- Outline:
  - SR latch
  - 8-bit register
  - D flip-flop
  - Counter with D flip-flops

- SR-latch: cross-coupled NOR gates
- Recall:
  - S=1, R=0: Q=1
  - S=0, R=1: Q=0
  - S=0, R=0: Q holds its value
  - S=1, R=1: oscillation!





• Launch Xilinx ISE



• Create new project



- Name: Digital\_design\_lab\_4B
- Work on drive D:
- Press Next

| -Enter a name, locatio | ons, and comment for the project |        |
|------------------------|----------------------------------|--------|
| Name:                  | Digital_design_lab_4B            |        |
| Location:              | D:\bigital_design_lab_48         |        |
| Working Directory:     | D:\Digital_design_lab_48         |        |
| Description:           |                                  |        |
|                        |                                  |        |
|                        |                                  |        |
|                        |                                  |        |
|                        |                                  |        |
|                        |                                  |        |
|                        |                                  |        |
|                        |                                  |        |
| -Select the type of to | pp-level source for the project  |        |
| Top-level source typ   | be:                              |        |
| HDL                    |                                  | $\sim$ |

More Info

- Verify settings:
  - Family
  - Device
  - Package
  - Speed
- Press Next
- Press Finish

| Property Name                          | Value               |        |
|----------------------------------------|---------------------|--------|
| Evaluation Development Board           | None Specified      | ~      |
| Product Category                       | All                 | ~      |
| Family                                 | Spartan 3E          | ~      |
| Device                                 | XC3S250E            | ~      |
| Package                                | TQ144               | ~      |
| Speed                                  | -4                  | ~      |
|                                        |                     |        |
| Top-Level Source Type                  | HDL                 | $\sim$ |
| Synthesis Tool                         | XST (VHDL/Verilog)  | ~      |
| Simulator                              | ISim (VHDL/Verilog) | ~      |
| Preferred Language                     | Verilog             | ~      |
| Property Specification in Project File | Store all values    | ~      |
| Manual Compile Order                   |                     |        |
| VHDL Source Analysis Standard          | VHDL-93             | ~      |
|                                        |                     |        |
| Enable Message Filtering               |                     |        |
|                                        |                     |        |
|                                        |                     |        |
|                                        |                     |        |

< Back

Next >

Cancel

More Info

• Right click on the label, and select New Source...



- Select Verilog module
- Name: SR\_latch
- Do not modify Location
- Check "Add to project"
- Press Next

| Select Source Type<br>Select source type, file name and its location.                                                                                                                                                                                                                   |                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| <ul> <li>IP (CORE Generator &amp; Architecture Wizard)</li> <li>Schematic</li> <li>User Document</li> <li>Verilog Module</li> <li>Verilog Test Fixture</li> <li>VHDL Module</li> <li>VHDL Library</li> <li>VHDL Package</li> <li>VHDL Test Bench</li> <li>Embedded Processor</li> </ul> | File name:<br>SR_latch<br>Location:<br>D:\Digital_design_lab_4B |
| More Info                                                                                                                                                                                                                                                                               | Next > Cancel                                                   |

🍃 New Source Wizard

Х

• Leave the table blank, press Next, then Finish

#### ≽ New Source Wizard

←Define Module

Specify ports for module.

| Module name SR_latch |          |        |     |     |     |   |
|----------------------|----------|--------|-----|-----|-----|---|
| Port Name            | Directio | n      | Bus | MSB | LSB | ^ |
|                      | input    | $\sim$ |     |     |     |   |
|                      | input    | $\sim$ |     |     |     |   |
|                      | input    | $\sim$ |     |     |     |   |
|                      | input    | $\sim$ |     |     |     |   |
|                      | input    | $\sim$ |     |     |     |   |
|                      | input    | $\sim$ |     |     |     |   |
|                      | input    | $\sim$ |     |     |     |   |
|                      | input    | $\sim$ |     |     |     |   |
|                      | input    | $\sim$ |     |     |     |   |
|                      | input    | $\sim$ |     |     |     |   |
|                      | input    | $\sim$ |     |     |     | ~ |

Х

| More Info |   | < Back | Next > | Cancel |
|-----------|---|--------|--------|--------|
|           | 4 |        |        |        |

- Add the following source code
- #10 after the assign introduces some delay to simulate the behavior of real gates
   21 module SR latch(
  - 21 module SR latch( input S, 22 23 input R, 24 output Q, 25 output Q\_n 26 ); 27 28 assign #10  $Q = \sim (R|Q n);$ assign #10  $Q_n = \sim (S|Q);$ 29 30 endmodule 31





Switch to simulation mode

| ≽ ISE Pr | roject N | lavigator | r (P.2013) | 1013) - C:\ | Users\clou                       | id\Digita  | al_des |
|----------|----------|-----------|------------|-------------|----------------------------------|------------|--------|
| 📄 File   | Edit     | View      | Project    | Source      | Process                          | Tools      | Wi     |
| 🗋 🏓      |          | 9 🕹       | <b>X</b>   |             | <b> </b><br> <br> <br> <br> <br> | ×          | Æ      |
| Design   |          |           |            | ↔           |                                  |            | 6      |
| 📑 View   | n 🔾 🕻    | 🔯 Impler  | nentation  | 💿 🔝 Si      | mulation                         | <b>₽</b> ∃ | _      |
|          |          |           |            |             |                                  |            | 7      |

• Right click on the label, and select New Source...



- Select Verilog Test Fixture
- Do not modify Location
- Check "Add to project"
- Press Next

#### Select Source Type

Select source type, file name and its location.

|   | BMM File<br>ChipScope Definition and Connection File<br>Implementation Constraints File<br>IP (CORE Generator & Architecture Wizard)<br>MEM File<br>Schematic<br>User Document<br>Verilog Module<br>Verilog Test Fixture<br>VHDL Module<br>VHDL Library<br>VHDL Library<br>VHDL Package<br>VHDL Test Bench<br>Embedded Processor | File name:<br>SR_latch_tf<br>Location:<br>C:\Users\cloud\Digital_design_lab_4B |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| M | ore Info                                                                                                                                                                                                                                                                                                                         | Next > Cancel                                                                  |

Next > Cancel

• Select SR\_latch on the next window, and press Next, then press Finish

#### Associate Source

Select a source with which to associate the new source.

| SR_latch  |                      |
|-----------|----------------------|
|           |                      |
|           |                      |
|           |                      |
|           |                      |
|           |                      |
|           |                      |
|           |                      |
|           |                      |
|           |                      |
|           |                      |
|           |                      |
| More Info | < Back Next > Cancel |

• Add the following code after the "Add stimulus here" part

// Add stimulus here
#100; S = 1; R = 0;
#100; S = 0; R = 0;
#100; S = 0; R = 1;
#100; S = 0; R = 0;
#100; S = 1; R = 1;
#100; S = 0; R = 0;



• Left click on the test fixture file



• Then open the submenu under "Isim Simulator", right click on "Simulate Behavioral model", and select "Rerun all"



• Press the Zoom to full view button



• Study the waveforms:



- Study the effect of the Set, Reset inputs on Q, and the effect of switching from SR=11 to SR=00.
- Close the simulator

- Registers:
  - **Register**: multiple flip-flops sharing clock signal
    - From this point, we'll use registers for bit storage
      - No need to think of latches or flip-flops
      - But now you know what's inside a register



• Switch back to implementation mode



• Right click on the label and select New Source



- Name: Register\_8
- Don't modify Location
- Check Add to project
- Press Next

#### ←Select Source Type

Select source type, file name and its location.

| BMM File         ChipScope Definition and C         Implementation Constraints         IP (CORE Generator & Archi         Schematic         Schematic         User Document         Verilog Module         Verilog Test Fixture         VHDL Module         VHDL Library         VHDL Test Bench         Embedded Processor | Connection File<br>s File<br>itecture Wizard) | File name:<br>Register_8<br>Location:<br>C:\Users\cloud\Digital_de | sign_lab_4B |       |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------|-------------|-------|----|
| More Info                                                                                                                                                                                                                                                                                                                   |                                               |                                                                    | Next >      | Cance | el |

#### • Leave the table blank, press Next, then press Finish

#### ←Define Module

Specify ports for module.

| Port Name | Directio       | on        | Bus | MSB | LSB | 1 |
|-----------|----------------|-----------|-----|-----|-----|---|
|           | input          | $\sim$    |     |     |     |   |
|           | input          | $\sim$    |     |     |     |   |
|           | input          | $\sim$    |     |     |     |   |
|           | input<br>input | $\sim$    |     |     |     |   |
|           |                | input 🔽 🗌 |     |     |     |   |
|           | input          | $\sim$    |     |     |     |   |
|           | input          | $\sim$    |     |     |     |   |
|           | input          | $\sim$    |     |     |     |   |
|           | input          | $\sim$    |     |     |     |   |
|           | input          | $\sim$    |     |     |     |   |
|           | input          | $\sim$    |     |     |     |   |

• Add the following code

```
module Register 8(
21
      input [7:0] I,
22
23 input clk,
      output reg [7:0] Q
24
25
      );
26
      always 0 (posedge clk)
27
28
         Q \ll I;
29
30 endmodule
```





• Right click on the label, and select New Source



Select Source Type

Select source type, file name and its location.

- Select Verilog Module
- Name: Top
- Don't modify Location
- Check "Add to project"
- Press Next

| Bi<br>Clin<br>P<br>M<br>Sci<br>P<br>M<br>Sci<br>Vi<br>Vi<br>Vi<br>Vi<br>Vi<br>F<br>T | MM File<br>hipScope Definition and Connection File<br>nplementation Constraints File<br>(CORE Generator & Architecture Wizard)<br>1EM File<br>chematic<br>ser Document<br>erilog Module<br>erilog Test Fixture<br>HDL Module<br>HDL Library<br>HDL Package<br>HDL Test Bench<br>mbedded Processor | File name: Top Location: C:\Users\cloud\Digital_design_lab_4B |
|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| More                                                                                 | > Info                                                                                                                                                                                                                                                                                            | Next > Cancel                                                 |

• Leave the table blank, press Next, then press Finish

#### ←Define Module

Specify ports for module.

| Port Name | Directi | ion    | Bus | MSB | LSB | ^ |
|-----------|---------|--------|-----|-----|-----|---|
|           | input   | $\sim$ |     |     |     |   |
|           | input   | $\sim$ |     |     |     |   |
|           | input   | $\sim$ |     |     |     |   |
|           | input   | $\sim$ |     |     |     |   |
|           | input   | $\sim$ |     |     |     |   |
|           | input   | $\sim$ |     |     |     |   |
|           | input   | $\sim$ |     |     |     |   |
|           | input   | $\sim$ |     |     |     |   |
|           | input   | $\sim$ |     |     |     |   |
|           | input   | $\sim$ |     |     |     |   |
|           | input   | $\sim$ |     |     |     | ~ |

• Add the following source to the Top module:

```
21 module Top(
22 input [0:0] bt,
23 input [7:0] sw,
24 output [7:0] ld
25 );
26
27 Register_8 Reg8(.I(sw[7:0]), .clk(bt[0]), .Q(ld[7:0]));
28
29
30 endmodule
```

Press Save



- Now we will implement and download the module to the FPGA board. A file has been prepared for this purpose, you can download it using the following link: <u>download</u>
- If the browser opens the file instead of displaying the download dialog window: right click, and select "Save as..."
- Download the file, and save it to the current working directory of your project (D:\Digital\_design\_lab\_4B).
- If you are not sure, you can check it in the title bar of the ISE (top of the ISE window)

| ISE Project Navigator (P.20131013) - C:\Users\cloud\Digital_ | lesign_lab_3\Digital_design_lab_3.xise - [BCD.v] | — |   | ×  |
|--------------------------------------------------------------|--------------------------------------------------|---|---|----|
| 📄 File Edit View Project Source Process Tools 🕚              | Vindow Layout Help                               |   | - | ъ× |
| 🔍 « ।ରେଏ 🗶 🗿 🖓 🖉 🚺                                           | P 🕫 🕫 🔎 🖻 🚬 🖙 🗄 🗖 🖙 🥬 餐 🕨 🗴 🗶 👂                  |   |   |    |
|                                                              |                                                  |   |   |    |

 Go back to the ISE, right click on the "xc3s250e-4tq144" label and select "Add copy of source"



• Browse the file you have downloaded, select it and press Open:

| ſ | Name ^          | Date modified       | Туре        | Size |
|---|-----------------|---------------------|-------------|------|
|   | xmsgs           | 2019. 10. 01. 16:26 | File folder |      |
|   | 📊 ipcore_dir    | 2019. 10. 01. 13:41 | File folder |      |
|   | 🔥 iseconfig     | 2019, 10, 01, 13:40 | File folder |      |
|   | 📊 isim          | 2019. 10. 01. 16:06 | File folder |      |
|   | kst 🛛           | 2019, 10, 01, 16:25 | File folder |      |
|   | 📑 BCD.ngc       | 2019, 10, 01, 16:27 | NGC File    | 4 KB |
|   | BCD.v           | 2019. 10. 01. 16:26 | V File      | 1 KB |
|   | BCD_tf.v        | 2019, 10, 01, 16:25 | V File      | 2 KB |
|   | LOGSYS_SP3E.ucf | 2019, 09, 19, 18:19 | UCF File    | 6 KB |

| e name: | LOGSYS_SP3E.ucf | ~ | Sources(*.txt *.vhd *.vhdl *.v |        |  |
|---------|-----------------|---|--------------------------------|--------|--|
|         |                 |   | Open                           | Cancel |  |

- The following window appears:
- Press OK
- If you have difficulties, ask for assistance



 Now open the previously added file. Uncomment the bt<0> signal first: select the line, right click and select Uncomment-> Line(s)

> 16 # 4 darab aktív magas nyomógomb, balról jobbra sz. #NET "bt<3>" LOC = "P12"; 17 #NET "bt<2>" LOC = "P24"; 18 #NET "bt<1>" LOC = "P36"; 19 LOC = "P38"; #NET "bt<0>" 2.0 🔄 Undo Ctrl+Z 21 ຝ Redo Ctrl+Y 22 # 8 kapcsoló, balról jobbra 🔬 🖽 Ctrl+X #NET "SW<7>" LOC = "P47"; <sup>©</sup> <sup>Copy</sup> 23 Ctrl+C #NET "sw<6>" LOC = "P48"; Paste Ctrl+V 24 🗙 Delete Del #NET "sw<5>" LOC = "P69"; 25 Comment ► #NET "sw<4>" LOC = "P78"; 26 Uncomment ⇒ 🏪 Line(s) Alt+Shift+( Indent #NET "sw<3>" LOC = "P84"; Selection 27 Convert

 In addition, add the following setting to the end of line in order to use bt<0> as a clock signal: | CLOCK\_DEDICATED\_ROUTE = FALSE;

19 #NET "bt<1>" LOC = "P36"; 20 NET "bt<0>" LOC = "P38" | CLOCK\_DEDICATED\_ROUTE = FALSE;

• Uncomment the sw inputs:



• Uncomment the ld signals:



• Press Save



• Left click on the Top module



 Then right click on "Generate Programming File", and select "Rerun All"



 You will see the following warning after the generation: "A clock IOB / clock component pair have been found that are not placed at an optimal clock IOB / clock site pair. ...."



• You can ignore this one, in case of any other errors or warnings, ask for assistance.

- If the program file was generated successfully, you can connect the FPGA board to the PC
- Mind the orientation of the JTAG connector!



• Launch the Logsys GUI application



• Press the +5V button to turn the board on

| Power<br>Voltage<br>+5V On | Current<br>Maximum Value:<br>D Log to <u>file</u> | 450 🗸 mA |
|----------------------------|---------------------------------------------------|----------|
| -Measurement -             |                                                   |          |
| +5Vout: 4,92               | V Maximum Value:                                  | 500 🚖 mA |
| I/Oref: 3,31               | V Critical Value:                                 | 90 🌲 %   |
| JTAGref: 2,50              | V Samples/Second:                                 | 10 🜩     |

• On the right side of the screen, select JTAG download:

| LDC221                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | J |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Info<br>LOGSYS development cable<br>LDC221 | Configuration       Image: |   |

• Press the "Query JTAG chain" button

| JTAG | ì                | Devices in the JTAG chain: |        |
|------|------------------|----------------------------|--------|
|      | Query JTAG chain | XC3S250E (Xilinx)          | $\sim$ |
|      |                  |                            |        |
|      | Clear Log        |                            |        |

• Then press "Configure the Selected Device"



 Browse the generated file in your working directory

• Press Open

| 🗐 Open                                                              |                                             |                     |             |                                    | ×   |
|---------------------------------------------------------------------|---------------------------------------------|---------------------|-------------|------------------------------------|-----|
| $\leftarrow$ $\rightarrow$ $\checkmark$ $\uparrow$ $\frown$ « Local | Disk (C:) > Users > cloud > Digital_design_ | lab_4B              | √ Ū         | Search Digital_design_lab_4B       | Q   |
| Organize 🔻 New folder                                               |                                             |                     |             |                                    | ?   |
| 🔒 circle 🔷                                                          | Name                                        | Date modified       | Туре        | Size                               |     |
| 📙 Digital_design_la                                                 | 📙 _ngo                                      | 2019. 10. 19. 14:05 | File folder |                                    |     |
| 📙 Digital_design_la                                                 | 📙 _xmsgs                                    | 2019, 10, 19, 14:05 | File folder |                                    |     |
| 👌 Music                                                             | 📙 ipcore_dir                                | 2019, 10, 09, 16:45 | File folder |                                    |     |
| OpeDrive                                                            | 📙 iseconfig                                 | 2019, 10, 09, 16:44 | File folder |                                    |     |
|                                                                     | 📙 isim                                      | 2019, 10, 09, 17:06 | File folder |                                    |     |
| 💻 This PC                                                           | <pre> xlnx_auto_0_xdb</pre>                 | 2019, 10, 19, 14:05 | File folder |                                    |     |
| 🧊 3D Objects                                                        | xst                                         | 2019, 10, 19, 13:53 | File folder |                                    |     |
| 🛄 Desktop                                                           | 📩 top.bit                                   | 2019, 10, 19, 14:05 | BIT File    | 166 KB                             |     |
| 🔮 Documents                                                         |                                             |                     |             |                                    |     |
| 🕂 Downloads                                                         |                                             |                     |             |                                    |     |
| 👌 Music                                                             |                                             |                     |             |                                    |     |
| 📰 Pictures                                                          |                                             |                     |             |                                    |     |
| 📑 Videos                                                            |                                             |                     |             |                                    |     |
| 🏪 Local Disk (C:) 💙                                                 |                                             |                     |             |                                    |     |
| File name                                                           | e: top.bit                                  |                     | ~           | All configuration files (*.svf, *. | b v |
|                                                                     |                                             |                     |             | Open Cancel                        |     |

- Now set some random input combinations on the switches, and press the BTO button for the rising edges on the clock input of the register.
- The input should appear on the LEDs after the rising edges.

• Up-counter with D flip-flops:



• Open the ISE, right click on the label and select New Source...



- Name: D\_FF
- Don't modify Location
- Check "Add to project"
- Press Next

#### Select Source Type

Select source type, file name and its location.

| <ul> <li>BMM File</li> <li>ChipScope Definition and Connection File</li> <li>Implementation Constraints File</li> <li>IP (CORE Generator &amp; Architecture Wizard)</li> <li>MEM File</li> <li>Schematic</li> <li>User Document</li> <li>Verilog Module</li> <li>Verilog Test Fixture</li> <li>VHDL Module</li> <li>VHDL Library</li> <li>VHDL Test Bench</li> <li>Embedded Processor</li> </ul> | File name: D_FF Location: C:\Users\cloud\Digital_design_lab_4B |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| More Info                                                                                                                                                                                                                                                                                                                                                                                        | Next > Cancel                                                  |

• Leave the table blank, press Next, then press Finish

#### ≽ New Source Wizard

 $\times$ 

#### ←Define Module

Specify ports for module.

| Module name | D_FF      |           |        |     |     |     |   |
|-------------|-----------|-----------|--------|-----|-----|-----|---|
|             | Port Name | Direction |        | Bus | MSB | LSB | ^ |
|             |           | input     | $\sim$ |     |     |     |   |
|             |           | input     | $\sim$ |     |     |     |   |
|             |           | input     | $\sim$ |     |     |     |   |
|             |           | input     | $\sim$ |     |     |     |   |
|             |           | input     | $\sim$ |     |     |     |   |
|             |           | input     | $\sim$ |     |     |     |   |
|             |           | input     | $\sim$ |     |     |     |   |
|             |           | input     | $\sim$ |     |     |     |   |
|             |           | input     | $\sim$ |     |     |     |   |
|             |           | input     | $\sim$ |     |     |     |   |
|             |           | input     | $\sim$ |     |     |     | ~ |

More Info < Back Next > Cancel

• Add the following code to the module







- Open the Top module, delete the Reg8 register
- Modify the inputs and outputs of the module: add clk, remove the switches and bt[0:0]:

| 21 | module Top(  |    |
|----|--------------|----|
| 22 | input clk,   |    |
| 23 | output [7:0] | ld |
| 24 | );           |    |

#### • Add the following source to the module:

```
21 module Top(
22
      input clk,
23
      output [7:0] ld
24
       );
25
26
       wire Qn0, Qn1, Qn2, Qn3; // wires connected to the Q n outputs of the Flip-flops
27
       D FF D0(.D(Qn0), .clk(clk), .Q(ld[0]), .Q_n(Qn0));
28
29
       D FF D1(.D(Qn1), .clk(Qn0), .Q(ld[1]), .Q n(Qn1));
       D FF D2(.D(Qn2), .clk(Qn1), .Q(ld[2]), .Q_n(Qn2));
30
31
       D FF D3(.D(Qn3), .clk(Qn2), .Q(ld[3]), .Q n(Qn3));
32
33
       assign ld[7:4] = 4'h0;
34
35 endmodule
```

• Press Save



- Open the LOGSYS\_SP3E.ucf file
- Comment the bt<0> and sw lines by inserting a # character to the beginning of each line:

```
21 #NET "bt<0>" CLOCK_DEDICATED_ROUTE = FALSE;
22
23 # 8 kapcsoló, balról jobbra számozva
24 #NET "sw<7>" LOC = "P47";
25 #NET "sw<6>" LOC = "P48";
26 #NET "sw<5>" LOC = "P69";
27 #NET "sw<4>" LOC = "P78";
28 #NET "sw<4>" LOC = "P78";
28 #NET "sw<3>" LOC = "P84";
29 #NET "sw<2>" LOC = "P89";
30 #NET "sw<1>" LOC = "P95";
31 #NET "sw<0>" LOC = "P101";
```

• Uncomment the clk signal at the beginning of the file

```
10 # LOGSYS Fejlesztőkábel GUI vezérlő és kommunikációs jelek
11 #NET "mosi" LOC = "P120";
12 #NET "miso" LOC = "P143";
13 NET "clk" LOC = "P129" | PULLDOWN;
14 #NET "rst" LOC = "P119" | PULLDOWN;
```

Press Save



- Regenerate the programming file, and upload the new binary to the FPGA board
- Now the circuit requires to add a system clock input for the circuit
- First set the value of the clock frequency to 1 Hz
- Press the Set button
- Click into the CLK checkbox
- Note: on Windows 10 the tick might not appear, but it should be fine



- You should see the counter counting up, 1/sec.
- If you want to increase the speed of the counter, modify the clock frequency.
- The counter can count up to 15. Try to increase the maximum value to 255. How many bits do you need in order to reach 255?
- Hint: What is the relation between the maximum value and the number of D flip-flops?