a special method because there is

no direct connection between the memory and the

development port. First, a design has to be downloaded to

the FPGA, which connects the SPI interface of the Flash

memory with the development port. After that, the SPI

communication mode of the cable can be used to program

the Flash memory. An application is available that performs

these tasks.

VI. EXAMPLE DESIGNS

A. State Machine

At Digital Design I. class held by our department,

students learn about the basics of the digital systems.

Designing simple state machines is a common exercise for

the students. Fig. 18 shows the state diagram of a Mealy

machine, which recognizes the 010 and 1001 bit patterns.

Fig. 18. State diagram of the pattern recognizer.

The LOGSYS system is useful to implement and test

these simple designs. Students can use the BitBang I/O

communication mode to shift out the input data bit by bit

and the timing diagram displays the result. Fig. 19 shows

the test result of the above state machine.

Fig. 19. Using the BitBang I/O to test the state machine.

B. XSOC
The XSOC [6] is a simple SoPC design. The original

version of the XSOC system consists of the XR16 CPU, 32
Kbyte external SRAM, a simple parallel I/O interface and a
monochrome VGA controller. The advantage of this design
is its small size. The whole system was implemented in a
Xilinx XC4005XL FPGA (only 196 CLBs!).

The XR16 is a 16-bit RISC soft processor core with
sixteen 16-bit general purpose registers. It is well suitable
for educational purposes because its Verilog source code is
freely available and it is well documented. As for the
software development support, an assembler, the LCC C
compiler and a simple simulator are available.

The XR16 CPU has been ported to the LOGSYS
Spartan-3E FPGA board and it has been modified to
support multiply and barrel-shift operations [7]. Because of
other required modifications, the old peripherals became
incompatible with the new system. Therefore new
peripherals have been created, including UART, external
memory controller, GPIO, timer/counter, 7-segment display
controller and interrupt controller. A graphical environment
is available (Fig. 20) to help the software development. By
using this application, the user can:
• edit and compile the C source code
• download the executable code to the target system
• execute the program step by step
• insert breakpoints into the program
• modify the contents of the memory and the registers
• control the on-chip peripherals

0/0

1/0

B
0

D
01

E
010

F
100

C
1

A

0/0
0/1

1/0

1/0

1/0

0/0

0/0

0/0

1/1

1/0

Fig. 20. The XSOC software debugger application.

C. Debug System for FPGAs

The purpose of this design is to support the high-level

FPGA development with a component that provides a test

environment for the user logic. Fig. 21 shows the block

diagram of the debug system. A Xilinx PicoBlaze processor

controls the whole system and it communicates with the PC

using the UART interface. The basic idea is that the debug

system provides the input data for the user logic and after it

has finished the operation, the user can read back the output

data. After the input data has been arrived, the PicoBlaze

notifies the user logic to start the operation. The user logic

has to notify the PicoBlaze when it has finished the data

processing. The input data can be stored in a 2 Kbyte block-

RAM (MEM), in a 16-byte FIFO or in four 8-bit registers

(REG). The same resources are also available at the output

side.

Fig. 21. The block diagram of the debug system.

A software library has been created for MATLAB, which

enables the communication with the debug system. Using

this feature, users can test simple signal or image processing

related hardware. A part of the algorithm can be

implemented in external hardware and the MATLAB can

visualize the results in a user-friendly way.

VII. SUMMARY

This paper introduced the LOGSYS system, which is a
general purpose configuration and development tool for
programmable devices. Manufacturers provide the
development environment and development tools for their
own devices, but most of them cannot be efficiently used
when the target system contains devices from different
manufacturers. Other problem is the limited communication
support with the application itself. Therefore the LOGSYS
system has been created, which integrates the configuration,
the communication and the power supply features in a
vendor independent manner.

The USB based development cable connects the target
system with the PC. The functions offered by the cable can
be accessed from a user-friendly graphical interface, which
co-operates with the manufacturer development
environments by supporting the standard file formats.

The LOGSYS environment is still in development. New
functions and capabilities will be added to the LOGSYS
environment in the future.

REFERENCES

[1.] R. G. Bennets, Boundary Scan Tutorial, ASSET InterTech, Inc.

http://www.asset-intertech.com/pdfs/boundaryscan_tutorial.pdf

[2.] Serial Vector Format Specification, ASSET InterTech, Inc.

http://www.asset-intertech.com/support/svf.pdf

[3.] Universal Serial Bus Specification Revision 2.0

http://www.usb.org

[4.] DS321: Spartan-3E FPGA Family Data Sheet, Xilinx, Inc.

http://www.xilinx.com

[5.] UG130: Spartan-3 Starter Kit Board User Guide, Xilinx, Inc.

http://www.xilinx.com

[6.] http://www.fpgacpu.org

[7.] P. Czakó, Mikrorendszer megvalósítása FPGA környezetben

(Realization of a Microsystem in FPGA Environment), Diploma

Thesis, BUTE-DMIS, 2007

User Logic

REG out FIFO out MEM out

REG in FIFO in MEM in

P
ico

B
la
ze

U
A
R
T

