

Egyszerű alkalmazás készítése a LOGSYS Kintex-7 FPGA kártyára a Xilinx Vivado fejlesztői környezet használatával

2017. június 16. Verzió 1.0 http://logsys.mit.bme.hu

A dokumentum célja egy egyszerű alkalmazás elkészítésének bemutatása a LOGSYS Kintex-7 FPGA kártyára a Xilinx Vivado 2017.1 fejlesztői környezet használatával. A leírtak megértéséhez alapfokú digitális technika és Verilog HDL ismeret szükséges.

Az elkészítendő rendszer egy Knight Rider futófényt valósít meg három LED kigyújtásával, azaz három bekapcsolt szomszédos LED adott ütemben folyamatosan vándorol, a szélső helyzet elérésekor irányt váltva. Mivel az FPGA kártyán RGB LED-ek vannak, ezért a feladatot bonyolítsuk azzal, hogy minden irányváltáskor a LED-ek színe a következőre vált (1. ábra). A léptetés üteme legyen 250 ms. Szinkron rendszert valósítsunk meg, minden tároló elem a kártyán lévő 100 MHz-es oszcillátor által biztosított órajelről járjon.

1. ábra: A futófény állapotai.

A következőkben megnézzük, hogy milyen funkcionális elemek szükségesek a kívánt rendszer megvalósításához. A felsorolt elemeket tartalmazó blokkvázlat a 2. ábrán látható, ez alapján fogjuk elkészíteni a rendszer Verilog HDL kódját.

- A 4 Hz-es ütemező jelet egy számlálóval állítjuk elő, melynek 25000000 állapota kell, hogy legyen. Ehhez 25 bites számlálóra van szükség.
- A 8 darab LED-en megjelenítendő mintát egy kétirányú és engedélyezhető shiftregiszterrel állítjuk elő, amely kezdetben 11100000 bináris értéket vesz fel.
- A shiftregiszter irány kiválasztó bemenetének értékét a következő végállapot eléréséig azonos értéken kell tartani, így ide egy flip-flop szükséges. Az új irány beállítását a végállapot előtti állapotban kell kezdeményezni, hogy a végállapotban a következő ütemező jel hatására a léptetés már az ellenkező irányba történjen.
- A LED színének kiválasztása egy hárombites, egyirányú és engedélyezhető shiftregiszterrel oldható meg, amelyben egyetlen egy "1" értékű bit forog. Az engedélyezése az irányváltáskor történik.
- A LED-ek meghajtása ÉS kapukon keresztül történik, melyek segítségével a mintát tároló shiftregiszter kimenetét a szín kiválasztó shiftregiszter bitjei maszkolni tudják.

2. ábra: A megvalósítandó rendszer blokkvázlata.

A rendszer megtervezése után indítsuk el a Xilinx Vivado 2017.1 fejlesztői környezetet. A kezdőképernyőt a 3. ábra mutatja. Az új projekt létrehozásához kattintsunk a **Quick Start** alatti **Create Project** feliratra.

3. ábra: A Xilix Vivado 2017.1 fejlesztői környezet kezdőképernyője.

A projekt létrehozásakor többféle adatot is meg kell adnunk, az egyes lépéseket a 4. ábra szemlélteti.

- Az első ablakban meg kell adni a projekt nevét (pl. *KnightRider*) és az elérési útját. Ha be van jelölve a *Create project subdirectory* opció, akkor a megadott könyvtárban létrejön a projekt nevével egyező nevű alkönyvtár.
- A második ablakban kiválasztható a projekt típusa. Mivel Verilog nyelven szeretnénk leírni a rendszert, ezért válasszuk az *RTL Project* típust a listából. A *Do not specify sources at this time* opciót jelöljük be, mert nem már meglévő forrásfájlt használunk. Az új forrásfájlt később adjuk hozzá a projekthez.
- A harmadik ablakban meg kell adnunk az FPGA típusát, melyre fejlesztünk. A LOGSYS Kintex-7 FPGA kártyán egy XC7K70T-1FBG676I típusú eszköz van, ennek megfelelően a listából válasszuk ki az XC7K70TFBG676-1 elemet.
- Az utolsó ablakban kapunk egy összegzést a megadott beállításokról. A *Finish* gombra kattintva létrejön az új projekt.

New Project	New Project ×	New Project					
Project Name Enter a name for your project and specify a directory where the project data files will be stored.	Project Type Specify the type of project to create.	Default Part Choose a default Xilinx part or board for your project. This can be changed later.					
Project name: KnophRoder	STL Project You will be add sources: create blood designs in IP Megatou, paneate IP, run TRL analysis, synthesis, implementation, design panning and analysis. Ze not seed of sources at this time Dent seed of sources at this time	Select Trans Selec					
	Importer Project Create a Vacob project from a Symplety, XST or ISE Project File. Egymote Project Create a new Windo project from a predefined temptiate The Vacob project from a predefined temptiate () Cancel	Part IOP In Available LUT FigFlips Block Uits DSPa CD 9-ant/000690742 Count DGB Elements FigFlips Block Uits DSPa CD Trainscherts 9-ant/000690742 Count DGB Elements FigFlips Block Uits DSPa CD Participation Count DGB Elements FigFlips Count DGB Elements FigFlips Count DGB DGB <td< td=""><td>]</td></td<>]				

Mivel üres projektet hoztunk létre, ezért hozzá kell ahhoz adnunk egy új Verilog forrásfájlt. Ennek lépéseit az 5. ábra szemlélteti.

- A bal oldalon található *Flow Navigator* panelen kattintsunk az *Add Sources* menüpontra.
- A megjelenő ablakban válasszuk ki a második, Add or create design sources opciót.
- A következő ablakban lehetőség van meglévő forrásfájlok hozzáadására vagy új forrásfájlok létrehozására. Mivel mi az utóbbit szeretnénk, ezért kattintsunk a *Create File* gombra.
- A megjelenő ablakban nevezzük el a forrásfájlt például *knight_rider* néven. A fájl típusa legyen *Verilog* (a típusnak megfelelő kiterjesztés automatikusan hozzáadódik a fájl nevéhez), a helye pedig legyen *Local to Project*.
- A *Finish* gombra kattintva megjelenik egy ablak, ahol megadhatjuk az új Verilog modul portjait. Itt kattintsunk az *Ok* gombra, mert a portokat a forráskód szerkesztésével, manuálisan adjuk majd meg.
- Miután létrejött az új Verilog forrásfájl, annak neve megjelenik a Sources panelen a Design Sources csomópont alatt. Ide duplán kattintva tudjuk azt szerkeszteni.

5. ábra: Új forrásfájl hozzáadása a projekthez.

Mivel az elkészítendő rendszer nagyon egyszerű, így egyetlen Verilog modulban írjuk azt le. A modul fejlécében megadjuk a portokat, melyeken keresztül a modul a külvilággal érintkezik. Két egybites bemeneti portra (100 MHz-es órajel és reset jel), valamint három nyolcbites kimeneti portra (piros, zöld és kék LED-ek vezérlése) van szükség.

```
//* Knight Rider futófény.
module knight rider(
  input wire
             clk100M,
                      //100 MHz-es rendszerórajel.
  input wire
                      //Reset jel (RST nyomógomb).
             rstbt,
 output wire [7:0] led r,
                      //Piros LED-ek.
 output wire [7:0] led_g,
                      //Zöld LED-ek.
 output wire [7:0] led b
                      //Kék LED-ek.
);
```

2017. június 16. (v1.0)

A modul fejlécének megadása után leírjuk a blokkvázlatban szereplő funkcionális elemeket. Egy 25 bites, 25000000 állapottal rendelkező számláló (*clk_div*) végállapot jelzése (*clk_div_tc*) adja a 4 Hz-es ütemező jelet.

```
//* Órajel és reset jel.
wire clk = clk100M;
wire rst = rstbt;
//* A 4 Hz-es ütemező jel előállítása órajel osztással.
reg [24:0] clk div;
wire
   clk div tc = (clk div == 25'd0);
always @(posedge clk)
begin
 if (rst || clk_div_tc)
  clk div <= 25'd24999999;
 else
  clk_div <= clk_div - 25'd1;
end
```

A LED-eken megjelenített mintát a 8 bites, engedélyezhető, kétirányú **pattern_shr** shiftregiszter állítja elő. Reset hatására betöltődik az 11100000 kezdőállapot. Ha az ütemező jel engedélyezi a léptetést, akkor az aktuális mintát balra vagy jobbra léptetjük. A léptetés irányát meghatározó **dir** jel regiszter típusú, mert ennek állapotát a következő váltásig tartani kell.

```
//******
//* A megjelenítendő mintát előállító kétirányú shiftregiszter.
reg [7:0] pattern_shr = 8'b1110_0000;
       dir;
req
always @(posedge clk)
begin
  if (rst)
                                         //Reset esetén betöltjük a
    pattern_shr <= 8'b1110 0000;</pre>
                                         //kezdőállapotot.
  else
    if (clk_div_tc)
                                         //Ha a működés engedélyezett
       if (dir)
         pattern shr <= {pattern shr[6:0], 1'b0}; //balra léptetünk (dir=1)</pre>
       else
                                         //vagy
         pattern shr <= {1'b0, pattern shr[7:1]}; //jobbra léptetünk (dir=0)
end
```

A következő forráskód részlet írja le a léptetési irányt kiválasztó *dir* regiszter működését. Az irány megváltoztatásának szükségességét a *change_to_l* (balra váltás) és a *change_to_r* (jobbra váltás) jelek jelzik, hatásuk csak az ütemező jel aktív állapota esetén jut érvényre. Az 1. ábra alapján ezek előállítása egyértelmű. Reset hatására a jobbra léptetés kerül kiválasztásra.

2017. június 16. (v1.0)

dir <= 1'b0;	//jobbra léptetünk.
else	
if (clk div tc)	//Ha a működés engedélyezett
if (change to 1)	
dir <= 1'b1;	//balra módosítjuk az irányt
else	
if (change to r)	//vagy
dir $\leq 1'b\overline{0};$	//jobbra módosítjuk az irányt
end	

Az utolsó forráskód részlet a szín kiválasztó jel előállítását és a LED-ek meghajtását írja le. Az aktuális színt a 3 bites **color_shr** shiftregiszter választja ki, melyben egyetlen egy "1" értékű bitet forgatunk, ha a léptetési irány megváltozik. Reset hatására a piros szín kerül kiválasztásra. A LED-ekre menő mintát ÉS művelettel maszkolja a szín kiválasztó shiftregiszter egy-egy bitje.

```
//* A színt kiválasztó shiftregiszter.
reg [2:0] color shr = 3'b001;
always @(posedge clk)
begin
  if (rst)
                                    //Reset esetén a piros
    color shr <= 3'b001;</pre>
                                    //színt választjuk ki.
  else
   if (clk div tc && (change to l || change to r)) //Irányváltás esetén
      color shr <= {color shr[1:0], color shr[2]}; //szint is valtunk.</pre>
end
//* A LED-ek meghajtása.
assign led_r = pattern_shr & {8{color_shr[0]}}; //Piros LED-ek.
                                   //Zöld LED-ek.
assign led_g = pattern_shr & {8{color_shr[1]}};
assign led_b = pattern_shr & {8{color_shr[2]}};
                                    //Kék LED-ek.
endmodule
```

A forráskód begépelése után mentsük el a forrásfájlt, majd futtassuk le a szintézist a *Flow Navigator* panelen a *Run Synthesis* menüpontra kattintva. Az esetleges hibákat javítsuk ki. Ha a szintézis hiba nélkül lefutott, akkor a felugró ablakban válasszuk ki az *Open Synthesized Design* opciót a szintetizált terv megnyitásához.

A Verilog forráskód nem tartalmazza azt az információt, hogy a modul portjai mely FPGA lábakkal kerüljenek összeköttetésbe. Ezt az *I/O ports* ablakban tudjuk megadni (6. ábra), amely a *Window* menü *I/O Ports* menüpontjára kattintva jeleníthető meg. A felhasznált perifériák bekötését a kártya felhasználói útmutatója tartalmazza vagy ez leolvasható a kapcsolási rajzról is. A perifériák 3,3 V-ról működnek, ennek megfelelően mindegyik I/O porthoz LVCMOS33 I/O szabványt állítsunk be.

- 100 MHz-es oszcillátor: D23 I/O láb
- RST nyomógomb: L23 I/O láb
- Piros LED-ek: LD0-tól LD7-ig rendre az E16, E17, F19, C14, D15, C16, D18 és C18 I/O lábak
- Zöld LED-ek: LD0-tól LD7-ig rendre a G17, E18, G19, D14, D16, C17, D19 és C19 I/O lábak
- Kék LED-ek: LD0-tól LD7-ig rendre az F17, F18, F20, B15, B16, B17, B19 és D20 I/O lábak

Tcl Console Messages Log Reports Design Runs Debug I/O Ports x															
Q ≍ ≑ 🛋 + 14															
Name	Direction	Neg Diff Pair	Packag	e Pin	Fixed	Bank	I/O Std		Vcco	Vref	Drive Strength	Slew Type	Pull Type	Off-Chip Termination	IN_TERM
- led_r[4]	OUT		D15	~	✓	15	LVCMOS33*	*	3.300		12 👻	SLOW *	NONE 🛩	FP_VTT_50 *	
- 4 w w w w w w w w w w w w w w w w w w	OUT		C14	~	✓	16	LVCMOS33*	*	3.300		12 👻	SLOW *	NONE 🛩	FP_VTT_50 *	
✓ led_r[2]	OUT		F19	~	\checkmark	15	LVCMOS33*	•	3.300		12 👻	SLOW *	NONE 🛩	FP_VTT_50 *	
- led_r[1]	OUT		E17	~	✓	15	LVCMOS33*	*	3.300		12 👻	SLOW *	NONE 🗸	FP_VTT_50 *	
- led_r[0]	OUT		E16	~	✓	15	LVCMOS33*		3.300		12 👻	SLOW *	NONE 🛩	FP_VTT_50 *	
 Scalar ports (2) 															
clk100M	IN		D23	~	1	14	LVCMOS33*	•	3.300				NONE 🛩	NONE *	
In a state of the state of	IN		L23	×	✓	14	LVCMOS33*	•	3.300				NONE 🛩	NONE 👻	

6. ábra: Az I/O portok beállításai.

Miután az I/O portok beállításaival végeztünk, mentsük el az ezekre vonatkozó megkötéseket például *knight_rider* néven (az XDC kiterjesztés automatikusan hozzáadódik a névhez). A létrejött XDC fájl megjelenik a *Sources* panelen a *Constraints* csomópont alatt. A korábban leírt módon ismét futtassuk le a szintézist, majd ezután az implementációt és a konfigurációs fájl generálását az egyes fázisok végeztével felugró ablakban a *Run Implementation* és a *Generate Bitstream* opciók kiválasztásával. Amennyiben elrontottunk valamit és hibaüzenetet kapunk, akkor javítsuk ki a jelzett hibát.

Az FPGA konfigurációs fájl generálása után a felugró ablakban válasszuk ki az **Open Hardware Manager** opciót. A **Hardware Manager** (7. ábra) biztosít lehetőséget az FPGA eszköz felprogramozására. Miután megnyílt, csatlakoztassuk a kártyát USB porton keresztül a számítógéphez és kattintsunk az **Open target** feliratra, majd a megjelenő menüben válasszuk ki az **Auto Connect** menüpontot. Ekkor megtörténik a kártyán lévő eszköz azonosítása és elérhetővé válik annak felprogramozása a **Program device** feliratra kattintva. A megjelenő ablakban a konfigurációs fájl neve már megfelelően ki van töltve, itt csak kattintsunk a **Program** gombra.

Image: Content Auto Connect der.v Image: Content Image: Content<	HARDWARE MANAGER - unconnected		HARDWARE MANAGER - localhost/xilinx_	tcf/Digilent/210319754	4849A				
Hardware Auto Connect der.v Q Z 2 2 2000 Available Targets on Server Image: Connected conne	No hardware target is open Open targe	et	There are no debug cores. Program device Refresh device						
Open New Target else if (clk_div if (chan 66 Mame Status 23 reg [24: 24 vire 65 if (chan 66 dir < 67 else if (cl dir < 67 else vire 20 reg [24: 24 vire 25 24 vire 25 26 else vire 26 else vire 26 else vire 27 begin 28 else if (rs 29 i (rs 29 i (rs 29 i (rs 29 i (rs 30 else 31 el	Hardware	Auto Connect Recent Targets Available Targets on Server	Hardware Q <u>∓</u> ⊕ <i>β</i> ▶ ≫	? _ 0 6 ×	knight_rider.v				
No content 69 dii Content 100 perturbation 28 110 perturbation 28 110 perturbation 28 110 perturbation 29 110 perturbation 20 110 perturbation 29 110 perturbation 20 110 perturbation 20 110 perturbation 20 110 perturbation 20 110 perturbation 210 pertu		Open New Target	Name ✓ il localhost (1) ✓ il # xilinx_td/Digilent/21031975- ✓ il x x78701.0.(1)	Status Connected 48 Open	23 reg [24:0] 24 wire 25 26 ⊂ always @(po 27 ⊂ begin				
	No content	69 = di 70 = end 71 : 72 = //**********************************	XADC (System Monitor)		28 → if (rst 29 · clk_d 30 · else 31 ← clk_d 32 ← end 33 · 34 ⊖ //*******				

7. ábra: A Hardware Manager.

Az FPGA sikeres felprogramozását a kártyán lévő zöld DONE LED kigyulladása jelzi és az RGB LED-eken megjelenik a futófény.