Improving Area and
Resources

XILINX.

© Copyright 2018 Xilinx

'Objectives

> After completing this module, you will be able to:

>> Describe how arbitrary precision data types can reduce resource utilization
>> List various area optimization techniques
>> List means by which resource utilization can be reduced

Improving Area and Resources 21- 2
© Copyright 2018 Xilinx 8 XI LINX

Optimizing Resource Utilization
Reducing Area Usage

Summary

XILINX.

'Review: Control Scheduling & Binding

> Scheduling & Binding
>> Scheduling and Binding are the processes at the heart of HLS

i Desiin Source I f_lLTel‘_‘:‘b“rg'r;gVJ S
v /4
- |
> Binding configuration

>> Can be used to minimize the number of operations

> The allocation directive
>> Can be used to limit the number of operation in scheduling & binding stages

> The resource directive

>> Can be used to specify which cores are to be used during binding

Improving Area and Resources 21-4
© Copyright 2018 Xilinx 8 XI LINX

Configuring Binding

> Binding is controlled via a configuration
command

>> The effort levels determine how much time is
spent trying to map many operators onto fewer
cores

>> As with all effort levels, they are worth using if you
can see the design close to what is required

— Else the tool will spend time exploring for
possibilities

— And simply increase run time

- Use efforts judiciously

> Binding can be configured to minimize
specific operators

>> Can be used to direct Vivado HLS to synthesize
with the minimum number of operations

>> The configuration command overrides muxing
costs and can be used to force sharing

- Works on all scopes in a design

Improving Area and Resources 21-5
© Copyright 2018 Xilinx

Add Command

Command:

|config_bind v|

Parameters

effort | medium ~

. high
min_op _
low

Operators which can be minimized and passed
as arguments by listing in the min_op field
* add - Addition

* sub - Subtraction

* mul - Multiplication

* icmp - Integer Compare

* sdiv - Signed Division

* udiv - Unsigned Division

* srem - Signed Remainder

* urem - Unsigned Remainder

* Ishr - Logical Shift-Right

« ashr - Arithmetic Shift-Right

* shl - Shift-Left

& XILINX

'Allocation: Limit the Numbers

o TAdatom '+ | Vivado HLS Directive Editor
a ition
. sub [Subtraction] Dhrective
> Allocation directive limits different types ol (Mcation ol .
5 Type Operatlon icmp [Integer Compare]
) sdiv [Signed Division] Destination
— The instances are the operators udiv [Unsigned Division] () Source File
_ Add mUI urem. etc srem [Signed Remainder (Modulus operator)] (®) Directive File
! ! ! ' urem [Unsigned Remainder (Modulus operator)] _
>> Type: Core Ishr [Logical Shift-Right] E LTS
. ashr [Arithmetic Shift-Right] instances (required]:
— The instances are the cores shl [Shift-Left]
— Adder, Addsub, PipeMult2s, etc SofmEel | |
55 Type Functlons type (optional): function w
core
— The functions in the code M
operation

— Discussed in more detalil later

> Allocations are defined for a Scope Operators and Cores are listed in the Vivado HLS Library Guide

>> Like all directives, allocations are set for the scope they are applied in

— If the directive is applied to a function, loop or region, it does not include
objects outside that scope

improving Area and Resources 21- 6
© Copyright 2018 Xilinx 8 XI LINX

'Additional Control: Specify Resources

> User control of Resources
>> The resource directive gives user control over the specific resource (core) used to |mplement

operatlons | Vnado HLS coreselection i o x|
— Select the scope & right-click to apply the directive [[[]]] "] et z
— Select “core” for a list of resources kst 55 (o g:sé"i!ii.le
RAM_1P [storage] Directive File
I 1 RAM_IP_BRAM [storage] Options
- SpeCIfy the Varlable ﬁmig_{\j;l:::[stnraga] e

RAM_2P_BRAM [storage]

core (required):
RAM_2P_LUTRAM [storage]
RAM_S2P_BRAM [storage]
RAM_S2P_LUTRAM [storage] =

In thlS example, ndatau iS implemented Wlth a RAM_T2P_BRAM [storage] /
. . .. ROM_1P [storage]
2'Stage plpellned mUItlleer ROM_W_BRAr\ng[stmage]
ROM_1P_LUTRAM [storage]

ROM_2P [storage]
ROM_2P_BRAM [storage]
ROM_2P_LUTRAM [storage]

> Multiple line coding caveat o e e
>> |f multiple operations occur on a single line, ' _
a temporary variable is required to isolate the specific operation .- et L

a=b*c*d

4

B —

data= c*d;
a = b*data;

Improving Area and Resources 21-7
© Copyright 2018 Xilinx 8 XI LINX

Reducing Area Usage

NN
s

27 XILINX

© Copyright 2018 Xilinx

'Improving Area/Resource Utilization

> Control the number of elements
>> Directives can be used to control scheduling and binding

> Control the design hierarchy

>> Like RTL synthesis, removing the hierarchy can help optimize across function and loop
boundaries

— Functions can be inlined
— Loops can be unrolled

> Array implementation
>> Vivado HLS provides directives for combining memories

— Allowing a single large memory to be used instead of multiple smaller memories
> Bit-width optimization
>> Arbitrary precision types ensure correct operator sizing

Improving Area and Resources 21-9
© Copyright 2018 Xilinx 8 XI LINX

'Review: Functions & RTL Hierarchy

> Each function is translated into an RTL block
>> Verilog module, VHDL entity

Source Code RTL hierarchy

void A() { ..body A..}
void B() { ..body B..}

void C() {
BO:

}

void D() {
B():;

}

void foo_top() {
A(...);
C(...);

,

Functions can be inlined — the hierarchy removed & the
function dissolved into the surrounding function

improving Area and Resources 21- 10
© Copyright 2018 Xilinx 8 XI LINX

'Controlling Inlining

> Vivado HLS performs some inlining automatically

>> This is performed on small logic functions if Vivado HLS determines area or performance will

benefit

> User Control

>> Functions can be specifically inlined
— The function itself is inlined

>> Optionally recursively down the hierarchy

>> Optionally everything within a region can be inlined
— Everything named region or a function or a loop

>> Optionally inlining can be explicitly prevented
— Turn inlining off

> Inlining functions allows for greater optimization
>> Like ungrouping RTL hierarchies: optimization across boundaries
>> Like ungrouping RTL hierarchies it can result in lots of operations

improving Area and Resources 21-11
© Copyright 2018 Xilinx

+ | Vivado HLS Directive Editor

Directive

IMLIME

Destination

() Source File
(® Directive File

Options
region (optional):]

recursive (optional):]

off (optional):]

& impact run time

& XILINX

'Function Inlining

> Inlining can be used to remove function hierarchy

No Inlining int sumsub_func (int *in1, int *in2, int *outSum, int *outSub) { Inlini ng
*outSum = *inl + *in2;
*outSub = *inl - *in2;

}

int shift_func (int *inl, int *in2, int *outA, int *outB) {
*outA = *inl >> 1;
*outB = *in2 >> 2;

}

void add_sub_pass(int A, int B, int *C, int *D) {

int apb, amb;
int a2, b2; | Zero Area I—

sumsub_func(&A,&B,&apb,&amb);
sumsub_func(&apb,&amb,&a2,&b2);
shift_func(&a2,&b2,C,D);

}
2 Adders Inlining allows optimization to be performed
2 Subtractors across function hierarchies)
Like RTL ungrouping, too much inlining can
create a lot of logic and slow runtime
improving Area and Resources 21-12 { X”_lNX

© Copyright 2018 Xilinx

Inline and Allocation: Shape the Hierarchy

Easy to Share

void foo() {

}

void foo_top() {
foo(...);
fool...).

set directive_allocation -limit 1
-type function foo_top foo

Cannot be shared Controlling Sharing

void dummy1() {
foo();

}
void dummy2() {
foo();

1

void foo_top(){
dummy1(...);
dummy2(._.); set_directive_allocation -limit 1

-type functionfoo_top foo

set_directive inline dummy 1
set_directive_inline dummy2

set_directive_allocation -limit 1
-type function foo_top foo

One RTL block is reused for both Function foo is not within the immediate Inlining brings foo into function foo_top
instances of function foo scope of foo_top where it can be shared

improving Area and Resources 21- 13

© Copyright 2018 Xilinx

& XILINX

'Loops

> By default, loops are rolled
>> Each C loop iteration = Implemented in the same state
>> Each C loop iteration = Implemented with same resources

void foo_top (..) {

Add: for (i=3;i»>=@;i--) {
b = a[i] + b;

> For Area optimization

Keeping loops rolled maximizes sharing across loop iterations: each iteration of the
loop uses the same hardware resources

improving Area and Resources 21- 14
© Copyright 2018 Xilinx 8 XI LINX

'Loop Merging & Flattening

> Loop merging & flattening can remove the redundant computation among multiple
(related) loops
>> |mproving area (and sometimes performance)

My_Region: {
#pragma HLS merge loop
)) _ for (i=0;i<N; ++i){
for (i = 0; i < N; ++i) Alil = B[i] + 1;
A[i] = B[i] + 1; Cli] =AJ[i]/ 2;
f i=0;i<N;++i }] .
> (é:[i] = IA[i] /2; ' Effective code after compiler
transformation

}

> Allows Vivado HLS to perform optimizations
>> Optimization cannot occur across loop boundaries

for (i=0;i < N; ++i) Removes AJi], any address logic and any potential
C[i] = (B[i] + 1)/ 2; memory accesses
improving Area and Resources 21- 15 £ XILINX

© Copyright 2018 Xilinx

'I\/Iapping Arrays

> The arrays in the C model may not be ideal for the available RAMs
>> The code may have many small arrays

>> The array may not utilize the RAMs very well £1] Yivado HLS Divective Editor x
Directive
> Array Mapplng ARRAY_MAP w
>> Mapping combines smaller arrays into larger arrays Destination
— Allows arrays to be reconfigured without code edits O Source File
>> Specify the array variable to be mapped @ Directive File
>> Give all arrays to be combined the same instance name Options

variable (required): | |

> Vivado HLS provides options as to the type of mapping
>> Combine the arrays without impacting performance
- Vertical & Horizontal mapping mode [optional): [-

instance (ocptional): | |

offset (optional): wertical

> Global Arrays
>> When a global array is mapped all arrays involved are promoted to global
>> When arrays are in different functions, the target becomes global

> Arrays which are function arguments
>> All must be part of the same function interface

improving Area and Resources 21- 16
© Copyright 2018 Xilinx 8 XI LINX

'Horizontal Mapping

> Horizontal Mapping
>> Combines multiple arrays into longer (horizontal) array — |
00_top

>> Optionally allows the arrays to be offset RTL View
— The default is to concatenate after the last element

array1[M] ksl il) il el
array2[N] kil M B i s

-

Longer array (horizontal expansion)
with more elements

array3[N+2+M] Kl B i i i o | oz I s s
>

- Offset of M+ 1
Optionally appl
P an off::e’:} ind from the start

- The first array specified (in GUI or Tcl script) starts at location zero

improving Area and Resources 21- 17
© Copyright 2018 Xilinx 8 XI I_INX

'Vertical Mapping

> Vertical Mapping
>> Combines multiple arrays in to an array with more bits

oo)))

MSB
N E“EELB

>> The first array specified (in Tcl or GUI) starts at the LSB

Vertical expansion
with more bits

> Vertical Mapping for performance
>> Creates RAMs with wide words =» Parallel accesses

Improving Area and Resources 21- 18
© Copyright 2018 Xilinx 8 XI I_INX

'Arbitrary Precision Integers

> C and C++ have standard types created on the 8-bit boundary
>> char (8-bit), short (16-bit), int (32-bit), long long (64-bit)
— Also provides stdint.h (for C), and stdint.h and cstdint (for C++)
— Types: int8_t, uintl6 t, uint32_t, int_ 64 t etc.
>> They result in hardware which is not bit-accurate and can give sub-standard QoR

> Vivado HLS provides bit-accurate types in both C and C++
>> Plus SystemC types can be used in C++
>> Allow any arbitrary bit-width to be specified
>> Will simulate with bit-accuracy

#include ap_cint.h ~ade ¢ #include ap_inth L el e

void foo_top (...) { void foo_top (...) {
int1 vari; Il 1-bit ap_int<1> vari; 11 1-bit
uinti variu; Il 1-bit unsigned ap_uint<1> variu; I/ 1-bit unsigned
int2 var2; Il 2-bit ap_int<2> var2; 11 2-bit
int1024 vari024: /1 1024-bit ap_int<1024> var1024; 111024-bit
uint1024 var1024; I/ 1024-bit unsigned ap_int<1024> var1024u; 1/ 1024-bit unsigned

improving Area and Resources 21- 19
Proving & XILINX.

© Copyright 2018 Xilinx

'Why are Arbitrary Precision types Needed?

> Code using native Cint type

int foo_fop(int a, int b, int c)
{ -
int sum, mult; 32_blt Add & M UIt return
sum=a+b;
mult=sum®c;
return mult;

}

R

> However, if the inputs will only have a max range of 8-bit
>> Arbitrary precision data-types should be used

int17 foo_top(int8 a, int8 b, int8 c)

S —
G _ Synthesis 3 S-bitAdd, T7-bit Mult™ " K8
int17 mult

sum=a+h;

mult=sum®c;
H

>> [t will result in smaller & faster hardware with full precision

improving Area and Resources 21- 20
© Copyright 2018 Xilinx 8 XI I_INX

Summary

27 XILINX

'Summary

> Resource utilization can be reduced using allocation and binding controls

> Arbitrary precision data types help controlling both the area and resource
utilization

> The design structure can be controlled by
>> |nlining functions: direct impact on RTL hierarchy & optimization possibilities
>> Loops: direct impact on reuse of resources
>> Arrays: direct impact on the RAM

> Major area optimization techniques
>> Minimize bit widths
Map smaller arrays into larger arrays
— Make better use of existing RAMs
Control loop hierarchy
Control function call hierarchy
Control the number of operators and cores

>

v

>

v

>

v

>

v

Improving Area and Resources 21- 22
© Copyright 2018 Xilinx 8 XI LINX

