
Digital design laboratory 6

Preparations

• Launch the ISE Design Suite

• Create new project:
File -> New Project…

Preparations

• Name: DigLab6

• Location: D:\DigLab6

• Working directory:
D:\DigLab6

• Press Next

Preparations

• Check FPGA settings

• If OK, press Next

• Then press Finish

Add module to the project

• In the top left corner,
right click on the project
(DigLab6)

• Select New Source…

Add module to the project

• Select Verilog module

• Name: Topmodule

• Press Next button

Add module to the project

• 4 inputs: clk, rst, bt, sw

• 1 output: ld

• bt, sw and ld: bus!

• Set the MSB values!

• Press Next

• Then press Finish

Task 1: Full adder implementation

• Add another module to the project using the previous steps.

• Right click on DigLab6 in the top left corner, then select New Source…

• Verilog module, File Name: Full_Adder

• Press Next

Task 1: Full adder implementation

• Inputs: a, b, ci

• Outputs: s, co

• Press Next

• Press Finish

Task 1: Full adder implementation

• You should see this:

Task 1: Full adder implementation

• Reminder: full adder truth table and equations

Task 1: Full adder implementation

• Implement the above equations in Verilog.

• None of the outputs are registers, so their values have to be set by
the assign statement.

Task 1: Full adder simulation

• First of all: Press Save All button

• Switch to Simulation mode

Task 1: Full adder simulation

• Right Click on DigLab6,
select New Source

• Select Verilog Test Fixture

• File Name: Full_Adder_TF

• Press Next

Task 1: Full adder simulation

• On the next screen, select the Full_Adder module

• If selected, press Next

• Then press Finish

Task 1: Full adder simulation

• Now we are going to test the Full_Adder for every possible input
combination

• A possible way is to type in all combinations:

• #100 a=1’b0; b=1’b0; ci=1’b0;
#100 a=1’b0; b=1’b0; ci=1’b1;
…

• This would be quite annoying. Instead, we are going to use a for loop

Task 1: Full adder simulation

• Add an integer i variable to the Test Fixture file ABOVE the initial
begin part:

Task 1: Full adder simulation

• Add the for loop after the Add stimulus here part:

Task 1: Full adder simulation

• Press the Save All button

• The {a,b,ci} concatenates the three 1-bit variables (a, b and ci) into
one 3-bit variable.

• The i variable is a 32-bit integer. The {a,b,ci}=i; command copies the
last 3 bits of the i variable into the concatenated {a,b,ci}.

• In other words: in every iteration of the for loop, the value of a is set
to the value of the third bit of i, the value of b is set to the value of
the second bit of i, and finally the value of ci is set to the first bit of i:

• a=i[2], b=i[1], ci=i[0].

Task 1: Full adder simulation

• Check if every modification is saved

• If so, select the test fixture file (left click on it):

• Then press the plus button on the left of the ISim Simulator on the
middle-left part of the screen

Task 1: Full adder simulation

• Then run (by double left click) Simulate Behavioral Model

• The simulator application launches

• Press the Zoom to full view button:

• You can see the values of the s, co, a, b, ci wires and the i variable.

• Right click on i[31:0],
select Radix ->
Unsigned decimal

Task 1: Full adder simulation

• Verify the correct behavior of the full adder module (s and co).

• Also, check the connection between a, b, ci and the bits of i.

• When you have finished, close the simulator. A popup window will
appear asking whether save the changes or not. Select No.

Task 1: Full adder implementation

• Now you are going to implement a 4 bit adder in the Topmodule.

• Switch back to implementation mode:

• Select Topmodule.v

Task 1: Full adder implementation

• In this implementation, we are going to add two 4-bit numbers using
the 1-bit full adder modules.

• The values of the four bit inputs (A and B) will be set on the switches.

• The result will be displayed on the leds (in a binary form).

• Add the following wires to the Topmodule:

Task 1: Full adder implementation

• Now we are going to connect the A, B and S variables to the switches
and the leds:

Task 1: Full adder implementation

• Note: you can set the value of ld with 1 command using
concatenation {}:

Task 1: Full adder implementation

• The next step is the instantiation of the full adder modules:

• Don’t forget to set the first carry in input (C[0]) to 0.

Task 1: Full adder implementation

• Before generating the programming file, you have to add the .UCF file
to the project.

• Download it from this link.

• Unzip it into your working directory.

• Your working directory appears in the title bar of the project
navigator.

• Example:

http://logsys.mit.bme.hu/sites/default/files/page/2009/09/SP3E_UCF.zip

Task 1: Full adder implementation

• Save All changes

• Right click on the project and select Add Copy of Source…

Task 1: Full adder implementation

• Select the .ucf file, then press Open

Task 1: Full adder implementation

• The following window appears. Press OK.

Task 1: Full adder implementation

• Open the ucf file in the editor

• Uncomment the following lines: clk, rst, bt, sw, ld

• Then Save All

Task 1: Full adder implementation

• Select the Topmodule.v file

• Under Pocesses: Topmodule (middle-left of the screen), run Generate
Programming File

• You will see warnings, that’s because we did not use every input. Its
not a problem.

• If generated successfully, you can upload the .bit file, and try the 4 bit
adder.

Task I – Generate programming file

• If the program file was generated
successfully, you can connect the FPGA
board to the PC

• Mind the orientation of the JTAG
connector!

Task I – Generate programming file

• Launch the Logsys GUI application

• Press the +5V button to turn the board on

Task I – Generate programming file

• On the right side of the screen, select JTAG download:

• Press the „Query JTAG chain” button

• Then press „Configure the Selected Device”

Task I – Generate programming file

• Browse the generated file in your working directory

• Press Open

• The circuit needs a system clock input and a reset input

• First set the value of the clock frequency to 1000

• Press the Set button

• Click into the CLK checkbox

• Note: on Windows 10 the tick might
not appear, but it should be fine

• You can reset the circuit by pressing the
RST checkbox

Task 2: Multifunction register

• We are going to implement a register with the following functionality:

• Shift to the left, shift to the right, load, set

• bt[0]: shift to the left

• bt[1]: shift to the right

• bt[2]: load content from switches

• bt[3]: set every bit to 1

• If no button is pressed, just maintain the present value

• The clear operation is done by the reset input

Task 2: Multifunction register

• Go back to the ISE Project Navigator, select Topmodule.v

• Comment of delete the previously added lines, except for the module
declaration and endmodule

Task 2: Multifunction register

• Add the following register variables:

• Implement the state register:

Task 2: Multifunction register

• Next we implement the next_state logic.

• Add an always (*) block to the code with begin and end

Task 2: Multifunction register

• Add the following skeleton code to cover each case

Task 2: Multifunction register

• Implement the functionality
by adding the following lines
to the skeleton:

• Notice that bt[0] has priority over the other buttons, bt[1] has priority
over bt[2] and bt[3], and bt[2] has priority over bt[3].

• So the priorities (in descending order): bt[0], bt[1], bt[2], bt[3].

Task 2: Multifunction register

• Don’t forget to connect the state register to the leds:

Task 2: Multifunction register

• Save all changes, and generate the programming file.

• Download it to the FPGA.

• Check functionality:
• Add clock (5 Hz)

• Reset

• Load a value

• Shift to the left/right

• Set every bit to 1

• Reset again

• Etc.

Task 3: Multifunction register

• Try to modify the code on your own:

• Instead of simply shifting to the left and to the right, rotate the value
of the state register in both directions.

• When no button is pressed, invert every bit of the register content
instead of maintaining its value.

