
© Copyright 2018 Xilinx

Improving Area and

Resources

© Copyright 2018 Xilinx

Objectives

˃ After completing this module, you will be able to:

Describe how arbitrary precision data types can reduce resource utilization

List various area optimization techniques

List means by which resource utilization can be reduced

Improving Area and Resources 21- 2

Outline

˃Optimizing Resource Utilization

˃Reducing Area Usage

˃Summary

© Copyright 2018 Xilinx

Review: Control Scheduling & Binding

˃ Scheduling & Binding

Scheduling and Binding are the processes at the heart of HLS

˃ Binding configuration

Can be used to minimize the number of operations

˃ The allocation directive

Can be used to limit the number of operation in scheduling & binding stages

˃ The resource directive

Can be used to specify which cores are to be used during binding
Improving Area and Resources 21- 4

© Copyright 2018 Xilinx

Configuring Binding

˃ Binding is controlled via a configuration

command

The effort levels determine how much time is
spent trying to map many operators onto fewer
cores

As with all effort levels, they are worth using if you
can see the design close to what is required

‒ Else the tool will spend time exploring for
possibilities

‒ And simply increase run time

‒ Use efforts judiciously

˃ Binding can be configured to minimize

specific operators

Can be used to direct Vivado HLS to synthesize
with the minimum number of operations

The configuration command overrides muxing
costs and can be used to force sharing

‒ Works on all scopes in a design

Improving Area and Resources 21- 5

Operators which can be minimized and passed

as arguments by listing in the min_op field
• add - Addition

• sub - Subtraction

• mul - Multiplication

• icmp - Integer Compare

• sdiv - Signed Division

• udiv - Unsigned Division

• srem - Signed Remainder

• urem - Unsigned Remainder

• lshr - Logical Shift-Right

• ashr - Arithmetic Shift-Right

• shl - Shift-Left

© Copyright 2018 Xilinx

Allocation: Limit the Numbers

˃ Allocation directive limits different types

Type: Operation

‒ The instances are the operators

‒ Add, mul, urem, etc.

Type: Core

‒ The instances are the cores

‒ Adder, Addsub, PipeMult2s, etc

Type: Functions

‒ The functions in the code

‒ Discussed in more detail later

˃ Allocations are defined for a scope

Like all directives, allocations are set for the scope they are applied in

‒ If the directive is applied to a function, loop or region, it does not include
objects outside that scope

Improving Area and Resources 21- 6

Operators and Cores are listed in the Vivado HLS Library Guide

21- 6

© Copyright 2018 Xilinx

Additional Control: Specify Resources

˃ User control of Resources

The resource directive gives user control over the specific resource (core) used to implement
operations

‒ Select the scope & right-click to apply the directive

‒ Select “core” for a list of resources

‒ Specify the variable

˃ Multiple line coding caveat

If multiple operations occur on a single line,
a temporary variable is required to isolate the specific operation

Improving Area and Resources 21- 7

In this example, “data” is implemented with a

2-stage pipelined multiplier

a=b*c*d

data= c*d;

a = b*data;

© Copyright 2018 Xilinx

Reducing Area Usage

© Copyright 2018 Xilinx

Improving Area/Resource Utilization

˃ Control the number of elements

Directives can be used to control scheduling and binding

˃ Control the design hierarchy

Like RTL synthesis, removing the hierarchy can help optimize across function and loop
boundaries

‒ Functions can be inlined

‒ Loops can be unrolled

˃ Array implementation

Vivado HLS provides directives for combining memories

‒ Allowing a single large memory to be used instead of multiple smaller memories

˃ Bit-width optimization

Arbitrary precision types ensure correct operator sizing

Improving Area and Resources 21- 9

© Copyright 2018 Xilinx

Review: Functions & RTL Hierarchy

˃ Each function is translated into an RTL block

Verilog module, VHDL entity

Improving Area and Resources 21- 10
21- 10

void A() { ..body A..}

void B() { ..body B..}

void C() {

B();

}

void D() {

B();

}

void foo_top() {

A(…);

C(…);

D(…)

}

foo_top

A

C
B

D
B

Source Code RTL hierarchy

my_code.c

Functions can be inlined – the hierarchy removed & the

function dissolved into the surrounding function

© Copyright 2018 Xilinx

Controlling Inlining

˃ Vivado HLS performs some inlining automatically

This is performed on small logic functions if Vivado HLS determines area or performance will
benefit

˃ User Control

Functions can be specifically inlined

‒ The function itself is inlined

Optionally recursively down the hierarchy

Optionally everything within a region can be inlined

‒ Everything named region or a function or a loop

Optionally inlining can be explicitly prevented

‒ Turn inlining off

˃ Inlining functions allows for greater optimization

Like ungrouping RTL hierarchies: optimization across boundaries

Like ungrouping RTL hierarchies it can result in lots of operations & impact run time

Improving Area and Resources 21- 11
21- 11

© Copyright 2018 Xilinx

Function Inlining

˃ Inlining can be used to remove function hierarchy

Improving Area and Resources 21- 12
21- 12

sumsub_func

sumsub_func

shift_func

A

+ -

B

+ -

>>2>>1

add_sub_pass

int sumsub_func (int *in1, int *in2, int *outSum, int *outSub) {

*outSum = *in1 + *in2;

*outSub = *in1 - *in2;

}

int shift_func (int *in1, int *in2, int *outA, int *outB) {

*outA = *in1 >> 1;

*outB = *in2 >> 2;

}

void add_sub_pass(int A, int B, int *C, int *D) {

int apb, amb;

int a2, b2;

sumsub_func(&A,&B,&apb,&amb);

sumsub_func(&apb,&amb,&a2,&b2);

shift_func(&a2,&b2,C,D);

}

add_sub_pass

A B

A B>>1

Zero Area

Inlining allows optimization to be performed

across function hierarchies

No Inlining Inlining

2 Adders

2 Subtractors

A+B A-B

Like RTL ungrouping, too much inlining can

create a lot of logic and slow runtime

A+B

A-B

2A

A+B

A-B

2B

+ -

A B>>1

© Copyright 2018 Xilinx

Inline and Allocation: Shape the Hierarchy

Improving Area and Resources 21- 13

One RTL block is reused for both

instances of function foo

Easy to Share

Function foo is not within the immediate

scope of foo_top

Cannot be shared

Inlining brings foo into function foo_top

where it can be shared

Controlling Sharing

21- 13

© Copyright 2018 Xilinx

Loops

˃ By default, loops are rolled

Each C loop iteration  Implemented in the same state

Each C loop iteration  Implemented with same resources

˃ For Area optimization

Improving Area and Resources 21- 14

Keeping loops rolled maximizes sharing across loop iterations: each iteration of the

loop uses the same hardware resources

21- 14

void foo_top (…) {
...
Add: for (i=3;i>=0;i--) {

b = a[i] + b;
...
}

foo_top

+
Synthesis

N

a[N]
b

© Copyright 2018 Xilinx

Loop Merging & Flattening

˃ Loop merging & flattening can remove the redundant computation among multiple

(related) loops

Improving area (and sometimes performance)

˃ Allows Vivado HLS to perform optimizations

Optimization cannot occur across loop boundaries

Improving Area and Resources 21- 15

Removes A[i], any address logic and any potential

memory accesses

21- 15

My_Region: {

#pragma HLS merge loop

for (i = 0; i < N; ++i)

A[i] = B[i] + 1;

for (i = 0; i < N; ++i)

C[i] = A[i] / 2;

}

for (i = 0; i < N; ++i) {

A[i] = B[i] + 1;

C[i] = A[i] / 2;

}
Merge

Effective code after compiler

transformation

for (i = 0; i < N; ++i)

C[i] = (B[i] + 1) / 2;

© Copyright 2018 Xilinx

Mapping Arrays

˃ The arrays in the C model may not be ideal for the available RAMs
The code may have many small arrays

The array may not utilize the RAMs very well

˃ Array Mapping
Mapping combines smaller arrays into larger arrays

‒ Allows arrays to be reconfigured without code edits

Specify the array variable to be mapped

Give all arrays to be combined the same instance name

˃ Vivado HLS provides options as to the type of mapping
Combine the arrays without impacting performance

‒ Vertical & Horizontal mapping

˃ Global Arrays
When a global array is mapped all arrays involved are promoted to global

When arrays are in different functions, the target becomes global

˃ Arrays which are function arguments
All must be part of the same function interface

Improving Area and Resources 21- 16
21- 16

© Copyright 2018 Xilinx

Horizontal Mapping

˃ Horizontal Mapping

Combines multiple arrays into longer (horizontal) array

Optionally allows the arrays to be offset

‒ The default is to concatenate after the last element

‒ The first array specified (in GUI or Tcl script) starts at location zero

Improving Area and Resources 21- 17
21- 17

© Copyright 2018 Xilinx

Vertical Mapping

˃ Vertical Mapping

Combines multiple arrays in to an array with more bits

The first array specified (in Tcl or GUI) starts at the LSB

˃ Vertical Mapping for performance

Creates RAMs with wide words  Parallel accesses

Improving Area and Resources 21- 18

© Copyright 2018 Xilinx

Arbitrary Precision Integers

˃ C and C++ have standard types created on the 8-bit boundary

char (8-bit), short (16-bit), int (32-bit), long long (64-bit)

‒ Also provides stdint.h (for C), and stdint.h and cstdint (for C++)

‒ Types: int8_t, uint16_t, uint32_t, int_64_t etc.

They result in hardware which is not bit-accurate and can give sub-standard QoR

˃ Vivado HLS provides bit-accurate types in both C and C++

Plus SystemC types can be used in C++

Allow any arbitrary bit-width to be specified

Will simulate with bit-accuracy

Improving Area and Resources 21- 19
21- 19

© Copyright 2018 Xilinx

Why are Arbitrary Precision types Needed?

˃ Code using native C int type

˃ However, if the inputs will only have a max range of 8-bit

Arbitrary precision data-types should be used

It will result in smaller & faster hardware with full precision

Improving Area and Resources 21- 20
21- 20

© Copyright 2018 Xilinx

Summary

© Copyright 2018 Xilinx

Summary

˃ Resource utilization can be reduced using allocation and binding controls

˃ Arbitrary precision data types help controlling both the area and resource
utilization

˃ The design structure can be controlled by
Inlining functions: direct impact on RTL hierarchy & optimization possibilities

Loops: direct impact on reuse of resources

Arrays: direct impact on the RAM

˃ Major area optimization techniques
Minimize bit widths

Map smaller arrays into larger arrays
‒ Make better use of existing RAMs

Control loop hierarchy

Control function call hierarchy

Control the number of operators and cores

Improving Area and Resources 21- 22

