
Live Model Transformations Driven by
Incremental Pattern Matching

István Ráth, Gábor Bergmann, András Ökrös, and Dániel Varró

Budapest University of Technology and Economics,
Department of Measurement and Information Systems,

H-1117 Magyar tudósok krt. 2, Budapest, Hungary
bergmann.gabor@gmail.com, okrosa@gmail.com

rath@mit.bme.hu, varro@mit.bme.hu

Abstract. In the current paper, we introduce a live model transformation frame-
work, which continuously maintains a transformation context such that model
changes to source inputs can be readily identified, and their effects can be incre-
mentally propagated. Our framework builds upon an incremental pattern matcher
engine, which keeps track of matches of complex contextual constraints captured
in the form of graph patterns. As a result, complex model changes can be treated
as elementary change events. Reactions to the changes of match sets are speci-
fied by graph transformation rules with a novel transactional execution semantics
incorporating both pseudo-parallel and serializable behaviour.

1 Introduction

Model transformations play a crucial role in modern model-driven system engineering.
Tool integration based on model transformations is one of the most challenging tasks
with high practical relevance. In tool integration, a complex relationship needs to be
established and maintained between models conforming to different domains and tools.
This model synchronization problem can be formulated as to keep a model of a source
language and a model of a target language consistently synchronized while developers
constantly change the underlying source and target models. Model synchronization is
frequently captured by transformation rules. When the transformation is executed, trace
signatures are also generated to establish logical correspondence between source and
target models.

Traditionally, model transformation tools support the batch execution of transforma-
tion rules, which means that input is always processed “as a whole”, and output is al-
ways regenerated completely. However, in software engineering using multiple domain-
specific languages, models are evolving and changing continuously. In case of large and
complex models used in agile development, batch transformations may not be feasible.

Incremental model transformations address to update existing target models based
on changes in the source models (called target incrementality in [1]), and to minimize
the parts of the source model that needs to be reexamined by a transformation when
the source model is changed (source incrementality). To achieve target incrementality,
an incremental transformation approach creates “change sets” which are merged with

(a) Re-transformation (b) Live transformation

Fig. 1. Incremental transformation approaches

the existing target model instance. In order to efficiently calculate which source ele-
ment may trigger changes (source incrementality), the transformation context has to
be maintained which describes the execution state of the model transformation system
(e.g. variable values, partial matches). Depending on whether this is possible or not,
there are two main approaches to incremental transformations, as discussed in Fig. 1
(adapted from [2]):

– Systems employing re-transformations lack the capability to maintain the transfor-
mation context over multiple execution runs, thus the entire transformation has to
be re-run on the modified source models. This approach generates either new out-
put models which must be merged with existing ones, or change sets which can be
merged in-situ. As noted in [2], since the transformation context is lost, a merging
strategy has to be employed. This involves the computation of which model ele-
ments are involved in the change, and which elements should be left untouched by
the transformation. Thus, the feasibility of this approach depends heavily on the
trace information. For instance, in case of graph transformation [3], negative ap-
plication conditions (NACs) may be used to forbid the execution of a transforma-
tion rule twice on the same source element. An intelligent re-transformation based
model synchronization approach has been proposed recently for ATL in [4], which
targets bidirectionality rather than incrementality.

– In contrast, live transformations maintain the transformation context continuously
so that the changes to source models can be instantly mapped to changes in target
models. Live transformations are persistent and go through phases of execution
whenever a model change occurs. Similarly to re-transformations, the information
contained in trace signatures is used in calculating the source elements that require
re-transformation. However, as the execution state is available in the transformation
context, this recomputation can be far more efficient.

Related work in incremental transformations. In case of live transformations, chan-
ges of the source model are categorized as (i) an atomic model update consisting of an
operation (e.g. create, delete, update) and operands (model elements); or, more gener-
ally, (ii) a complex sequence (set, transaction) of such atomic operations. To execute
an incremental update, an atomic or complex model change has to be captured and
processed. For this purpose, the following approaches have been proposed in case of
declarative transformation languages:

– The Progres [5] graph transformation tool supports incremental attribute updates
to invalidate partial matchings in case of node deletion immediately. On the other
hand, new partial matchings are only lazily computed.

– The incremental model synchronization approach presented in [6] relies on vari-
ous heuristics of the correspondence structure interconnecting the source and tar-
get models using triple graph grammars[7]. Dependencies between correspondence
nodes are stored explicitly, which drives the incremental engine to undo an applied
transformation rule in case of inconsistencies. Other triple graph grammar based
approaches for model synchronization (e.g. [8]) do not address incrementality.

– In relational databases, materialized views, which explicitly store their content on
the disk, can be updated by incremental techniques like Counting and DRed algo-
rithms [9]. As reported in [10], these incremental techniques are also applicable for
views that have been defined for graph pattern matching by the database queries of
[11]. The use of non-materialized views have been discussed in [12].

– In [13], user-guided manipulation events are directly represented as model elements
in the model store, while triple graph grammars [7] are extended to event driven
grammars to determine the kind of event and the model elements affected. Change
detection is directly linked to user interface events as this approach primarily targets
(domain-specific) modeling environments. Note that this approach, does not rely
on live transformations since the transformation context is not preserved; instead,
the underlying ATOM3 [14] engine is started whenever an event from the UI is
received. The idea, however, could be used in a live transformation environment.

– [2] proposes a more general solution where fact addition and fact removal con-
stitute an elementary change. Since the underlying TefKat [15] tool uses a trans-
formation engine based on SLD resolution, a fact change may represent atomic
updates (involving a single operation) as well as more complex changes, since a
fact may encode information about multiple model elements (such as a complex
pattern describing a UML class with attributes). This approach is only applicable
to fully declarative transformation languages, since incremental updates involve the
processing and modification of the SLD resolution tree (which, in broad terms, can
be thought of as a special structure storing the whole transformation context).

Contributions of the paper. In the current paper, we present a novel approach to
incremental model transformations based on incremental graph pattern matching and
complex transaction handling. The main features of our contribution can be identified
as follows: we support (i) atomic changes as well as model changes for complex con-
straints; (ii) various style of model transformation languages including fully declarative,
partially declarative and procedural languages; and (iii) live transformations by preserv-
ing the transformation context. We discuss also how our incremental engine has been
implemented and integrated as part of the VIATRA2 model transformation framework.

2 Preliminaries

In this section, we give a motivating example for live transformations. We also provide
a brief introduction to the transformation language of the VIATRA2 framework.

2.1 Demonstrating example

In this section, we demonstrate the technicalities of our approach using Petri nets, which
are widely used to formally capture the dynamic semantics of concurrent systems due
to their easy-to-understand visual notation and the wide range of available analysis
tools. From a system modelling point of view, a Petri net model is frequently used for
correctness, dependability and performance analysis in early stages of design.

Fig. 2(a) shows a simplified metamodel for Petri nets (captured in the VPM formal-
ism [16] of VIATRA2). Petri nets are bipartite graphs, with two disjoint sets of nodes:
Places and Transitions. Places may contain an arbitrary number of Tokens. Tokens are
also modeled as objects to support visual representation. The Petri net concept can be
extended by the notions of place capacity constraints which impose a limit on the num-
ber of Tokens a Place can hold.

(a) Petri net metamodel (b) Marker metamodel for con-
straints

(c) Model instances

Fig. 2. VIATRA metamodels and model instances

In the paper, we demonstrate our approach by the incremental validation of a com-
plex dynamic modeling constraint for user editing events. In this use case, the user is
editing models using a domain-specific editor which is capable of enforcing static type
constraints so that only syntactically correct Petri net graphs can be produced. How-
ever, an advanced framework may go beyond this and provide immediate feedback if
more complex constraints, such as a capacity constraint is violated (e.g. the user tries
to assign too many tokens to a place).

In order to provide support for the editor, the modeling environment makes use
of a marker metamodel which is a special type of trace model depicted in Fig. 2(b).
A Constraint denotes a particular run-time constraint being enforced within the ed-
itor, e.g. “PlaceCapacity”. For each constraint, we explicitly mark all the (Petri net)
elements, which are required to evaluate the constraint within a given context by a
ConstraintCheck element. Each evaluation context of a Constraint is explicitly marked
by a ConstraintCheck instance (i.e. separately for each Petri net place and its respec-
tive tokens in our case). The isValid relation indicates whether the constraint is valid
currently for the context defined by the ConstraintCheck instance; the runtime envi-
ronment makes use of this relationship to indicate graphical feedback to the user. In
Fig. 2(c), place p0 contains two tokens but has a capacity of 1, thus, the associated
ConstraintCheck instance indicates that the PlaceCapacity constraint is violated in this

context. In our demonstrating example used throughout the paper, we aim at provid-
ing an incremental evaluation of the capacity constraint in all contexts in response to
elementary changes or complex transactions initiated by the user or another transfor-
mation.

2.2 Model transformations in VIATRA

The transformation language of VIATRA2 consists of several constructs that together
form an expressive language for developing both model to model transformations and
code generators. Graph patterns (GP) define constraints and conditions on models,
graph transformation (GT) [3] rules support the definition of elementary model manip-
ulations, while abstract state machine (ASM) [17] rules can be used for the description
of control structures.

Graph patterns are the atomic units of model transformations. They represent con-
ditions (or constraints) that have to be fulfilled by a part of the model space in order to
execute some manipulation steps on the model. The basic pattern body contains model
element and relationship definitions. In VIATRA2, patterns may call other patterns us-
ing the find keyword. This feature enables the reuse of existing patterns as a part of a
new (more complex) one. The semantics of this reference is similar to that of Prolog
clauses: the caller pattern can be fulfilled only if their local constructs can be matched,
and if the called (or referenced) pattern is also fulfilled. A negative application con-
dition (NAC, defined by a negative subpattern following the neg keyword) prescribes
contextual conditions for the original pattern which are forbidden in order to find a
successful match. Negative conditions can be embedded into each other in an arbitrary
depth (e.g. negations of negations).

Graph transformation (GT) [3] provides a high-level rule and pattern-based ma-
nipulation language for graph models. In VIATRA2, graph transformation rules may
be specified by using a precondition (or left-hand side – LHS) pattern determining the
applicability of the rule, and a postcondition pattern (or right-hand side – RHS) which
declaratively specifies the result model after rule application. Elements that are present
only in (the image of) the LHS are deleted, elements that are present only in the RHS
are created, and other model elements remain unchanged. Further actions can be initi-
ated by calling any ASM instructions within the action part of a GT rule, e.g. to report
debug information or to generate code.

In addition to graph transformation rules, VIATRA2 provides procedural constructs
(such as simple model operations – new, delete, update) as well as pattern and scalar
variables. Using these constructs, complex model transformations can be written.

3 Incremental pattern matching in VIATRA

Pattern matching plays a key role in the execution of VIATRA2 transformations. The
goal is to find the occurences of a graph pattern, which contains structural as well as
type constraints on model elements. In the case of incremental pattern matching, the
occurrences of a pattern are readily available at any time, and they are incrementally

updated whenever changes are made. As pattern occurrences are stored, they can be re-
trieved in constant time – excluding the linear cost induced by the size of the result set
itself –, making pattern matching a very efficient process. Besides memory consump-
tion, the drawback is that these stored result sets have to be continuously maintained,
imposing an overhead on update operations.

Our approach is based on the RETE algorithm [18], which is a well-known tech-
nique in the field of rule-based systems. This section is dedicated to giving a brief
overview on how we adapted the concepts of RETE networks to implement the rich
language features of the VIATRA2 graph transformation framework.

Tuples and Nodes. The main ideas behind the incremental pattern matcher are con-
ceptually similar to relational algebra. Information is represented by a tuple consisting
of model elements. Each node in the RETE net is associated with a (partial) pattern and
stores the set of tuples that conform to the pattern. This set of tuples is in analogy with
the relation concept of relational algebra.

The input nodes are a special class of nodes that serve as the underlying knowledge
base representing a model. There is a separate input node for each entity type (class),
containing unary tuples representing the instances that conform to the type. Similarly,
there is an input node for each relation type, containing ternary tuples with source and
target in addition to the identifier of the edge instance. Miscellaneous input nodes rep-
resent containment, generic type information, and other relationship between model
elements.

Intermediate nodes store partial matches of patterns, or in other terms, matches of
partial patterns. Finally, production nodes represent the complete pattern itself. Pro-
duction nodes also perform supplementary tasks such as filtering those elements of the
tuples that do not correspond to symbolic parameters of the pattern (in analogy with the
projection operation of relational algebra) in order to provide a more efficient storage
of models.

Joining. The key component of a RETE is the join node, created as the child of two
parent nodes, that each have an outgoing RETE edge leading to the join node.

The role of the join node can be best explained with the relational algebra analogy:
it performs a natural join on the relations represented by its parent nodes.

Figure 3(a) shows a simple pattern matcher built for the sourcePlace pattern, which
describes a Place-Transition pair connected by an out-arc, illustrating the use of join
nodes. By joining three input nodes, this sample RETE net enforces two entity type
constraints and an edge (connectivity) constraint, to find pairs of Place and Transitions
instances which fulfill the constraints described in the pattern.

Updates after model changes. The primary goal of the RETE net is to provide in-
cremental pattern matching. To achieve this, input nodes receive notifications about
changes on the model, regardless whether the model was changed programmatically
(i.e. by executing a transformation) or by user interface events.

Whenever a new entity or relation is created or deleted, the input node of the appro-
priate type will release an update token on each of its outgoing edges. To reflect type

(a) Matcher network (b) Propagation phase I. (c) Propagation phase II.

Fig. 3. RETE matcher for the sourcePlace pattern

hierarchy, input nodes also notify the input nodes corresponding to the supertype(s).
Positive update tokens reflect newly added tuples, and negative updates refer to tuples
being removed from the set.

Each RETE node is prepared to receive updates on incoming edges, assess the new
situation, determine whether and how the set of stored tuples will change, and release
update tokens of its own to signal these changes to its child nodes. This way, the effects
of an update will propagate through the network, eventually influencing the result sets
stored in production nodes.

Figure 3(b) shows how the network in Fig. 3(a) reacts on a newly inserted out-arc.
The input node for the relation type representing the arc releases an update token. The
join node receives this token, and uses an effective index structure to check whether
matching tuples (in this case: places) from the other parent node exist. If they do then
a new token is propagated on the outgoing edge for each of them, representing a new
instance of the partial pattern “place with outgoing arc”. Fig. 3(c) shows the update
reaching the second update node, which matches the new tuple against those contained
by the other parent (in this case: transitions). If matches are found, they are propagated
further to the production node.

More details of this incremental pattern matching approach can be found in [19]. It
is worth pointing out that our RETE implementation significantly extends [20], the only
existing RETE based approach in the field of graph (and model) transformation. In the
future, we plan to incorporate another incremental approach [21] based on notification
arrays to store a tree for partial matchings of a pattern.

4 Live transformations driven by incremental pattern matching

Based on our incremental pattern matching technology introduced in Sec. 3, we now
propose a novel approach to live model transformations.

4.1 Overview of the approach

Model changes. In our approach, a model change is detected by a change in the match
set of a graph pattern. The match set is defined by the subset of model elements satisfy-
ing structural and type constraints described by the pattern. Formally: a subgraph S of
the model G is an element of the match set M(P) of pattern P, if S is isomorphic to P.

Changes in the matching set can be tracked using the RETE network. A model
change occurs if the match set is expanded by a new match or a previously existing
match is lost. Since a graph pattern may contain multiple elements, a change affecting
any one of them may result in a change in the match set. The RETE-based incremental
pattern matcher keeps track of every constraint prescribed by a pattern, thus it is possible
to determine the set of constraints causing a change in the match set.

Our approach can be regarded as an extension of the fact change approach [2]. It
provides support for the detection of changes of arbitrary complexity; not only atomic
and compound model change facts (with simple and complex patterns respectively), but
also operations, or sequences of operations can be tracked using this technique (either
by representing operations directly in the model graph, or by using reference models).

Transformation context and efficient recomputation. Live transformation execution
requires the continuous maintenance of the execution context to avoid the necessity of
model merging in target models. In our approach, this context contains:

– global variables, which are persisted to enable the transformation engine to store
(global) cached values.

– pattern variables, which are maintained by the incremental pattern matching en-
gine after each atomic model manipulation operation. This means that the matches
stored in a given pattern variable are always updated and the match set of any pat-
tern can be retrieved in constant time.

As a result, the computation required to initialize and execute the incremental trans-
formation sequence after a change is very efficient, since pattern matching, the most
cost-intensive phase of the transformation, is executed instantly.

Explicit specification. In addition to targeting the incremental execution of model
synchronization transformations, our approach is intended to support a broader range of
live transformations. For this purpose, incremental transformation rules, called triggers
are explicitly specified by the transformation designer. A trigger is defined in the form
of a graph transformation rule: the precondition of its activation is defined in the form of
a graph pattern, while the reaction is formulated by arbitrary (declarative or imperative)
transformation steps.

In fact, not only tool integration, but many application scenarios can be formulated
as incremental transformations, especially, in the context of domain-specific modeling
such as (i) model execution (simulaton), where triggers may be used to execute the
dynamics semantics of a domain-specific language; (ii) constraint management, where
incremental transformations are used to check and enforce the validity of a complex
constraint; (iii) event-driven code generation, where the textual representation of ab-
stract models may be incrementally maintained as the source model changes.

4.2 Triggers

In our approach, the basic unit of incremental transformations is the trigger. The formal
representation of a trigger is based on a simplified version of the graph transformation
rule: it consists of a precondition pattern and an action part consisting of a sequence
of VIATRA2 transformation steps (including simple model manipulations as well as the
invocation of complex transformations).

@Trigger(priority =’10’, mode=’always ’, sensitivity=’rise ’)
gtrule initPlace () = {
precondition pattern pre(P) = {
Place(P);
Place.Place_Capacity(PC);
Place.capacity(Cap ,P,PC);
neg pattern placeSet(P) = {

Constraint.ConstraintCheck(CC);
Constraint.ConstraintCheck.nodeElement(NE ,CC ,P);

}
}
action {

new(Constraint.ConstraintCheck(CC));
new(Constraint.ConstraintCheck.nodeElement(NE , CC , P));

}
}

Fig. 4. Place instance initialisation

In Fig. 4, a simple trigger is shown. It is automatically fired after the user creates a
new Place and the modeling environment creates (as a complex model change involving
multiple elements) an additional Capacity and a ConstraintCheck marker element for
the new Place-Place Capacity pair. As a common technique in graph transformation
based approaches, we use a negative application condition to indicate that the action
sequence should only be fired for new pairs without a marker element.

This simple example highlights a number of extensions that constitute our addi-
tions to the VIATRA2 transformation language: the new Trigger annotation is used to
indicate that the graph transformation rule should be executed as an event-driven trans-
formation. The annotation uses the following options (specified in a Java-like syntax):

Priority (integer): Defines a precedence relation on multiple active triggers (triggers
with higher priority value will run first).

Mode (always | once): Defines whether a trigger is continuously scheduled for exe-
cution, or it is executed only once and then it becomes disabled.

Sensitivity (rise | fall | both): Rise triggers are activated whenever a new match is
encountered; fall triggers are executed when a previously existing match is lost;
both triggers execute on rises and falls as well.

4.3 Execution context

The system tracks changes changes in the match sets of patterns and executes the action
sequences in a persistently maintained execution context. This context consists of pat-

tern variables (continuously maintained by the RETE network) and persistent variables
(called ASM functions in VIATRA2; essentially global associative arrays).

// An array to cache token numbers
asmfunction numberOfTokens / 1;

@Trigger(priority =’10’, mode=’always ’, sensitivity=’rise ’)
gtrule placeAdded () = {
precondition pattern pre(CC) = {
Constraint.ConstraintCheck(CC);
Place(P);
Constraint.ConstraintCheck.nodeElement(NE_P ,CC ,P);

}
action {

// Initialize the ’numberOfTokens’ array
update numberOfTokens(P) = 0;
// calculate the initial number of tokens

forall T with find placeToken(P,T) do
update numberOfTokens(P) = numberOfTokens(P)+1;
// check the constraint’s validity
call constraintCheck(P,CC);

}
}

Listing 1.1. Invoking constraint checking in the transformation context

In Listing 1.1, the numberOfTokens array is used in the persistent context to cache
the amount of tokens assigned to a given place (the array is indexed by the Place refer-
ence). This trigger is fired after the ConstraintCheck marker element has been created
by the trigger described in Listing 4, and performs the necessary steps to set up the
cache with the appropriate value (Listing 1.2; note that some pattern definitions have
been omitted for space considerations).

rule constraintCheck(in P, in CC) = seq {
// match the PlaceCapacity element storing the value
// of P’s capacity.
choose PC with find placeCapacity(P,PC) do seq {

if (numberOfTokens(P) <= value(PC)) seq {
// delete a possible previous ’False’ marking
choose R find constraintFalse(CC ,R) do delete(R);
// create a new ’True’ marking
new ConstraintCheck.isValid(R,CC , Boolean.True);

}
else seq {

choose R with find constraintTrue(CC ,R) do delete(R);
new ConstraintCheck.isValid(R,CC , Boolean.False);

}
}

}

Listing 1.2. Command sequence to check the validity of the capacity constraint

It is important to note that pattern variables (CC, P in the precondition, and T in
patterns used in the action part) are also part of the maintained context, which makes the
execution much more efficient. The underlying RETE-based pattern matcher maintains
the matches for all involved patterns (precondition, placeToken, as well as placeCa-
pacity and constraintFalse / constraintTrue in the constraintCheck rule) incrementally,
thus the pattern matching operations (forall and choose, which pick all matches and one
match, respectively) execute instantly, without any additional graph traversal.

4.4 Complex change detection

To detect complex model changes, the transformation developer can make use of the
rise and fall triggers and some advanced VIATRA2 pattern language constructs.

Creation. In practical applications, a chain of triggers may be used to execute multiple
incremental updates. For instance, after a Token instance has been added by the user,
the system may execute a trigger similar to Listing 4 to connect the new Token to the
CapacityConstraint marker element. In reaction to that, after initPlace has reached the
commit point, the tokenAdded() trigger (Listing 1.3) is activated.
@Trigger(sensitivity=‘rise ’)
gtrule tokenAdded () = {
precondition find connectedToken(P,CC ,T) = {
find placeToken(P,T);
Constraint.ConstraintCheck(CC);
Token(T);
Constraint.ConstraintCheck.nodeElement(NE_Tok ,CC ,T);

}
action {

update numberOfTokens(P) = numberOfTokens(P) + 1;
call checkConstraint(P,CC);

}
}

Listing 1.3. Trigger to handle the addition of Tokens

The tokenAdded() trigger updates the numberOfTokens array stored in the execution
context, and initiates a constraint update which provides feedback to the user.

Deletions. To detect deletions, a trigger for the same precondition pattern as used in
Listing 1.3 can be used in fall mode. In this case, the undef constant is assigned to
the corresponding pattern variables to indicate that the model element identified by the
pattern variable is no longer existent (Listing 1.4). However, other pattern variables
(pointing to existing model elements) can be used in the action part in the usual way.
@Trigger(sensitivity=’fall ’)
gtrule tokenRemoved () = {
precondition find tokenAdded.connectedToken(P,CC ,T)
action {
// only act if token T has been lost (deleted)
if (T == undef) seq {
update numberOfTokens(P) = numberOfTokens(CC) - 1;
call checkConstraint(P,CC);

}
}

}

Listing 1.4. Handling token deletion

Attribute updates. The system also provides support for the incremental detection of
attribute changes. VIATRA2 provides a value field for all node types; in this example,
this value field of the PlaceCapacity property node is used to store the actual value of
the capacity of the connected Place.

// associative array to cache place capacity values
asmfunction capacities / 1;

@Trigger(sensitivity=’fall ’)
gtrule capacityChanged () = {
precondition pattern pre(P,PC) = {

find placeCapacity(P,PC);
// check condition to define a value constraint
check(value(PC) == capacities(PC))

}
action {

// check whether the attribute update caused the activation
if (PC!= undef && P!= undef && value(PC) != capacities(PC)) seq {
// update constraint validity
choose CC with find placeConstraint(P,CC) do call checkConstraint(P,CC);
// store new value
update capacities(PC) = value(PC);

}
}

}

Listing 1.5. Handling attribute updates

In Listing 1.5, a fall trigger is defined for changes in the capacity value (the user
may change that any time during modeling). The trigger is activated for changes in the
match set of a complex pattern involving a check condition, which is a special feature of
the VIATRA2 transformation language to define additional attribute constraints which
cannot be expressed using structural graph patterns.

The global array capacities is used to cache known capacity values; the trigger
checks whether the cause of activation was a change in the attribute value and proceeds
to update the constraint validity.

4.5 Transaction management

In order to be able to perceive changes in the match set of a pattern over a complex
model manipulation operation, such as the execution of a graph transformation rule or a
complex editing operation, the model management system has to support transactions.
A transaction is defined as a sequence of atomic model manipulation operations (e.g.
create node, edge, instance-type-supertype relation, update attribute, etc.), followed by
a commit command. The VIATRA2 framework ensures that all model manipulation
occurs within a transaction.

The operational workflow of the live transformation system is shown in Fig. 5 from
the viewpoint of transactions. After a transaction has reached its commit point, the
system evaluates the changes in the match sets of precondition patterns of triggers reg-
istered in the trigger queue. Since the RETE networks are updated after each atomic
model manipulation operation, a match set may experience transient changes while a
long transaction is running. In our approach, only the effective changes are considered;
thus, even if a new match is generated while a transaction is running, if that match is
subsequently lost, the system will not process it for triggers. This mechanism is pro-
vided by the matching set delta monitor, which computes the net changes that occured
during a transaction. After the changes have been evaluated, the execution engine pro-
cesses triggers registered in the trigger queue and selects those with a precondition ac-
tivated by the processed matching set changes, and prepares them for execution based
on the current execution mode.

Fig. 5. Overview of incremental execution

Execution modes. Action sequences of activated triggers can be executed in two modes
(Fig. 6). In the depicted scenario, we assume that there are three active triggers (T1–
3) with their action sequences (AS1–3 respectively). After a transaction, the system
encounters a new match (M(T1)–M(T3)) for each of the three triggers.

(a) Serial mode (b) Pseudo-parallel mode

(c) Iterate semantics (d) Forall semantics

Fig. 6. Execution semantics for multiple match set changes and execution modes for multiple
trigger activation

In serial mode (Fig. 6(a)), the action sequences are executed in separated transac-
tions according to the priority order. After each commit point, the system re-evaluates
all trigger conditions. In this mode, conflicts between competing triggers are eliminated
(since the checks may reveal, for instance, that M2 was invalidated while AS1 was ex-
ecuted). However, a circular activation of triggers may result in infinite loops in case of
serial execution mode.

In contrast, pseudo-parallel mode (Fig. 6(b)), action sequences are executed in a
single transaction with a common commit point. In this case, conflicts may occur, and
they need to be accounted for by the transformation designer. On the other hand, the
execution is faster than in serial mode, since no intermediate checks are performed.

A similar race condition may arise for multiple matches for a single trigger. In Fig-
ures 6(d) and 6(c), trigger T1 has been activated for matchings M1 - M3. In iterate mode,
we non-deterministically select one match, and execute its action sequence as a separate
transaction. Then, if the rest of the matches are not invalidated, their respective actions
are also executed one by one in separate transactions. In forall mode, all execution oc-
curs in a single transaction with the possibility of conflicts which may cause a run-time
error.

5 Conclusion

In the current paper, we presented a novel approach to live model transformations based
on incremental graph pattern matching and complex transaction handling. Compared to
existing incremental transformation approaches, the main added value of the current
paper is (i) to preserve full transformation context in the form of pattern matches; (ii)
to incorporate incremental reaction to complex model changes (both deletion and addi-
tion), and (iii) to provide incremental support for both declarative and imperative trans-
formations with the help of complex transaction handling mechanism. Our approach is
fully implemented and integrated to the VIATRA2 model transformation framework.

By using our live transformation engine, we carried out several case studies, mainly
in the context of domain-specific modeling languages, including (i) incremental evalu-
ation of complex constraints during user-guided model editing, (ii) discrete-event based
model simulation captured by live transformation rules, and (iii) incremental code gen-
eration from domain-specific models. These case studies indicated the high potential of
applying live transformations for different modeling problems.

References

1. K. Czarnecki and S. Helsen: Feature-based survey of model transformation approaches. IBM
Systems Journal 45(3) (2006) 621–645

2. Hearnden, D., Lawley, M., Raymond, K.: Incremental Model Transformation for the Evolu-
tion of Model-Driven Systems. In: Proc. of 9th International Conference on Model Driven
Engineering Languages and Systems (MODELS 2006). Volume 4199 of LNCS., Heidelberg,
Germany, Springer Berlin (2006) 321–335

3. Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G., eds.: Handbook on Graph Grammars
and Computing by Graph Transformation. Volume 2: Applications, Languages and Tools.
World Scientific (1999)

4. Xiong, Y., Liu, D., Hu, Z., Zhao, H., Takeichi, M., Mei, H.: Towards automatic model
synchronization from model transformations. In: ASE ’07: Proceedings of the twenty-second
IEEE/ACM international conference on Automated software engineering, New York, NY,
USA, ACM (2007) 164–173

5. Schürr, A.: Introduction to PROGRES, an attributed graph grammar based specification
language. In Nagl, M., ed.: Graph–Theoretic Concepts in Computer Science. Volume 411 of
LNCS., Berlin, Springer (1990) 151–165

6. Giese, H., Wagner, R.: Incremental model synchronization with triple graph grammars. In
Nierstrasz, O., Whittle, J., Harel, D., Reggio, G., eds.: Proc. of 9th International Conference
on Model Driven Engineering Languages and Systems, (MoDELS 2006). Volume 4199 of
LNCS., Springer (2006) 543–557

7. Schürr, A.: Specification of graph translators with triple graph grammars. Technical report,
RWTH Aachen, Fachgruppe Informatik, Germany (1994)

8. Klar, F., Königs, A., Schürr, A.: Model transformation in the large. In: ESEC-FSE ’07:
Proceedings of the the 6th joint meeting of the European software engineering conference
and the ACM SIGSOFT symposium on The foundations of software engineering, New York,
NY, USA, ACM (2007) 285–294

9. Gupta, A., Mumick, I.S., Subrahmanian, V.S.: Maintaining views incrementally. In: ACM
SIGMOD Proceedings, Washington, D.C., USA (1993) 157–166

10. Varró, G., Varró, D.: Graph transformation with incremental updates. In Heckel, R., ed.:
Proc. of the 4th Workshop on Graph Transformation and Visual Modeling Techniques (GT-
VMT 2004). Volume 109 of ENTCS., Barcelona, Spain, Elsevier (December 2004) 71–83

11. Varró, G., Friedl, K., Varró, D.: Graph transformation in relational databases. Journal of
Software and Systems Modelling 5(3) (September 2006) 313–341

12. J. Jakob, A.K., Schürr, A.: Non-materialized model view specification with triple graph
grammars. In A. Corradini, ed.: International Conference on Graph Transformations. Volume
4178 of Lecture Notes in Computer Science (LNCS)., Heidelberg, Springer Verlag (2006)
321–335

13. Guerra, E., de Lara, J.: Event-driven grammars: Relating abstract and concrete levels of
visual languages. Software and Systems Modeling 6(3) (2007) 317–347

14. de Lara, J., Vangheluwe, H.: AToM3: A tool for multi-formalism and meta-modelling. In
Kutsche, R.D., Weber, H., eds.: 5th International Conference, FASE 2002: Fundamental Ap-
proaches to Software Engineering, Grenoble, France, April 8-12, 2002, Proceedings. Volume
2306 of LNCS., Springer (2002) 174–188

15. The University of Queensland: The TefKat tool homepage http://tefkat.sourceforge.
net/ .

16. Varró, D., Pataricza, A.: VPM: A visual, precise and multilevel metamodeling framework
for describing mathematical domains and UML. Journal of Software and Systems Modeling
2(3) (October 2003) 187–210

17. Börger, E., Stärk, R.: Abstract State Machines. A method for High-Level System Design and
Analysis. Springer-Verlag (2003)

18. Forgy, C.L.: Rete: A fast algorithm for the many pattern/many object pattern match problem.
Artificial Intelligence 19(1) (September 1982) 17–37

19. Bergmann, G., Ökrös, A., Ráth, I., Varró, D., Varró, G.: Incremental pattern matching in
the VIATRA transformation system. In: GRaMoT’08, 3rd International Workshop on Graph
and Model Transformation, 30th International Conference on Software Engineering (2008)
Submitted.

20. Bunke, H., Glauser, T., Tran, T.H.: An efficient implementation of graph grammars based
on the RETE matching algorithm. In Ehrig, H., Kreowski, H.J., Rozenberg, G., eds.: Graph-
Grammars and Their Application to Computer Science. Volume 532 of Lecture Notes in
Computer Science., Springer (1990) 174–189

21. Varró, G., Varró, D., Schürr, A.: Incremental graph pattern matching: Data structures and
initial experiments. In Karsai, G., Taentzer, G., eds.: Graph and Model Transformation
(GraMoT 2006). Volume 4 of Electronic Communications of the EASST., EASST (2006)

