
Digital design lab 4A

Digital design lab 4A

• Today you will learn about hierarchical design of digital circuits

• The design will be done on 2 levels:
• First you will design the submodules

• Then the top module will be designed, and the submodules will be instantiated

• The PC is good example for hierarchical digital systems: the submodules are
the processor, memory, VGA, etc. Each submodule has a well defined
functionality, they are independent subsystems with unique behavior.

• In this case the top module is the motherboard, which connects the
submodules, and integrates the subsystems (submodules) in to one high-
level system.

Digital design lab 4A

• The specification of the high level system of today’s laboratory is the
following: the circuit reads two hexadecimal numbers from the
switches: one number from sw[3:0], and the other from sw[7:4].

• The two numbers (A and B), and their sum (A+B) will be shown on the
7-segment display of the system: one digit for A, one digit for B, and
two digits for A+B (since the maximum value is F + F = 1E).

• To implement such system, we need the following components:
multiplexer, decoder, hexadecimal to 7-segment converter.

• In addition, we need a circuit that continuously counts from 0 to 3.
This is a sequential circuit, so it won’t be studied in details right now.

• The design is the following:

Digital design lab 4A

• Let’s start with the 7-segment display (in the top right corner). It has
two group of inputs:
• Inputs a b c … g and dp: these inputs control the LEDs, dp is for the decimal

point LED, it will not be used today.
• Inputs DIGn: Digit selector inputs, the LED control inputs are forwarded to the

selected digit.

• These are negative logic inputs: 0 input means true and 1 means
false.

• Example: if the b and c inputs are 0, the others are 1 on the LED
control input, and DIG2=0, the others are 1 on the digit selector input,
than a 1 will appear on the second digit from the left.

• Note: we will design the circuit assuming positive logic, and we will
invert the signals in the last step (as it is shown in the figure)

Digital design lab 4A

• The S1-S0 signals belong to the counter that counts from 0 to 3
repeatedly: 00, 01, 10, 11, 00, 01, 10, 11, 00, …..

• We use the decoder to decode this signal: the corresponding output
of the decoder is set to 1 to select a digit.

• At the same time S1-S0 is the input of the multiplexor too: based on
the value of S1S0, the multiplexor forward one of its 4 4-bit input.

• This value is converted to a 7-segment number, and the result of the
conversion appears on the LED control inputs of the 7-segment
display.

• Let’s start the implementation.

Digital design lab 4A

• Launch the ISE design suite

• Create a new project

Digital design lab 4A

• Name: Digital_design_lab_4A

• Work on the D: drive

• Press Next

Digital design lab 4A

• Verify the settings:
• Spartan3E

• XC3S250E

• TQ144

• -4

• Press Next, than Finish

Digital design lab 4A

• Right click on the label

• Select New source…

Digital design lab 4A

• Select Verilog module

• Name: mpx_4_4_1

• This will be a 4x4x1 multiplexor:
It has 4 4-bit input

• Make sure “Add to project” is
checked

• Press Next

Digital design lab 4A

• Do NOT add the signals here,
We will add them manually later

• Press Next, then Finish

Digital design lab 4A

• Add the following source code:

• Note: we use “output reg” instead
of “output” in the module declaration

• This is needed to be able to use the
always block

• As we have seen on the practice, this is
a simpler and more overviewable way
to describe the circuit’s behavior.

• Use the “<=“ operator for register
assignments (instead of “=“)

• Save all changes

Digital design lab 4A

• Add another new source file

Digital design lab 4A

• Verilog module

• Name: dec_2_4

• This will be the decoder

• Make sure “Add to project” is
checked

• Press Next

Digital design lab 4A

• Leave the table blank

• Press Next, then Finish

Digital design lab 4A

• Add the following source code:

• Mind the reg keyword after output
in the header

• Save all changes

Digital design lab 4A

• Now we will test the decoder and the multiplexor

• First switch to Simulation mode

• Then right click on the label, and
select New Source

Digital design lab 4A

• Select Verilog Test Fixture

• Name: mpx_4_4_1_tf

• Press Next

Digital design lab 4A

• Select the mpx_4_4_1 circuit here

• Press Next, then Finish

Digital design lab 4A

• Add the following code after
the initial begin part

• Save all changes

Digital design lab 4A

• Left click on the mpx_4_4_1_tf module in the
top left corner of the ISE

• Then right click on “Simulate Behavioral Model”,
and select “Rerun All”

Digital design lab 4A

• A window pops up with the simulation results.
Press the “Zoom to Full View” button

• Right click on the out[3:0] signal, and
select Radix->Hexadecimal

• Do the same for the s[1:0] and num[15:0]
signals

• Check the simulation output

Digital design lab 4A

• Does the correct hexadecimal value appear on the output for each
value of s[1:0]?

• Help: num = 0000010010001100 = 048C

• For example, for s=1 the output of the multiplexor is 8. Is that right?

• What is the output for s=0, s=2 and s=3?

• Close the simulator

Digital design lab 4A

• Now you will test the decoder. Right click on the label, and select New
source…

Digital design lab 4A

• Name: dec_2_4_tf

• Don’t modify the location

• Check “Add to project”

• Press Next

Digital design lab 4A

• Select the dec_2_4 module

• Press Next, then Finish

Digital design lab 4A

• We will test the module
using a for loop

• Add the integer i; line
before the initial begin
part

• Don’t forget to save
your changes

Digital design lab 4A

• Left click on the dec_2_4_tf module in the top
left corner

• Then right click on “Simulate Behavioral
Model”, and select “Rerun All”

Digital design lab 4A

• Press the “Zoom to Full View” button

• Switch to hexadecimal number
representation for the dig[3:0] and
s[1:0] signals.

Digital design lab 4A

• Check the simulation results:

• The output is the following: s=00 -> dig=0001, s=01 ->dig=0010,
s=10 -> dig=0100, s=11 ->dig=1000. Is that correct?

• Close the simulator

Digital design lab 4A

• Switch back to implementation mode

• Right click on the label, and select
New Source…

Digital design lab 4A

• Name: hex7_seg

• Don’t modify the location

• Check “Add to project”

• Press Next

Digital design lab 4A

• Leave the table blank

• Press Next, then Finish

Digital design lab 4A

• Add the following code

• Mind the reg keyword

• Copy and paste the code from the next slide above endmodule

• This will be the implementation of the hexadecimal to 7-segment
converter, the output is defined for every possible input in the body of a
case statement

• Think about it: otherwise we would have to design a 4-input combinational
circuit for every LED, minimize the Boolean functions, and implement each

always @ (*)

 case (hex)

 4'b0000 : seg <= 7'b0111111; // 0

 4'b0001 : seg <= 7'b0000110; // 1

 4'b0010 : seg <= 7'b1011011; // 2

 4'b0011 : seg <= 7'b1001111; // 3

 4'b0100 : seg <= 7'b1100110; // 4

 4'b0101 : seg <= 7'b1101101; // 5

 4'b0110 : seg <= 7'b1111101; // 6

 4'b0111 : seg <= 7'b0000111; // 7

 4'b1000 : seg <= 7'b1111111; // 8

 4'b1001 : seg <= 7'b1101111; // 9

 4'b1010 : seg <= 7'b1110111; // A

 4'b1011 : seg <= 7'b1111100; // b

 4'b1100 : seg <= 7'b0111001; // C

 4'b1101 : seg <= 7'b1011110; // d

 4'b1110 : seg <= 7'b1111001; // E

 4'b1111 : seg <= 7'b1110001; // F

 default : seg <= 7'b0000000; // 0

 endcase

Digital design lab 4A

• Save all changes

• Add another source to the project

• This is the “div” clock divider, a sequential circuit that counts from 0
to 3

• Right now we do not go into the
details, since you have not heard
about sequential circuits

• Name: div

• Don’t modify location

• Check “Add to project”

• Press Next

Digital design lab 4A

• Leave the table blank

• Press Next, then Finish

Digital design lab 4A

• Add the following
source code

• Save your changes

Digital design lab 4A

• Now you can implement the top module, that connects all
submodules together

Digital design lab 4A

• Name: Top

• Don’t modify location

• Check “Add to project”

• Press Next

Digital design lab 4A

• Table: blank

• Next + Finish

Digital design lab 4A

• First add the declaration of the module:

• The “_n” tag after seg and dig means that these are negative logic
signals:

Digital design lab 4A

• Then add the following wires:
a, b (for sw[3:0] and sw[7:4])
s (for the output of the div module)
dig (digit selector for the display)
seg (LED control input for the display)
num (multiplexor input)
out (multiplexor output)

Digital design lab 4A

• Add the following assigments:

• Note that a+b will be connected to the
lower 8 inputs of the multiplexor

• Since dig_n and seg_n are negative logic
signals, we invert the values of dig and
seg before the assignment.

• Note: dig and seg are 4 and 8 bits long.
You can apply the ~ operator on N-bit wide wires, it will invert all bits

• For example, if x=1001, then ~x=0110.

Digital design lab 4A

• The last step is the instantiation of the submodules: we need to
define which wires of the Top module do we connect to the inputs
and outputs of a given submodule.

• We also have to give a name for the instantiated submodule, since we
can have multiple modules of the same type.

• Imagine you have a mod module with in input and out output. You
want to connect the x wire to the input of the module, and y to the
output. The syntax of the instantiation is:
mod mod1 (.input(x), .output(y));

• Now mod1 is the name of the current instance

Digital design lab 4A

• Instantiate your submodules in the following way:

• Save all changes

Digital design lab 4A

• After the instantiation, you will see that all submodules are organized
under the Top module:

• The ISE indents the submodules under Top to show that they are on a
lower hierarchical level

Digital design lab 4A

• Now we will implement and download the module to the FPGA
board. A file has been prepared for this purpose, you can download it
using the following link: download

• If the browser opens the file instead of displaying the download
dialog window: right click, and select “Save as…”

• Download the file, and save it to the current working directory of
your project (D:\Digital_design_lab_4A).

• If you are not sure, you can check it in the title bar of the ISE (top of
the ISE window)

http://home.mit.bme.hu/~rtamas/Logsys/LOGSYS_SP3E.ucf

Digital design lab 4A

• Go back to the ISE, right click on the
„xc3s250e-4tq144” label and select
„Add copy of source”

Digital design lab 4A

• Browse the file you have downloaded, select it and press Open:

Digital design lab 4A

• The following window appears:

• Press OK

• If you have difficulties,
ask for assistance

Digital design lab 4A

• Now open the previously added file. Uncomment the clk signal first:
select the line, right click and select Uncomment-> Line(s)

Digital design lab 4A

• Then uncomment the sw signals:

Digital design lab 4A

• Uncomment the seg_n signals, these are needed for the 7-segment
display:

Digital design lab 4A

• Finally, uncomment the dig_n signals

Digital design lab 4A

• Now you can generate the programming file

• First, left click on the Top module in the top
left corner

• Then right click on “Generate Programming
File”, and select “Rerun All”

Digital design lab 4A

• After the generation, you should see this.

• If you see errors or warnings, ask for assistance.

Digital design lab 4A

• If the program file was generated
successfully, you can connect the FPGA
board to the PC

• Mind the orientation of the JTAG
connector!

Digital design lab 4A

• Launch the Logsys GUI application

• Press the +5V button to turn the board on

Digital design lab 4A

• On the right side of the screen, select JTAG download:

• Press the „Query JTAG chain” button

• Then press „Configure the Selected Device”

Digital design lab 4A

• Browse the
generated file in
your working
directory

• Press Open

Digital design lab 4A

• The circuit requires to add a system clock input for the circuit

• First set the value of the clock frequency to 1000

• Press the Set button

• Click into the CLK checkbox

• Note: on Windows 10 the tick might
not appear, but it should be fine

Digital design lab 4A

• Now try to set different inputs on the switches. Can you see the
correct values and their sum on the 7-segment display?

• If you want to see the circuit in “slow motion”, first set the frequency
to 1-2 Hz, press then press the Set button.

• Now you can see the circuit selecting the individual digits one by one.

• This can’t be seen when the clock frequency is high, due to the
dynamics of the human eye.

