
© Copyright 2018 Xilinx

Creating Processor System

© Copyright 2018 Xilinx

Objectives

˃ After completing this module, you will be able to:

Describe embedded system development flow in Zynq

List the steps involved in creating hardware accelerator

State how hardware accelerator created in Vivado HLS is used in Vivado Design Suite

Creating Processor System 24- 2

© Copyright 2018 Xilinx

Outline

˃Embedded System Design in Zynq using IP Integrator

˃Creating IP-XACT Hardware Accelerator

˃ Integrating the IP-XACT Hardware Accelerator in AXI System

˃Summary

© Copyright 2018 Xilinx

Embedded Design Architecture in Zynq

˃ Embedded design in Zynq is based on:

Processor and peripherals

‒ Dual ARM® Cortex™ -A9 processors of Zynq-7000 SoC

‒ AXI interconnect

‒ AXI component peripherals

‒ Reset, clocking, debug ports

Software platform for processing system

‒ Standalone OS

‒ C language support

‒ Processor services

‒ C drivers for hardware

User application

‒ Interrupt service routines (optional)

Creating Processor System 24- 4

© Copyright 2018 Xilinx

The PS and the PL

˃ The Zynq-7000 SoC architecture consists of two major sections
PS: Processing system

‒ Single/Dual ARM Cortex-A9 processor based (Single core versions available)

‒ Multiple peripherals

‒ Hard silicon core

PL: Programmable logic

‒ Uses the same 7 series programmable logic

Creating Processor System 24- 5

© Copyright 2018 Xilinx

Vivado

˃ What are Vivado, IP Integrator and SDK?

Vivado is the tool suite for Xilinx FPGA design and includes capability for embedded system

design

‒ IP Integrator, is part of Vivado and allows block level design of the hardware part of an Embedded

system

‒ Integrated into Vivado

‒ Vivado includes all the tools, IP, and documentation that are required for designing systems with the

Zynq-7000 SoC hard core and/or Xilinx MicroBlaze soft core processor

‒ Vivado + IPI replaces ISE/EDK

SDK is an Eclipse-based software design environment

‒ Enables the integration of hardware and software components

‒ Links from Vivado

˃ Vivado is the overall project manager and is used for developing non-embedded

hardware and instantiating embedded systems

Vivado/IP Integrator flow is recommended for developing Zynq embedded systems

Creating Processor System 24- 6

© Copyright 2018 Xilinx

Embedded System Tools: Hardware

˃ Hardware development tools

IP Integrator

IP Packager

Hardware netlist generation

Simulation model generation

Hardware debugging using Vivado analyzer cores

Creating Processor System 24- 7

© Copyright 2018 Xilinx

Embedded System Tools: Software

˃ Eclipse IDE-based Software Development Kit (SDK)

Board support package creation

GNU software development tools

C/C++ compiler for the MicroBlaze and ARM Cortex-A9 processors (gcc)

Debugger for the MicroBlaze and ARM Cortex-A9 processors (system debugger)

TCF framework – multicore debug

˃ Board support packages (BSPs)

Stand-alone BSP

‒ Free basic device drivers and utilities from Xilinx

‒ NOT an RTOS

Creating Processor System 24- 8

© Copyright 2018 Xilinx

Vivado View

˃ Customizable panels

A: Project Management

B: IP Integrator

C: FPGA Flow

D: Layout Selection

E: Project view/Preview Panel

F: Console, Messages, Logs

Creating Processor System 24- 9

A

B

C

D

E

F

© Copyright 2018 Xilinx

Embedded System Design using Vivado

Creating Processor System 24- 10

15. Program bitstream & .elf into ZynqVivado

SDK

1. Launch Vivado

2. Create Block Design

8. Create Top-Level HDL

9. Add Constraints (file)

10. Generate Bitstream => .bit

11. Export hardware to SDK

3. Add PS7

4. Configure PS settings

5. Run Block Automation

6. Add and configure IPs

7. Run Connection Automation
12. Create Board Support Package

13. Create or add Software Project

14. Build application => .elf

PYNQ-Z1

IP
 I

n
te

g
ra

to
r

PYNQ-Z2

© Copyright 2018 Xilinx

Add IP Integrator Block Diagram

˃ IP Integrator Block Diagram opens a

blank canvas

˃ IP can be added from the IP catalog

˃ Drag and drop interface

˃ Intelligent Design environment
Design Assistance

Connection automation

Highlights valid connections

Group, create hierarchal blocks

˃ Can import custom IP using IP

Packager

Creating Processor System 24- 11

© Copyright 2018 Xilinx

Configuring and Connecting Hardware in IP
Integrator

˃ Double click blocks to access configuration options

˃ Drag pointer to make connections
Highlights valid connections

˃ Connection Automation
Automatically connect recognised interfaces

˃ Automatically redraw system

Creating Processor System 24- 12

© Copyright 2018 Xilinx

Exporting to XSDK

˃ Export hardware first
The Hardware Description File (hdf) format file
containing all the relevant information will be
created and placed under the *.sdk directory

Include bitstream if generated

˃ Launch XSDK
Software development is performed with the
Xilinx Software Development Kit tool (XSDK)

˃ The XSDK tool will then associate user

software projects to hardware

Creating Processor System 24- 13

© Copyright 2018 Xilinx

Software Development Flow

˃ Create/Import hardware platform

project
Automatically performed when XSDK tool is
launched from Vivado project

˃ Create BSP
System software, board support package

˃ Create software application

˃ Update linker script, if needed

˃ Build project
compile, assemble, link output file
<app_project>.elf

Creating Processor System 24- 14

© Copyright 2018 Xilinx

Creating IP-XACT Hardware

Accelerator

© Copyright 2018 Xilinx

Port-Level Interfaces

˃ The AXI4 interfaces supported by Vivado HLS

include

The AXI4-Stream (axis)

‒ Specify on input arguments or output arguments only,
not on input/output arguments

The AXI4 master (m_axi)

‒ Specify on arrays and pointers (and references in
C++) only. You can group multiple arguments into the
same AXI4-Lite interface using the bundle option

The AXI4-Lite (s_axilite)

‒ Specify on any type of argument except arrays. You
can group multiple arguments into the same AXI4-Lite
interface using the bundle option

Creating Processor System 24- 16

© Copyright 2018 Xilinx

Interface Modes

˃ Native AXI Interfaces
AXI4 Slave Lite, AXI4 Master, AXI Stream
supported by INTERFACE directive

‒ Provided in RTL after Synthesis

‒ Supported by C/RTL Co-simulation

‒ Supported for Verilog and VHDL

˃ BRAM Memory Interface
Identical IO protocol to ap_memory

Bundled differently in IP Integrator

‒ Provides easier integration to memories
with BRAM interface

Creating Processor System 24- 17

axis

s_axilite

m_axi

bram

© Copyright 2018 Xilinx

Native AXI Slave Lite Interface

˃ Interface Mode: s_axilite

Supported with INTERFACE directive

Multiple ports may be grouped into the same Slave Lite interface

‒ All ports which use the same bundle name are grouped

˃ Grouped Ports

Default mode is ap_none for input ports

Default mode is ap_vld for output ports

Default mode ap_ctrl_hs for function (return port)

Default mode can be changed with additional INTERFACE
directives

Creating Processor System 24- 18

void example(char *a, char *b, char *c)

{

#pragma HLS INTERFACE s_axilite port=return bundle=BUS_A

#pragma HLS INTERFACE s_axilite port=a bundle=BUS_A

#pragma HLS INTERFACE s_axilite port=b bundle=BUS_A

#pragma HLS INTERFACE s_axilite port=c bundle=BUS_A

#pragma HLS INTERFACE ap_hs port=a

#pragma HLS INTERFACE ap_vld port=b

#pragma HLS INTERFACE ap_none port=c register

© Copyright 2018 Xilinx

Controllable Register Maps in AXI4 Lite

˃ Assigning offset to array (RAM) interfaces

Specified value is offset to base of array

Array’s address space is always contiguous and linear

˃ C Driver Files include offset information

In generated driver file xhls_sig_gen_bram2axis.h

Creating Processor System 24- 19

void hls_sig_gen_bram2axis(hls::stream<axis_last_t<data_t> >& dout,

data_t sig_buf[MAX_SIG_PERIOD], short sig_period)

{

#pragma HLS INTERFACE port=return s_axilite bundle=ctrl

#pragma HLS INTERFACE port=sig_buf s_axilite bundle=ctrl offset=0x1000

#pragma HLS INTERFACE port=sig_period s_axilite bundle=ctrl offset=0x0400

...

#define XHLS_SIG_GEN_BRAM2AXIS_CTRL_ADDR_SIG_PERIOD_DATA 0x0400

...

#define XHLS_SIG_GEN_BRAM2AXIS_CTRL_ADDR_SIG_BUF_BASE 0x1000

#define XHLS_SIG_GEN_BRAM2AXIS_CTRL_ADDR_SIG_BUF_HIGH 0x17ff

...

© Copyright 2018 Xilinx

Native AXI4 Master

˃ Interface Mode: m_axi

Supported with INTERFACE directive

˃ Options

Multiple ports may be grouped into the same AXI4 Master interface

‒ All ports which use the same bundle name are grouped

Depth option is required for C/RTL co-simulation

‒ Required for pointers, not arrays

‒ Set to the number of values read/written

Option to support offset or base address

Creating Processor System 24- 20

void example(volatile int *a)

{

#pragma HLS INTERFACE m_axi depth=50 port=a

© Copyright 2018 Xilinx

Native AXI4 Master : Offset Support

˃ Address Offset / Base Address Support

Support provided for address offset

˃ Port Offset

Defines the offset for the port

May be set on individual interfaces using the INTERFACE directive

˃ Global Offset

Globally controls the offset ports of
all M_AXI interface in the design

May be set using the interface
configuration

‒ Using Tcl command config_interface
-m_axi_offset option

Creating Processor System 24- 21

© Copyright 2018 Xilinx

Native AXI4 Master: Offset=off (default)

˃ Default AXI4 Master Interface

No offset is provided for the address

‒ Same as existing behavior

The offset (BASEADDR) is set IPI

‒ Using IP customization GUI

The offset can not be changed on the fly

Creating Processor System 24- 22

AXI4 Master Interface

config_interface -m_axi_offset off

© Copyright 2018 Xilinx

Native AXI4 Master: Offset=direct

˃ Direct Interface

Generates a scalar input offset port

The offset is set by driving the input port

It can be changed on the fly by driving the port
with a different value

Creating Processor System 24- 23

AXI4 Master Interface …

…Plus port to specify address

offset

config_interface -m_axi_offset direct

© Copyright 2018 Xilinx

Native AXI4 Master: Offset=slave

˃ Direct Interface

Generates an offset port and automatically
maps it to an AXI4 Slave Lite interface

User must program the offset before starting
transactions on the AXI4 Master interface

It can changed on the fly by re-programming
the offset register

Creating Processor System 24- 24

AXI4 Master Interface …

…Plus AXI4 Slave Lite interface

to program the address offset config_interface -m_axi_offset slave

© Copyright 2018 Xilinx

Burst Accesses Inferred for AXI4 Master

˃ There are two types of accesses on an AXI Master

Burst accesses are more efficient

Burst access has until now required the use of memcpy()

˃ Burst Accesses are now inferred

From operations in a for-loop and from sequential operations in the code

However: there are some limitations

‒ Single for-loops only, no nested loops

Creating Processor System 24- 25

Single Access Burst Access

void example(int *a)

{

#pragma HLS INTERFACE m_axi port=a depth=...

...

int val[i] = *(a + i);

...

void example(int *a)

{

#pragma HLS INTERFACE m_axi port=a depth=...

...

memcpy(vals, a, N * sizeof(int));

...

© Copyright 2018 Xilinx

Byte-Enable Accesses on AXI4 Master

˃ Byte-Enable Accesses Support on AXI4 Master Interfaces

Single bytes are now written and read

Improved AXI4 Master performance

˃ Improved Performance

This code uses 8-bit data

‒ Previously, accessing this required reading/writing full 32-bit

‒ This implied a required read-modify-write behavior: Impacted performance

Similar performance improvement when accessing struct members

‒ Also often implied read-modify-write behavior

Improved Port Bundling

‒ Variables of different sizes can be grouped into same AXI4 Master port

Creating Processor System 24- 26

void example(volatile char *a) {

#pragma HLS INTERFACE m_axi depth=50 port=a

© Copyright 2018 Xilinx

AXI4 Port Bundling

˃ AXI4 Master and Lite Port Bundling

The bundle options groups arguments into the same AXI4 port

For example, group 3 arguments into AXI4 port “ctrl” :

˃ Arguments can be Bundled into AXI4 Master and AXI4 Lite ports

If no bundle name is used a default name is used for all arguments

‒ All go into a single AXI4 Master or AXI4 Lite

‒ Default name applied if no –bundle option is used

Group different sized variables into an AXI4 Master port

Creating Processor System 24- 27

void hls_sig_gen_bram2axis(hls::stream<data_t>& dout,
data_t sig_buf[MAX_SIG_PERIOD], short sig_period)

{
#pragma HLS INTERFACE port=return s_axilite bundle=ctrl
#pragma HLS INTERFACE port=sig_buf s_axilite bundle=ctrl
#pragma HLS INTERFACE port=sig_period s_axilite bundle=ctrl
#pragma HLS INTERFACE port=dout axis

© Copyright 2018 Xilinx

AXI4 Stream Interface: Ease of Use

˃ Native Support for AXI4 Stream Interfaces

Native = An AXI4 Stream can be specified with set_directive_interface

‒ No longer required to set the interface then add a resource

‒ This AXI4 Stream interface is part of the HDL after synthesis

‒ This AXI4 Stream interface is simulated by RTL co-simulation

Creating Processor System 24- 28

set_directive_interface –mode axis “foo” portA

Or

#pragma HLS interface axis port=portA

Interface Type “axis” is AXI4 Stream

© Copyright 2018 Xilinx

Generate the hardware accelerator

˃ Select Solution > Export RTL

˃ Select IP Catalog, System Generator for Vivado

or design check point (dcp)

˃ Click on Configuration… if you want to change

the version number or other information
Default is v1.0

˃ Click on OK
The directory (ip) will be generated under the impl folder
under the current project directory and current
solution

RTL code will be generated, both for Verilog and VHDL
languages in their respective folders

Creating Processor System 24- 29

© Copyright 2018 Xilinx

Generated impl Directory

Creating Processor System 24- 30

Point IP Catalog to

point to the ip directory

Generated Verilog RTL Files

Header file for slave

interfaces

IP Integrator will use

this file

XSDK will use this

directory

© Copyright 2018 Xilinx

C Driver API for AXI4-Lite Interface

Creating Processor System 24- 31

© Copyright 2018 Xilinx

Integrating the IP-XACT Hardware

Accelerator in AXI System

© Copyright 2018 Xilinx

Embedded System Design using Vivado

˃ Create a new Vivado project, or open an existing project

˃ Invoke IP Integrator

˃ Construct(modify) the hardware portion of the embedded design by adding the IP-

XACT hardware accelerator created in Vivado HLS

˃ Create (Update) top level HDL wrapper

˃ Synthesize any non-embedded components and implement in Vivado

˃ Export the hardware description, and launch XSDK

˃ Create a new software board support package and application projects in the XSDK

˃ Compile the software with the GNU cross-compiler in XSDK

˃ Download the programmable logic’s completed bitstream using Xilinx Tools >

Program FPGA in XSDK

˃ Use XSDK to download and execute the program (the ELF file)
Creating Processor System 24- 33

© Copyright 2018 Xilinx

Summary

© Copyright 2018 Xilinx

Summary

˃ Embedded system development flow in FPGA involves

Developing hardware using IP Integrator and Vivado

Developing software using XSDK

˃ hardware accelerator provides wide support of AXI interfaces, System Generator

design, and design check point(dcp)

Use the INTERFACE directive

The choice of hardware accelerator is a function of the C variable type (pointer, etc.)

˃ Start with the correct C argument type

Verify the design at the C level

Accept the default block-level I/O protocol

Select the port-level I/O protocol that gives the required hardware accelerator interface

Optionally group ports

Creating Processor System 24- 35

